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Abstract—This paper analyzes data from coronary artery
bypass grafting (CABG) using decision functions to represent
rules. The data was collected at the University Hospital in
Umeå, Sweden. The data contains pre-, intra-, and postoperative
detail from 2975 heart operations during 1993-96. Each instance
is represented by 14 preoperative variables, 4 intraoperative
variables, and 9 postoperative variables. A logical method is
used to predict the postoperative variables using preoperative
variables. First, each postoperative variable is represented as
a decision functions of preoperative variables. Then, for each
postoperative variable, a minimal set of preoperative variables is
derived. And finally, each postoperative variable is represented
by a minimum set of rules using preoperative variables. With this
method we can predict postoperative outcome, where prediction
using preoperative data only is of particular interest e.g. for
surgery scheduling.

Index Terms—multi-valued logic, partially defined function,
classification, decision tree, imbalanced data set, variable mini-
mization, discretization, domain reduction, rule reduction

I. INTRODUCTION

Given a set of data, data mining is a technique to find a
set of useful rules to represent the data. C4.5 [13] and CART
(Classification and regression tree) [3] are algorithms to derive
decision trees from the set of integer vectors. C4.5 uses entropy
to find the decision variables, while CART uses Gini index.
Rules can be derived from the decision trees.

This paper shows an alternative method to derive such rules.
The method consists of four steps.

1) Discretization. Convert the data consisting of real num-
bers into that of integers.

2) Domain reduction. Merge the intervals to reduce the
dynamic range of the variables.

3) Variable reduction. Reduce the number of variables
to represent the partially defined function by minimum
covering.

4) Rule reduction. Simplify the table, and derive sum-of-
products expressions (SOPs) using logic minimization
for partially defined functions.

With this method, we analyzed the data in coronary artery
bypass grafting (CABG). The data contains pre, intra, and
postoperative details of heart operations of 2975 instances.
Each instance is represented by 14 preoperative variables, 4
intraoperative variables, and 9 postoperative variables.

A logical method is used to represent the postoperative
variables by preoperative variables only. In this way, we can

predict the outcome of operations, which is quite useful for
scheduling of surgery.

The rest of this paper is organized as follows: Section II
introduce CABG. Section III introduce the method used in
this paper. Section IV explains the data set used in this paper.
Section V shows how to convert numerical data into integer
data. Section VI shows the experimental results. Section VII
analyzes operative deaths in detail. Section VIII shows the
outline of the system, and Section IX concludes the paper.

II. CORONARY ARTERY BYPASS GRAFTING

Coronary Artery Bypass Grafting (CABG) is a surgical
procedure used to treat coronary heart disease. CABG disease
is the narrowing of the coronary arteries : the blood vessels that
supply oxygen and nutrients to the heart muscle. One way to
treat the blocked or narrowed arteries is to bypass the blocked
portion of the coronary artery with a piece of a healthy blood
vessel from elsewhere in the body. Blood vessels, or grafts,
used for the bypass procedure may be pieces of a vein from
the leg or an artery in the chest.

In an operation, multiple bypass grafts may be used. So, the
surgery is complex and takes many hours. During operation, a
heart-lung bypass machine is often used. After operation, the
patient is sent to the intensive care unit (ICU). After the ICU,
the patient is sent to a patient bedroom in the hospital. Since
the facility and stuff are limited, doctors have to estimate the
outcome of the operations.

The outcome depends not only on the status of the heart
disease, but also on the status of kidneys, liver, and lungs.

The outcomes include, D30 (death within 30 days), and
REOPBEED (reoperation caused by bleeding). Although such
undesirable events are rare, doctors have to estimate the risks
of such events. For example, the probabilities of D30=1 and
REOPBLEED=1 are less than 1.5%, and 3.7% respectively, in
this data set. In data mining, rare events are hard to predict.
Such data sets are called imbalanced [9].

III. LOGICAL METHOD TO DERIVE RULES

Logical methods to derive rules from a set of instances have
been developed for many years. Related research can be found
in [1], [2], [6], [10], [16], [21]. In this part, we introduce the
idea by using two examples.

Example 3.1: In a hypothetical hospital, a doctor made
diagnosis for 6 patients. In Table 3.1, x1, x2, x3 and x4 show



TABLE 3.1
EXAMPLE WITH FOUR VARIABLES

x1 x2 x3 x4 f
0 0 0 1 0
0 1 1 0 0
1 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 0 0 1

symptoms: say, x1 shows high fever, x2 shows headache, x3

shows sore throat, x4 shows general aches and pain, and f
shows the influenza.

