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Abstract—This paper shows a method to realize a threshold
logic function using K-LUTs. It considers two cases: 1) when
the function has arbitrary weights and 2) when the number of
distinct non-zero weights is fixed to r. In the latter case, this
paper shows that any n-variable threshold logic function can be
implemented with O(n"*'logn) K-LUTs in a form of an LUT
cascade. It also shows that any n-variable threshold logic function
with weights (—1,0,1) or (—2,—1,0,1,2) can be implemented
with O(n?logn) K-LUTs.

Keywords-threshold function, cascade realization, ternary
weight neural network, functional decomposition, binary decision
diagram

I. INTRODUCTION

Neural networks have wide applications in various areas,
including image recognition. For applications that require high
throughput, FPGAs are often used to implement them [3],
[20]. Since neural networks consist of millions of threshold
gates, efficient realizations of threshold gates by K-LUTs are
desired, where K denotes the number of inputs to an LUT. In
commercial FPGAs, LUTs with K = 6 are available.

To estimate the number of LUTs necessary to implement
a given threshold gate of n variables, Shannon expansion is
often used [20]. In such a method, the number of necessary
LUTs increases exponentially with n. When the weights of
the threshold gates are small, threshold logic functions can be
efficiently implemented by LUT cascades [15], [17]. However,
when the weights of a threshold logic function are large, the
upper bound given in [15] is not useful. In fact, there exists
a series of threshold logic functions, whose weights increase
exponentially with n.

When neural networks are designed for FPGAs, the number
of distinct weights of threshold gates is fixed. That is, r,
the number of distinct weights of the threshold gates, is
independent of the number of the input variables n. In these
cases, we assume that activations, i.e., input variables, are two-
valued.

In this paper, we consider realizations of threshold logic
functions for various cases. We show that, when the number
of distinct weights of the threshold logic function f is fixed
to 7, the number of K-LUTs to realize f is O(n"*!logn).
Especially, any n-variable threshold function with weights

(—1,0,1) or (=2, —1,0,1,2) can be realized with O(n? logn)
K-LUTs.

The rest of this paper is organized as follows: Section IT
reviews basic theories used in this paper. Section III intro-
duces threshold logic functions, and considers the column
multiplicity of the decomposition chart. Section IV shows
LUT cascade realizations of threshold logic functions. Section
V considers the case for totally symmetric threshold logic
functions. Section VI considers the case for threshold logic
functions where the number of distinct weights is fixed.
Section VII considers the application of the presented results
to ternary weight neural networks. Section VIII reviews related
works. Section IX concludes the paper.

II. BASIC PROPERTIES

In this section, we review LUT cascade synthesis [17] of a
binary logic function B™ — B, where B = {0,1}.

Definition 2.1 ([2]): Let f(X) be a logic function, and
(X1,X2) be a partition of the input variables X,
where X1 = (z1,%2,...,2%) and Xo = (Tky1,Thto,

., Zn)- The decomposition chart for f is a two-dimensional
matrix with 2% columns and 2”~* rows, where each column
and row is labeled by a unique binary code, and each element
corresponds to the truth value of f. The function represented
by a column is a column function and depends on Xs.
Variables in X; are bound variables, while variables in X5
are free variables. In the decomposition chart, the column
multiplicity, denoted by pi, is the number of different column
functions.

Theorem 2.1 ([4]): For a given logic function f, let X; be
the bound variables, let X5 be the free variables, and let py, be
the column multiplicity of the decomposition chart. Then, the
function f can be realized with the network shown in Fig. 2.1.
In this case, the number of signal lines connecting blocks H
and G is [logy pix |-

Theorem 2.2 ([2]): Let pg(n) be the column multiplicity
of a decomposition chart of an n-variable logic function with
k bound variables. Then,

2w,—k

pr(n) < min{2", 2 }.

When circuits are designed by LUTs, functions with smaller
column multiplicities tend to have smaller realizations.
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Fig. 2.1. Realization of a logic function by decomposition.

Definition 2.2: Let f(xy1,x2,...,2,) be a logic function.
The profile of the function f is the vector (u1, pi2, ..., fin),
where puj denotes the column multiplicity of the decom-
position chart for f(X;,Xs), X1 = (z1,22,...,2x) and
X2 = (®k41,...,Ty), assuming that the order of variables
(z1,22,...,2,) is fixed. The C-measure of the function f is
max(fi1, fi2, - - -, fn), and is denoted by p(f).

The order of the variables affects the C-measure, but we
choose the natural order (x1,xo2,...,x,) of the input vari-
ables. C-measures and profile can be efficiently obtained by
widths of a quasi-reduced ordered BDD [17]. A logic function
with a small C-measure can be realized by a compact LUT
cascade.

Corollary 2.1: Let f be an arbitrary n-variable logic func-
tion. Then,

2n—k

p(f) < miax| min{2", 2

H.

For any partition (X3, X5) of X, we have the decom-
posed realization shown in Fig. 2.1. By repeatedly applying
functional decompositions to a given logic function f(X) =
f(X1,Xs, ..., X,), we have an LUT cascade [17] shown in
Fig. 2.2. An LUT cascade consists of cells. The signal lines
connecting adjacent cells are rails.

Lemma 2.1 ([17]): An arbitrary logic function f can be
realized by an LUT cascade, whose cells have at most
[log, p(f)]+1 inputs, and at most [log, p(f)] outputs, where
wu(f) is the C-measure of f.

Lemma 2.2 ([15]): In an LUT cascade that realizes an n-
variable logic function f, let s be the number of cells; K
be the number of inputs to a cell; K > R + 1, where R =
[logy (f)]; and n > K +1. Then, an LUT cascade satisfying
the following condition exists:

_|n—R
5= { s R] |
Example 2.1: Consider the function f(X7, X5) whose de-
composition chart is shown in Fig. 2.3, where blank entries
denote 0’s. In this case, X = (x1,x2,x3,Tq,Ts,2T6) 1S
partitioned into Xy = (z1,22,23) and Xy = (24, T5,%6).
The column multiplicity of Fig. 2.3 is u3 = 4, since four
distinct column functions exist. The profile of the function is

u..¢ u..¢ u.¢ u.¢
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Fig. 2.2. LUT cascade.

(2,3,4,3,3,2). The decomposition chart whose bound variables
are {x1,x2,x3, x4} is shown in Fig. 6.2. And the C-measure
of the function is u(f) = 4. Since R = [log, u(f)] = 2, by
Lemma 2.2, f can be realized by an LUT cascade, where each
LUT has at most K = R+ 1 = 3 inputs. The number of cells
is at most
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Fig. 2.3. Decomposition chart for f(X1,X2), where X1 = (z1,x2,23)
and X = (z4, x5, X6).

When the column multiplicity is greater than 32, the number
of rail outputs is more than five. In such a case, we synthesize
K-input LUTs by 6-LUTs.

Lemma 2.3: An arbitrary n-variable logic function can be
represented as follows:

F(X1,X2) = \/ g:(X1) X3,
icP

where X = (x1,22,...,25), and Xo =
(Thtt, Tha2s -, Tn)s P = {0,1,...,2"7% — 1}, and
the OR is performed with respect to 2" ~* elements.

Theorem 2.3 ([17]): The number of 6-LUTs to realize an
arbitrary n-variable logic function (n > 6) f is at most

e (2"7* —1)/3, when n is even, and

e (2% 4+1)/3, when n is odd.

III. THRESHOLD LOGIC FUNCTIONS

In this section, we show some properties of threshold logic
functions, which are useful for LUT cascade synthesis.
Definition 3.1: A threshold logic function

f(z1,29,...,2y,) satisfies the relation: f = 1 if
n n

Zwimi > T,and f = 0 if Zwimi < T — 1, where
i=1 i=1
(w1, ws,...,wy,) are weights, and T is an integer called
threshold. Any threshold logic function can be represented

by a structure of the threshold function:
(w1, wa, ..., wy;T).

Definition 3.2: A function f is positive in xz; if f can be
represented as f = fy V x; f1, where fy and f; are functions



that are independent of z;. f is positive if f is positive for all
the variables in f. Similarly, a function f is negative in z; if
f can be represented as f = fo V T; f1.

In a threshold logic function f, if the weight w; is negative,
then the function is negative in z;. In such a case, the function
can be converted into positive by replacing the negative
variable x; with 1 — y;.