From this table, two sets of rules can be generated.
The first set of rules is

“If x1 and x4 are true, or if x2 is true and x3 is false, then
f = 1.”

The second set of rules is
“If x1 and x2 are true, or x1 and x4 are true, or x2 and x4

are true, then f = 1.” By using logical expressions, they are
represented as follows:

Rules 1: F1 = x1x4 ∨ x2x̄3.
Rules 2: F2 = x1x2 ∨ x1x4 ∨ x2x4.
Note that Rules 1 require four variables, while Rules2

require three variables.
For the patient having the symptoms (x1, x2, x3, x4) =

(1, 1, 1, 1), both rules produce f = 1. However, for the patient
having the symptoms (x1, x2, x3, x4) = (0, 1, 1, 1), Rules 1
derive f = 0, while Rules 2 derive f = 1.

In Table 3.1, six combinations are shown. An input combi-
nation such that f(x1, x2, x3, x4) = 1 is a positive instance,
while an input combination such that f(x1, x2, x3, x4) = 0 is a
negative instance. Such combinations form the training data
in machine learning. On the other hand, the input combination
(x1, x2, x3, x4) = (1, 1, 1, 1) is missing in Table 3.1. There are
24 − 6 = 10 missing combinations. For such combinations,
the function values are not known. Such input combinations
are called unseen data. We want to predict the outcomes for
unseen data.

We are going to construct an SOP that is consistent with
the training data.

For example, F1 = x1x4∨x2x̄3 is an SOP of Table 3.1. The
SOP F1 shows that f(1, 1, 1, 1) = 1, which is not shown in Ta-
ble 3.1. From a simplified SOP, one can predict the outcomes
for unseen data [20]. Also, note that when (x1, x2, x3x4) =
(0, 0, 0, 0), F1 predicts that f(x1, x2, x3, x4) = 0, which is
not contained in Table 3.1. In F1, products x1x4 and x2x̄3

corresponds to rules.
Example 3.2: In the same hypothetical hospital, the

same doctor made diagnosis for 8 patients. In Table 3.2,
x1, x2, . . . , x6 show the results of test: say, x1 shows PET
(Positron Emission Tomography); x2 shows tumor marker; x3

shows ultrasonic echo; x4 shows MRI (Magnetic Resonance
Imaging); x5 shows endoscopy; x6 shows CT (Computed
Tomography) ; and f shows the malignant tumor.

TABLE 3.2
EXAMPLE WITH SIX VARIABLES

x1 x2 x3 x4 x5 x6 f
1 0 0 0 1 1 0
0 0 1 0 1 1 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 1 1 1
0 1 1 0 1 0 1

TABLE 3.3
THREE VARIABLES ARE NOT SUFFICIENT

x2 x3 x4 f
0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 0 1 1
1 1 1 1
1 0 0 1
1 1 0 1

From this table, two sets of rules can be derived:
Rules 1:

F1 = x2x̄3x̄4x6 ∨ x̄2x̄3x4x6 ∨ x2x3x̄4x̄6 ∨ x2x3x4x6.

Rules 2: F2 = x1x2x6 ∨ x1x̄3x6 ∨ x̄1x2x3x̄6.
Both sets of rules require four variables (tests). Rules 1

require x2, x3, x4 and x6, while Rules 2 require x1, x2, x3

and x6. Note that x2, x3 and x4 are essential, but they are not
sufficient.

Table 3.3 shows the relation between (x2, x3, x4) and f .
When (x2, x3, x4) = (0, 0, 1), the value of f can be both
0 and 1. In other words, the third and the fifth entries are
inconsistent or conflicting. In this case, {x2, x3, x4} are not
sufficient to represent f .

Methods to derive simplified set of rules from the set of
instances are shown in [7], [8], [14]. A method to derive
minimal sets of variables to represent a given set of instances
is shown in p.84 of [14], p. 122 of [15], and p. 31 of [17].

In these examples, for simplicity, only two-valued variables
were used. However, multiple-valued variables can be also
used. Also, the number of classes can be greater than two,
i.e., f can take many values [16], [18].

IV. DATA SET

Table 4.1 shows the details of the variables in the data set. In
the last column, the number inside of the parenthesis denotes
the number of distinct values. Note that V01 (age) is denoted
by years and months.

These variables (V01 ∼ V27) are categorized into
• Preoperative: V01 ∼ V14,
• Intraoperative:V15 ∼ V18, and
• Postoperative: V19 ∼ V27.