Thus, without loss of generality, we can assume that in the
given function, weights and the threshold are positive numbers.
However, theorems hold even if weights and/or threshold are
negative.

Definition 3.3 ([14]): An optimal structure of an n-
variable positive threshold logic function has the minimum
value of "7 | |w;|, where w; are the weights of the function.

An optimal structure of a threshold logic function can be
found by a linear integer programming.

Theorem 3.1: Consider a decomposition chart of a thresh-
old logic function. Let X; = (z1,z2,...,2r) be bound
variables, and (wq,ws,...,wy) be their weights. Then, the
column multiplicity of f is at most UB1 =1 + Zle |w;].

(Proof)! Let f be a positive function. By Definition 3.1, the
value of the threshold logic function depends on the value of

k
WS = Z W; Ty .
i=1

There are (}) different ways to select bound variables. When
the variables in the bound set are fixed, WS takes values
between 0 and WS1 = Ele w;. Thus, the number of
different column functions is at most 1 + W S1. O

Theorem 3.2: Consider the decomposition chart of a thresh-
old function f(X;,X2), where X; are the bound variables,
and X5 = (Tg41, Tkt2, ..., Tn) are the free variables. Let the
weights for the free variables be (w41, Wk+t2, ..., wy). Then,
the column multiplicity of the decomposition chart is at most
UB2=2+ Y, |wil.

(Proof) Assume that the function is positive. The col-
umn functions are threshold logic functions with weights
(Wk41, Wit2, - . - , Wy ), where different coelum functions may
have different thresholds. Thus, the column multiplicity is at
most the number of different thresholds. Thresholds 7 of such
functions are between 1 and W52 =>"" 41 Wi Also, there
is the constant 1 function when T = 0, and the constant O
function when T' = W S2 4 1. Hence, the theorem. O

Example 3.1: The decomposition chart in Fig. 2.3 shows
the threshold logic function with the structure (1,1,2,2,3,3;6).
Thus, f can be written as

fe 1 (z1+ 20+ 223 + 224 + 325 + 326 > 6)
“ 1 0 (Otherwise).

By Theorem 3.1, the column multiplicity of Fig. 2.3 is at
most
UB1=1+(1+142)=5.

On the other hand, when n = 6 and k = 3, the upper bound on
the column multiplicity of an arbitrary logic function obtained

IThis proof is simpler than one in [15].

by Theorem 2.2 is min{2¥,22" "} = min{2%,28} = 8.
Thus, the knowledge of the structure of threshold logic func-
tion is useful to improve the upper bound. [ ]

Definition 3.4: Let 6(n) be the number of positive threshold
logic functions with up to n variables,

TABLE 3.1
NUMBER OF FUNCTIONS WITH 1 OR FEWER VARIABLES.
Positive

Number of Logic Threshold | Positive | Threshold
Variables Functions Functions | Functions | Functions
0 2 2 2 2
1 4 4 3 3
2 16 14 6 6
3 256 104 20 20
4 65, 536 1,882 168 150
5 4,294,967, 296 94,572 7,581 3,287

Table 3.1 compares the numbers of various classes of
functions. The first column shows the number of variables n;
the second column shows the number of logic functions with
n or fewer variables, that is 22" ; the third column shows the
number of threshold logic functions with n or fewer variables
[14]; the fourth column shows the number of positive functions
with n or fewer variables, which is equal to the Dedekind
number [18]; the last column shows #(n), the number of
positive threshold logic functions with n or fewer variables,
which is equal to the number of N-equivalence classes of
threshold logic functions with n or fewer variables [14].

Theorem 3.3: Consider a decomposition chart of an n-
variable positive threshold logic function f. Let k be the
number of bound variables. The column multiplicity of an
n-variable positive threshold logic function f is at most

min{2*,0(n — k)}.