The original data set consists of 2975 instances. After
removing instances with incomplete entries in V01 ∼ V18,
the number of remaining instances became 1480.

For each postoperative variable, we constructed a decision
function. Since V20,V21,V22 take numerical values, we set
cut points as follows:

• V20 (INTENSH): 24 hours,
• V21 (DAYSPOST): 10 days, and
• V22 (RESPTIME): 24 hours.

In this way, we had 9 decision functions of 18 input
variables. Note that V01 (AGE), V08 (PRECREA), V15
(CLAMPTIME), and V16 (ECCTIME) take more than a
hundred distinct values.

V. PRE-PROCESSING OF DATA [19]

Among 27 variables, V01, V08, V15, V16 are numerical
variables and take more than a hundred distinct values, which
are hard to manipulate by a logic minimization program. So,
we try to reduce the domain of the variables.

Discretization [11] converts the data consisting of real
numbers into that of integers. To do this, the values of the
variables are sorted in ascending order, and for each distinct
value, unique integer starting from 1 is assigned so that the
magnitude relation is kept. For example, Table 4.2 can be
converted into Table 4.3.

Domain reduction merges the domain to reduce the dy-
namic range of the variables. Consider the function f(x),
where x takes integer values. If f(a) = f(a + 1), then the
domains for a and a+1 are merged. For example, Table 4.3 can
be reduced to Table 4.4. In this way, a table with continuous
variables are converted into one with integer variables.

Two instances are inconsistent or conflicting if the at-
tributes are the same, but belong to different classes. The set
of instances is consistent if there is no inconsistent pair in the
set. We assume that the given set of instances is consistent.

VI. EXPERIMENTAL RESULTS

We reduced the number of values for V01, V08, V15
and V16, so that the reduction never affects the accuracy of
decision [19].

A. Rules using Minimal Set of Variables

Each postoperative variable was represented as a partially
defined function of both preoperative and intraoperative vari-
ables. Then, the number of variables was minimized, and
finally the SOP was simplified by MINI10 [20] to reduce the
number of the products (i.e., rules). The first five columns of
Table 6.1 shows the results.

Note that these functions can be represented with at most
three variables. Unfortunately, they contain at least one in-
traoperative variable (V15, V16, V17, or V18). Note that
intraoperative variables are available during surgery. Predic-
tion of postoperative variables (i.e., outcomes) without using
intraoperative variables are preferable for surgery scheduling.

B. Rules Using Only Preoperative Variables

Rules that predict prognosis of operations using only pre-
operative variables are extremely helpful. Information on the
preoperative variables are easily available.

Thus, we tried to find rules that consist of preoperative
variables only. We applied a program to derive all possible
minimal sets of variables necessary to represent the function.
Then, we selected a solution that contains preoperative vari-
ables only. And, finally, we represented the function by a
minimum SOP. The last three columns of Table 6.1 shows
the results. For most functions, the necessary number of rules
or variables increased. The number of rules in Table 6.1
shows one for the simpler rules between the positive and
the negative classes1. All the functions were represented with
preoperative variables only. This is quite helpful for surgery
scheduling. We can see that V01 (Age), V04 (Function Class),
and V08 (Preoperative S-Creatinine) are important variables.
This result is consistent with those of other studies [4], [5],
[12]: They used eGFR (estimated glomerular filtration rate),
which is more sensitive test of kidney function compared to
S-Creatinine.

C. AOQUAL

An interesting question is that whether AOQUAL (V18:
aorta quality) can be represented by preoperative variables
or not. Fortunately, the answer is yes. There are 15 minimal
solutions. One of the solutions is shown in the bottom of Table
6.1. Note that AOQUAL takes three values.

D. Conflict Rate for the Training Set

In the previous subsections, we selected instances whose
variables V01∼V18 are complete. Only 1480 or fewer in-
stances out of 2975 instances were used to find the necessary
set of variables, (i.e., were used for the training data). The
analysis showed that to represent the functions, only a few
variables are necessary.

For example, to represent D30, only V01, V04 and V08 are
used. So, we selected 2756 instances whose entries for V01,
V04, V08, and D30 are complete, and checked if V01, V04,
and V08 are sufficient to represent D30. Unfortunately, there
exist one pair of conflicting instances. (i.e. inconsistent data
pair). That is, the entries for V01, V04, and V08 are the same,
but that of D30 are different. However, if we ignore one of
these instances, D30 can be represented by V01, V04, and
V08.

Let the Conflict Rate be

Conflict Rate =
Number of Conflicting Pairs

Size of the Instance Set
.

Table 6.2 summarizes the results for all the postoperative
variables. Note that the conflict rates are very low. From this,
we can expect low error rates for unseen instances.

Especially, for POPKIDNEY and RETINTENS, no conflict
exists. In all cases, the number of rules increased to cover
more instances.

1In this paper, the positive class corresponds to undesirable events, such as
death. Undesirable events are rare in many cases.



TABLE 4.1
HEART OPERATION DATA SET

Variable Acronym Explanation Values
V01 AGE Years and Months Numerical (354)
V02 AP Angina pectoris STABLE, INSTABLE, ACUTE, OTHER
V03 REOP Reoperation YES, NO
V04 FUNCT CLASS Function class I, II, IIIA, IIIB, IV
V05 LV FUNCT Left ventricle function GOOD, WEAKENED, BAD
V06 NVESSELS Number of vessels diseased Numerical (6)
V07 HSTAMST Left main stenosis YES, NO
V08 PRECREA Preoperative S-Creatinine Numerical (125)
V09 CEREBRDIS Cerebrovascular disease YES, NO
V10 PREVCABG Previous CABG operation YES, NO
V11 SMOKER Smoker YES, NO
V12 LUNGDIS Lung disease YES, NO
V13 LIVERDIS Liver disease YES, NO
V14 DIABETES Diabetes YES, NO
V15 CLAMPTIME Aorta closed (min) Numerical (119)
V16 ECCTIME Heart/lung machine (min) Numerical (167)
V17 PANAST Number of anastomoses Numerical (8)
V18 AOQUAL Aorta quality NORMAL, SLIGHTLY CHANGED,

SEVERELY CHANGED
V19 D30 Died within 30 days after operation YES, NO
V20 INTENSH Hours in intensive care Numerical
V21 DAYSPOST Length of stay in hospital Numerical
V22 RESPTIME Respiratortime (hours) Numerical
V23 REOPBLEED Reoperation caused by bleeding YES, NO
V24 POPATRFLIM Postoperative atrial fibrillation YES, NO
V25 POPCONF Postoperative confusion YES, NO
V26 POPKIDNEY Postoperative kidney insufficiency YES, NO
V27 RETINTENS More than once in intensive care YES, NO

TABLE 4.2
WITH CONTINUOUS VARIABLES

ID X1 X2 X3 f
1 10.6 25 4.9 1
2 11.2 33 4.9 1
3 11.5 18 4.0 1
4 11.6 22 5.5 1
5 11.6 25 4.4 1
6 11.7 28 4.4 1
7 11.7 37 4.7 1
8 11.7 30 3.7 2
9 11.9 30 4.8 1

10 11.9 35 3.6 2
11 12.1 30 3.8 1
12 12.2 32 4.3 1
13 12.2 34 4.1 2
14 12.2 35 4.4 2
15 12.4 23 3.5 2
16 12.5 37 3.5 2
17 12.6 32 3.3 2
18 12.8 41 3.9 2
19 12.9 28 3.7 2
20 13.3 36 4.1 2

TABLE 4.3
WITH INTEGER VARIABLES

ID Y1 Y2 Y3 f
1 1 4 13 1
2 2 8 13 1
3 3 1 7 1
4 4 2 14 1
5 4 4 10 1
6 5 5 10 1
7 5 12 11 1
8 5 6 4 2
9 6 6 12 1

10 6 10 3 2
11 7 6 5 1
12 8 7 9 1
13 8 9 8 2
14 8 10 10 2
15 9 3 2 2
16 10 12 2 2
17 11 7 1 2
18 12 13 6 2
19 13 5 4 2
20 14 11 8 2

TABLE 4.4
AFTER DOMAIN REDUCTION

ID Z1 Z2 Z3 f
1 1 3 8 1
2 1 7 8 1
3 1 1 4 1
4 1 1 8 1
5 1 3 7 1
6 2 4 7 1
7 2 9 8 1
8 2 5 1 2
9 3 5 8 1

10 3 8 1 2
11 4 5 2 1
12 5 6 6 1
13 5 8 5 2
14 5 8 7 2
15 6 2 1 2
16 6 9 1 2
17 6 6 1 2
18 6 10 3 2
19 6 4 1 2
20 6 8 5 2

E. Accuracy for the Test Sets

In the previous experiment, rules were generated using 1480
or fewer instances. Such sets of instances are training sets.
For example, in the case of REOPBLEED, 1480 instances
were used for the training set to generate 49 rules. 1289
instances were used for the test set: each instance in this set
was incomplete, but the entries for V01,V06, V08 and V23
are complete. As shown in Fig. 6.1, the number of incorrectly
classified instance was counted to compute the error rate. The
error rate of the test set is defined as

Error Rate =
# of Incorrectly Classified Instances

Size of the Test Set
.