(Proof) In a decomposition chart, each column denotes
a positive threshold logic function of n — k variables. The
number of columns is 2¥. The number of different column
functions is at most #(n — k). Hence, we have the theorem. O

Example 3.2: Consider the function f that appeared in
Example 3.1. It is a positive threshold logic function with
n = 6 variables. Consider the decomposition chart where
k = 4. Then, by Theorem 3.3, the column multiplicity is at
most min{2%,0(n — k)} = min{2% 6} = 6. Fig.6.2 is the
decomposition chart. The column multiplicity is three. [ ]

Theorem 3.4: Consider a decomposition chart of a positive
threshold logic function f with a threshold 7', then the column
multiplicity is at most 7"+ 2.

(Proof) In a decomposition chart of f, columns represent
positive threshold logic functions sharing the same weights.
The number of such functions is at most 7"+ 2, if we consider
two constant functions. O

Note that the LUT cascade shown in Fig. 2.2 realizes any
threshold logic function with the weights (wq,wa,...,w,),
but different threshold 7. To change the threshold T, only the
content of cells must be modified.



IV. THRESHOLD FUNCTIONS WITH ARBITRARY WEIGHTS

Lemma 4.1: Any threshold logic function with n = 8
variables can be realized with at most four 6-LUTs.

(Proof) Consider the decomposition chart of a threshold
logic function f(X1, X2), where X7 = (21, 22,...,z¢) and
Xo = (w7,28). By Theorem 3.3, the column multiplicity is
at most #(2) = 6. Thus, the function f can be implemented
by the circuit shown in Fig. 4.1. Note that the first cell has
six external inputs X; and produces 3 rail outputs, since
[log, #(2)] = 3. The number in the cell shows the number
of 6-LUTs to realize the cell. Thus, the total number of 6-

LUTs to implement the function is at most four. O
Xy Xa
6 2
T .1
3 A1

Fig. 4.1. Realization of a threshold function of 8-variables.

Note that to realize a non-threshold logic function of 8
variables, we need at most five 6-LUTs, by Theorem 2.3.

V. THRESHOLD FUNCTIONS WITH UNIT WEIGHTS

In this section, we consider the number of LUTSs to realize
a threshold logic function with unit weights.

Definition 5.1: [16] A function f is totally symmetric if
any permutation of the variables in f does not change the
function.

In the case of binary weight neural networks, the weights
can be either 0 or 1. However, when the weight for x; is O, the
function is independent of x;. Thus, only positive symmetric
threshold logic functions need to be considered.

Lemma 5.1: The number of distinct positive non-zero to-
tally symmetric threshold logic functions of n variables is
n+ 1.

(Proof) The function value depends only on the number of
I’s in the input variables. O

Example 5.1: When n = 3, n + 1 = 4 different non-zero
positive symmetric threshold logic functions exist:

r1T2x3, r1T9 V o3 V 3T,

1‘1\/332\/1‘3, 1
|

Lemma 5.2: Let f be a positive totally symmetric threshold
logic function of n variables. Then,

w(f) = r]?iaf[min{k:—l— 1,n—k+2}|.

(Proof) Consider the decomposition chart of f, where X; =
(z1,22,...,2%) denotes the bound variables and X, =
(41, Tht2,- .., Ty) denotes the free variables.

By Theorem 3.1, the number of distinct column functions
is at most k+ 1. Also, by Theorem 3.2, the number of distinct
column functions is at most n — k + 2, since the column

functions are positive symmetric threshold logic functions of
n — k variables, and two constant functions. O

Theorem 5.1: Let f be a positive totally symmetric thresh-
old logic function f with n variables. Then, u(f) < [%—‘ +1.

(Proof) When n is an odd number: By Lemma 5.2, min{k+
1,n — k+ 2} takes its maximum when k+1 =n—k + 2. In
this case, k +1 = [5] + 1.

When n is an even number: By Lemma 5.2, when k = [ 3],
min{k + 1,n — k + 2} takes its maximum k +1 = [§] +

Example 5.2: Consider a positive symmetric threshold
logic function f of n = 12 variables. From Theorem 5.1, the
column multiplicity is at mostl% 41=6+1="7. Thus, f
can be implemented by the LUT cascade shown in Fig. 5.1.
Note that the number of 6-LUTs is 7. When the threshold is
7, the profile of the function f is

(2,3,4,5,6,7,7,6,5,4,3,2). L]

6‘1’33+33T

7~ 1

Fig. 5.1.
variables.

Realization of a totally symmetric threshold function of 12-

Theorem 5.2: A totally symmetric threshold logic function
f of n variables can be realized using the following number
of 6-LUTs:

e n+ 1 (when n < 21).

e 2n — 19 (when 22 < n < 31)

e 5n — 113 (when 32 < n < 62).

(Proof) These numbers of 6-L.UTs were obtained by com-
puters. O

VI. THRESHOLD FUNCTIONS WITH FIXED NUMBER OF
DISTINCT WEIGHTS

Definition 6.1: In a logic function f(Xy, Xo,...,X,), if
any permutation of variables in X;, where ¢+ = 1,2,...,r, do
not change the function, then f is partially symmetric with
respect to X;.

Theorem 6.1: The number of distinct partially symmetric
positive threshold logic functions f(Xi, Xa,...,X,) is at
most 2+ Y7, |w;|n;, where n; is the number of variables in
X;, and w; is the weight of variables in Xj.

(Proof) Let WS = >"'_, w;n;. Then, the threshold can
take values between 0 and W' S. So, we have at most WS +1
different functions. In addition, constant O can be the function.

O

Example 6.1: Consider a set of four-variable partially sym-
metric positive threshold logic functions f(X;,X2), where
X1 = (z1,22) and Xy = (x3,24). Let the weights for
variables in X7 and X5 be 1 and 2, respectively. In this case,
the function can be written as:

f(X1,Xo) =1 WS = (1 +x2) +2(xz3 +x4) >T.



In addition, there are constant O and constant 1 functions.
Thus, by Theorem 6.1, there are at most 24+1x2+2x2 =38
distinct functions. [

Example 6.2: Let f(X;, X2, X3) be an 18-variable thresh-
old function, where X; = (z1,22,...,26), X2 =
(LE7,£E8, cee xlg), and X5 = ($13,$14, - ,xlg). Let the
weights of the variables X, Xo and X3 be 1, 2, and 3,
respectively. Then, the function can be realized by the cascade
shown in Fig. 6.1.

6 3
oy
3 4

SR G S o

4 3 2
Cell1  Cell2  Cell3 Cell4  Cell5  Cell6
Fig. 6.1. Realization of threshold functions of 18-variables.

o In Cell 1, the number of external inputs is 6, and the
number of rail outputs is 3, since the number of different
column functions is 1 + Z?:1 w; = 7, by Theorem 3.1.
In Cell 2, the number of external inputs is 3, and the
number of rail input is 3. By Theorem 3.1, the number
of different column functions is at most

6 9
L+ wi+ Y w; =13,
i=1 j=7

By Theorem 2.1, the number of rail output is 4.

In Cell 3, the number of external inputs is 2, and the
number of rail input is 4.

Consider the weights of remaining variables. The weight
of x12 is 2, but the weights of remaining 6 variables
T13,%14,...,2L1s8 are 3. So, the column functions are
partially symmetric. Note that

WS =2x12 + 3(x12 + x13 + - - - + T18)

takes at most (1 + 1) x (6 + 1) = 14 distinct values.
As will be shown in Theorem 6.2, the number of distinct
column functions can be at most 1 + 14 = 15. Thus, the
number of rail outputs of Cell 3 is 4.

In Cell 4, the number of external inputs is 2, and the
number of rail inputs is 4. Since the weights of remaining
variables are all 3, the columns represent totally symmet-
ric function of 5 variables. By Lemma 5.1, the number
of such functions is at most 7, +1 is for the constant 0
function. Thus, the number of rail outputs of Cell 4 is 3.
In Cell 5, the number of external inputs is 3, and the
number of rail input is 3. Since the weights of remaining
variables are all 3, the columns represent totally sym-
metric function of 2 variables. Since, the number of such
functions is at most 4, the number of rail outputs of Cell
5is 2.

In Cell 6, the number of external inputs is 2, and the
number of rail input is 2.

The total number of 6-L.UTs in Fig.6.1 is 17. When the
threshold of the function f is T' = 17, the profile of the
function is (2, 3,4,5,6,7,9,11,13,15,11,7,7,6,5,4,3,2). m

Theorem 6.2: Consider a partially symmetric positive
threshold logic function. If the non-zero weights w; of free
variables have r distinct values, then the number of distinct
column functions is at most

r
=1

where n; is the number of free variables with weights w,.