Table 6.3 shows the error rates. The number of rules in Table
6.3 includes both that for the positive and the negative cases
2. Thus, they are greater than those of Table 6.1.

VII. DETAILED ANALYSIS FOR D30

In this part, we analyze the influence of V 01 (Age), V 04
(Function class according to New York Heart Association), and
V 08 (Preoperative S-Creatinine), to V 19 (D30: Died within
30 days after operation). Among 2975 instances, 44 instances
died, while 2931 instances survived.

2We used rules for both the positive and the negative cases to compute the
error rate.



TABLE 6.1
RULES USING PREOPERATIVE VARIABLES ONLY

Minimal Variables Preoperative Variables only
Acronym # of # of # of Var. # of # of Var.

Inst. Rules Var. Rules Var.
D30 1480 5 2 V01,V15 5 3 V01, V04, V08
INTENSH (24 hours) 1480 51 3 V01,V05,V16 76 6 V01, V04, V06, V07,V08, V12
DAYSPOST (10 days) 1477 55 3 V01,V05,V16 90 6 V01, V04, V07, V08, V11, V14
POPATRFLIM 1115 27 3 V01,V08,V16 45 6 V01, V04, V05, V07, V08, V11
POPCOF 1115 9 3 V01,V08,V16 11 3 V01, V07,V08
POPKIDNEY 1115 13 2 V01,V16 5 3 V01, V04, V08
REOPBLEED 1480 8 3 V01,V15,V16 22 3 V01, V06,V08
RESPTIME(24 hours) 1457 36 3 V01,V08,V16 66 3 V01, V04, V08
RETINTENS 1480 9 3 V01,V08,V16 20 4 V01, V04, V07,V08
AOQUAL 1480 151 6 V01, V02, V07, V08, V10, V11

TABLE 6.2
RULES USING PREOPERATIVE VARIABLES: CONFLICT RATE

Acronym # of # of # of Conflict Rate
Instances Rules Conflicts (×10−3)

D30 2756 10 1 0.36
INTENSH (24 hours) 2442 96 3 1.23
DAYSPOST (10 days) 2400 90 6 2.50
POPATRFLIM 1965 89 6 3.06
POPCOF 2214 33 5 2.26
POPKIDNEY 2209 11 0 0.00
REOPBLEED 2769 24 7 2.53
RESPTIME (24 hours) 2724 84 10 3.67
RETINTENS 2758 37 0 0.00
AOQUAL 2437 202 10 4.10

Fig. 6.1. Method to compute error rate (In the case of REOPBLEED).

We selected 1480 instances that had complete entries for
all the preoperative, intraoperative variables, and V19. Among
1480 instances, 13 instances died, while 1467 instances sur-
vived. Fig. 6.2 shows the positional cube notation [19] of the
rules for D30, generated from 1480 instances. The number of
rules for died instances is 8, while that for survived instances
is five. To analyze the properties of instances, the products are
slimmed [7], i.e., the number of 1’s in a row is reduced.

The rules consist of four parts: Y1, Y2, Y3 and D30. Y1

TABLE 6.3
ERROR RATES FOR THE TEST SETS

Acronym Size of # of # of Error Rate
Test Set Rules Errors (%)

D30 1275 13 19 1.49
INTENSH (24 hours) 962 98 8 0.83
DAYSPOST (10 days) 923 146 22 2.38
POPATRFLIM 850 101 59 6.94
POPCOF 1099 35 46 4.18
POPKIDNEY 1094 18 16 1.46
REOPBLEED 1289 46 44 3.41
RESPTIME (24 hours) 1267 93 54 4.26
RETINTENS 1278 61 61 4.77
AOQUAL 957 151 101 10.55

takes 25 values, and corresponds to V 01 (Age); Y2 takes 4
values, and corresponds to V 04 (Function class); Y3 takes 25
values, and corresponds to V 08 (S-Creatinine); and V 19 takes
2 values, and corresponds to D30 (Died or not). The first 8
rows cover 13 instances for died, while the last 5 rows cover
1467 instances for survived. V 01 (age) ranges from 35.2 to
85.0, while Y1 ranges from 1 to 25. V 04 (Function class) takes
one of values in {I, II, IIIA, IIIB, IV }, while Y2 ranges
from 1 to 4, and Y2 = 2 corresponds to Class IIIA. V 08 (S-
Creatinine) ranges from 48 to 689, while Y3 ranges from 1 to
25. For example, the first cube in Fig.6.2 corresponds to the
product

Y
{12}
1 Y

{3}
2 Y

{18}
3 .