(Proof) By Lemma 5.1, we have the theorem. +1 is for the
constant 0 function. O

Example 6.3: The function f shown in Fig.2.3 is a par-
tially symmetric positive threshold logic function, and can be
written as f(Y7,Ys,Ys), where Y1 = (21,22), Y2 = (23,24)
and Y3 = (ws5,x6). Fig. 6.2 is the decomposition chart of
f(Zl,ZQ), where Z1 = (1317332,.233,1‘4) and ZQ = (135,.2?6).
Note that the column multiplicity is three. Non-zero weights
of the free variables (i.e., Z5) have r = 1 distinct value. Thus,
by Theorem 6.2, the number of distinct column functions is
at most

14 (2+1)=4.

(]

Theorem 6.3: Let f be an m-variable positive threshold
logic function with r distinct non-zero weights. Let r be a
constant that is independent of n. Then, the number of 6-LUTSs
to realize f is O(n"*logn).

(Proof) To implement f, use cells with K = R + 1 inputs,
where R = [log, pu(f)]. To realize f by an LUT cascade with
K-input cells, we need s = n — R cells, by Lemma 2.2. Note
that each cell has at most R outputs. The number of 6-LUTSs
to synthesize a K-input LUT is M ~ 2K-4/3, by Theorem

2.3. Note that M ~ 2= Thus, the total number of 6-input

~ oI
LUTs to realize f is

Npvr < sRM < nlog, #(f)]%~
Note that u(f) is O(n"), by Theorem 6.2. Hence, we have
the theorem. O

Thus, for binary weight neural networks (r = 1), all
the non-zero weights are 1, and the number of 6-LUTs is
O(n?logn).

Theorem 6.4: In an n-variable threshold logic function with
(1,2) weights, the column multiplicity of decomposition chart
can be reduced to at most n+ 1 by reordering of the variables.

(Proof) For simplicity, assume that n = 2m. Let the input
variables be X = (z1,%2,...,2,), and let (X3, X3) be a
partition of X. Let the weights of X; and X5, be 1 and 2,
respectively. Let n; be the number of variables in X, and let
no be the number of variables in X5. Let £ be the number of
bound variables.

When k& < nj. The weights of the bound variables are
the same. Thus, the column multiplicity is at most k + 1.
Especially, when k£ < m, the theorem holds. On the other
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Fig. 6.2. Decomposition chart for f(Z1, Z2), where Z1 = (z1,z2,x3,24) and Zo = (x5, 6)

hand, when m < k < ni, the number of free variables is
at most m — 1, and free variables have different weights. By
Theorem 3.2, the column multiplicity is at most n + 1.
When k > ny. The bound variables have different weights,
but the weights of the free variables are the same. Thus, the
number of distinct column functions is at most ny + 2. Thus,
when ny < m, the theorem holds. On the other hand, when
no > m, the number of bound variables is at most m — 1, but
variables with different weights exist. By Theorem 3.1, the
column multiplicity is at most n. O
Corollary 6.1: Any n-variable threshold logic function with
(1,2) weights, can be realized with O(n?logn) 6-LUTs.

VII. APPLICATION TO TERNARY WEIGHT NEURAL
NETWORKS

In neural networks, weights of threshold gates are real
numbers. To implement them by digital circuits, weights are
quantized. When the weight is small, it is quantized to 0. Thus,
threshold gates often have zero weights.

In neural networks using (—1,0, 1) weights, more than 90%
of the weights are 0 [22]. This is quite desirable, since the
function is independent of the variables whose weights are
0, and no connection is necessary for such variables. Such a
circuit is called ternary weight neural network [10]. From
this property, the circuit can be reduced drastically.

When (—1,0,1) weights are used, a threshold gate realizes
a function g that is 1 if and only if

—(pi+y2+ . Fyr) F Werr F Y2+ Ym) > 10,

where the weights for {y1,ya2,...,yr} are —1, while the
weights for {yx1, Yk+2,.-.,Ym | are L.

However, by replacing y; with —z; for ¢ € {1,2,...,k},
we have another threshold logic function A that is 1 if and
only if

(z1+ 2+ ...+ 26) + Wrt1 F Y2 + -+ Ym) > To.