It shows that if Y1 = 12 and Y2 = 3 and Y3 = 18, then
D30 = 1. It also shows that if V 01 (Age) is 71.7 and V 04
(Function Class) is IIIA or IIIB, and V 08 (S-Creatinine) is
124.0, then D30 = 1. The first 8 rows not only cover 13
instances for died, but also many unseen instances.

From Fig. 6.2, we can observe that died instances occurred
only when Y2 �= 1, which correspond to class III or IV.
Independent research [5] also mentions that “New York Heart
Association class III or IV is a significant predictor” for D30.

Note that 1467 survived instances are represented by
five rules. For example, the last row of Fig. 6.2 covers
11 × 2 × 2 = 44 instances, since Y1 part contains 11
ones, Y2 part contains 2 ones, and Y3 part contains 2
ones. In addition to {V 01, V 04, V 08}, {V 01, V 05, V 08},



Y1 Y2 Y3 D30
1234567890123456789012345 1234 1234567890123456789012345 12
0000000000010000000000000 0010 0000000000000000010000000 10
0000000000010101000000010 0010 0000000001000000000000000 10
0000000001010101000101010 0001 0000000000010000000000000 10
0001000001010101010101010 0001 0000010001000100110000000 10
0001000000010001010000010 0100 0100000000000000010000000 10
0001000000010101010000010 0010 0000000000000000000001000 10
0101101011010101010101010 0111 0001000000000001000100010 10
0001000000000001010000010 0010 0000000100000000010000000 10
1110110101111010100111101 1111 1010101100001000000000000 01
1011110111111011011011101 1101 1011111111101010011011111 01
1010010101101010000010101 0011 0001000001000000010001000 01
1010011111111111111110101 1110 1100010010111111101110101 01
1010010101101010000010101 0011 0100000000010000000000000 01

Fig. 6.2. Generated rules for D30.

{V 01, V 02, V 06, V 08}, and {V 01, V 06, V 08, V 14} are min-
imal sets of preoperative variables to represent D30. This
shows that V 01 and V 08 are essential.

VIII. OUTLINE OF THE RULE GENERATION SYSTEM

A. Requirements for the Data

The training set must be a consistent set of enough in-
stances. If the training set has a pair of inconsistent instances,
then one of the pair must be removed from the training set.

B. Specifications of the Current System

• The data set is represented by an EXCEL csv file, where
entries are numbers.

• Input variables can be real numbers or integers, while
the output variable must be positive integers showing the
class.

• The system finds the most important set of variables, and
produces a set of rules to classify unseen instances.

• The system also generates all possible minimal sets of
variables to represent the function. A user can select the
best one.

• The generated rules are represented by a positional cube
notation [7], [14].

C. Limitation of the Method

A logical method efficiently selects a minimal set of vari-
ables, and derives a set of rules that covers all the instances
for each class. If there exists an instance that belongs to a
certain class, then a rule that covers the instance is generated.
However, the frequency of instances is not considered.

On the other hand, in a statistical method, the frequency of
instances is considered. If the frequency of instances is very
low compared with other instances, then such instances may
be neglected.

IX. CONCLUSIONS AND COMMENTS

This paper showed a method to derive rules for a given set
of instances. Unlike conventional methods that use decision
trees, it first reduces the domain, and then produces a sparsely

defined decision function. Then, the number of variables is
minimized. And, finally, multiple-valued input expressions are
simplified to reduce the number of rules. The method produces
a complete set of rules for a given set of instances. That is,
all the instances are covered by the rules.

For each postoperative variable, a minimal set of variables
to represent the variable was generated. Analysis shows that
the error rates are very low.

The analysis of D30 shows that V01 (Age), V04 (Function
class according to New York Heart Association) and V08 (pre-
operative S-Creatinine) are important to predict the outcomes.
These results are consistent with those of other studies [4],
[5], [12].

The merit of logical approach is that the explanation of the
decision is clear to both patients and medical doctors [1], [6].

The prediction method developed in this paper complements
traditional statistical methods, and provides opportunity for
future analysis.
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