Note that the function A is totally symmetric.

From Theorem 5.2 and Theorem 6.3, we have the following:

Theorem 7.1: Any n-variable threshold logic function f
with (—1,0,1) weights, can be realized with O(n?logn)
6-LUTs. Especially, f can be realized using the following
number of 6-L.UTs:

e n+1 (when n < 21).

e 2n — 19 (when 22 < n < 31)

e 5n — 113 (when 32 < n < 62).

Example 7.1: Let f(X;,X2) be the 18-variable thresh-
old function, where X; (x1,29,...,29), Xo
(10, %11, ..,%18), and the weights of the variables in X,
and X, be —1 and 1, respectively. Then, f can be realized
by the cascade shown in Fig. 6.1. When the threshold of the
function f is T' = 0, the profile of the function is

(2,3,4,5,6,7,8,9,10,10,9,8,7,6,5,4,3,2).

The number of 6-LUTs to realize f is 17.
From Corollary 6.1, we have the following:
Theorem 7.2: Any n-variable threshold logic function with

(—2,—1,0,1,2) weights, can be realized with O(n?logn) 6-

LUTs.

VIII. RELATED WORKS
A. Threshold Logic Functions

[11] showed the list of optimum structures for representative
threshold logic functions of up to 6 variables.

[21] and [13] enumerated threshold logic functions of up
to 7 and 8 variables, respectively. They used linear integer
programming to obtain optimum structures of threshold logic
functions. When n < 7, for any function, the optimal structure
is unique, and weights are integers. However, when n = 8§,
there exist non-integer weights, and some functions have
multiple optimal solutions [14].

[9] considered an efficient method to enumerate the number
of positive functions, which is a superset of positive threshold
logic functions.

[12] showed a series of n-variable threshold logic func-
tions whose weights increase exponentially with n. How-
ever, a function with large weights does not always
have a large C-measure. For example, the C-measure
of the 16-variable threshold logic function with structure
(30,32,59,62,117,121, 233,238,463, 471,925,934, 1844,
1859, 3686, 3703; 7389) is only 11.

[71 showed a series of n-variable
functions whose C-measures increase
with n, even if the ordering of
optimized. For example, the C-measure of the 16-
variable threshold logic function with the structure
(17,18, 20,24, 33, 34, 36, 40, 65, 66, 68, 72,129, 130, 132,
136;510) is 55.

[1] showed a method to decompose a threshold logic
function into bounded fan-in threshold logic functions. The

threshold logic
exponentially
the variables is



method produces circuits whose sizes are polynomial of n.
However, the circuit structure depends on the value of the
threshold 7.

B. Neural Networks

[5] developed a binary neural network, where both activa-
tions and weights are binary. [8] and [10] developed ternary
weight neural networks, where activations are binary. Ternary
weight neural networks yield higher accuracy (i.e., have fewer
errors for unknown data) than binary ones. [23] and [6]
introduced methods to train ternary neural net. [19] developed
ternary weight neural networks and implemented them on a
table look-up based processor, where the ternary weights are
{—1,0,1}. Note that, when the weight is 0, no connection is
necessary. In some applications, more than 70% of the weights
are zero.

IX. CONCLUSIONS AND COMMENTS

In this paper, we improved upper bounds on the column
multiplicity of decomposition chart for a threshold logic
function. With these results, we showed an efficient method
to realize an n-variable threshold logic function by an LUT
cascade. In a conventional method, the size increases exponen-
tially with n, while in the presented method, the size increases
polynomially: When the number of distinct non-zero weights
is r, the size increases with O(n"*!logn).

Especially, n-variable threshold logic functions with weights
(—1,0,1) or (—=2,—1,0,1,2) can be realized with O(n? logn)
K-LUTs. By only changing the content of LLUTs, we can
realize different threshold functions sharing the same set of
weights (wq,ws,...,w,), but having the different threshold
T. With these results, we can estimate the size of an FPGA
necessary to implement a given ternary weight neural network.
Note that LUT cascades are easy to layout.

When n < 60, cascade realizations are efficient. However,
when n is large, tree-type realizations can be more efficient
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