Improvement in the Quality of Solutions of a Heuristic Linear Decomposer
for Index Generation Functions

Shinobu Nagayama*

Tsutomu Sasao’

Jon T. Butler?

*Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
"Dept. of Computer Science, Meiji University, Kawasaki, JAPAN
*Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper presents a method to improve a heuris-
tic linear decomposer for index generation functions. Besides
being fast and scalable, it also improves the solutions. This is
done through the use of an efficient evaluation method that can
find better solutions and can predict the quality of the solution.
Experimental results show that the improved heuristic quickly
finds exact optimum solutions that are not found by existing
heuristics.

Keywords-Linear decomposition; index generation functions;
functional decomposition; balanced decision tree.

I. INTRODUCTION

Functional decomposition [1], [4] is a way to compactly
realize discrete functions with smaller sub-functions. Various
methods for functional decomposition and their optimization
algorithms [3], [5]-[7], [9], [17], [23] have been proposed
to minimize circuit size. Among them, we focus on linear
decomposition [6], [17] in this paper.

Linear decomposition realizes a function f with two parts:
L and G, as shown in Fig. 1, where L realizes linear functions
yi i=1,2,...,p), and G stores function values of f. The
first part L produces y; from inputs xi,xp,...,x, of f, and
the second part G outputs a function value of f from y;. By
using linear decomposition, index generation functions [19],
[20] can be realized efficiently with a memory-based archi-
tecture [19].

In the memory-based architecture, L is implemented by
EXOR gates, registers, and multiplexers, and G is imple-
mented by a (27 x ¢)-bit memory. Since memory size of G
strongly depends on the number of linear functions p in a
linear decomposition, minimization of p has been required in
a wide range of applications of index generation functions,

. . . Function storin.
Linear functions g

indices
x1—> y[
)Gz—b yz q
: L . G > f
L]
Xn—>
b
Figure 1. Linear decomposition of index generation functions [22].

such as IP address lookup tables, terminal access controllers,
URL whitelists, computer virus scanning circuits, memory
patch circuits, and code converters [29]. Thus, many mini-
mization methods [2], [10]-[16], [21], [22], [25]-[28], [30]-
[32] have been proposed.

We have also proposed a heuristic method [10]. Although
the heuristic is fast and scalable for large index generation
functions, it still has room for improvement in the quality of
solutions. Since the heuristic greedily searches for a solution,
it produces a local optimum solution. To improve the quality
of solutions, predicting the quality of solutions and choosing
a better candidate during the search are important. Thus,
we propose such an evaluation method for candidates of
solutions. The evaluation method is inspired by our previous
study [16] on an analytic approach to exact optimization.
Since the computational complexity of the proposed eval-
uation method is low, the new heuristic with the proposed
evaluation method can find a better solution with the same
time complexity as the previous heuristic.

The rest of this paper is organized as follows: Section II
defines index generation functions and linear decomposition.
Section III formulates the minimization problem of the num-
ber of linear functions, and outlines the previous heuristic to
solve it. Section IV presents a three-step evaluation method
to improve the quality of solutions of the heuristic. Section V
shows experimental results from practical examples, and
Section VI concludes the paper.

II. PRELIMINARIES

This section shows brief definitions of index generation
functions [19], [20] and linear decomposition [6], [17], [22].

A. Index Generation Functions

Definition 1: An incompletely specified index genera-
tion function, or simply index generation function, f(X)
is a multiple-valued function, where X is a tuple of n
binary variables (x;,x2,...,%,), and k assignments of values
to binary variables xi,x»,...,x, map to a set of indices
K ={1,2,...,k}. That is, the variables of f are binary-
valued, while f is k-valued. Further, there is a one-to-
one relationship between the k assignments of values to



Table I
EXAMPLE OF INDEX GENERATION FUNCTION [11].

Registered vectors indices
X X2 X3 X4 f
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 1 0 1 4
X1,X2,...,X%, and k indices. The k assignments of values

to x1,x2,...,%, are called the registered vectors. Other
assignments are left unspecified. k = |K] is called the weight
of the index generation function f.

Example 1: Table 1 shows an example of a 4-variable
index generation function with weight four. Note that, in
this function, input values other than 0001, 0010, 0100, and
1101 are NOT assigned to any function values. 0

Definition 2: Let K =1{1,2,...,k} be a set of indices of
an index generation function. If K =1, UL U...UI,, each
I; #0, and ;NI; =0 (i # j), then P ={l,b,...,I,} is a
partition of the set of indices K.

B. Linear Decomposition

Definition 3: A linear decomposition of an index gen-
eration function f(xy,xp,...,x,) realizes f using a func-
tion g(y1,y2,...,yp) Where y; is a linear combination of
{x17x27“'axn}:

Yilx1,%2, ..., Xn) = aix1 B apX2 B . .. B AinXy,

ie€{l,2,....p}, a;j € {0,1} (j € {1,2,...,n}), and, for
all registered vectors of the index generation function, the
following holds:

f(x17x27'~~7xn) :g(y17y27"'7y]7)'

Each y; is called a compound variable. For each y;, Z;?ZI aij
is called a compound degree of y;, denoted by deg(y;),
where a;; is viewed as an integer, and ) as an integer sum.

Definition 4: An inverse function of an index storing
function z = g(y1,y2,...,yp) in a linear decomposition is
a mapping from K = {1,2,...,k} to a set of p-bit vectors
{0,1}”, denoted by g~ '(z). In this inverse function g~!(z),
a mapping obtained by focusing only on the i-th bit of the
p-bit vectors: K — {0,1} is called an inverse function to a
compound variable y;, denoted by (g71);(2).

Definition 5: Let ON(y;) = {z | z € K, (g7 )i(z) = 1},
where K = {1,2,...,k} and (¢7')i(z) is an inverse function
of g(y1,y2,-..,¥n) to yi. |ON(y;)| is called the cardinality
of y; or informally the number of 1’s included in y;.

Example 2: The index generation function f in Exam-
ple 1 can be decomposed into two linear functions: y; = xp
and y, = x; ®x3, and a function g(y;,y2) shown in Table IL
All four function values of f are distinguished by just y; and
y2. In this case, deg(y;) =1 and deg(y2) = 2, respectively.
The original index generation function f can be realized by
the architecture in Fig. 1 with a (22 x 3 = 12)-bit memory

Table II
FUNCTION g STORING INDICES IN LINEAR DECOMPOSITION OF f.
V1 Y2 8
0 0 1
0 1 2
1 013
1 1 4

for G, while a (2* x 3 = 48)-bit memory is needed to directly
realize f without linear decomposition.

For g(yi,y2) in Table II, its inverse functions to y;
and y, are (g7')i(z) and (g7')2(z), respectively. We
have (g~")1(1) =0, (g7")1(2) =0, (g7 (3) = 1, and
(¢7)i(4) = 1. Similarly, (g 1)2(1) = 0, (g7 1)2(2) = 1,
(¢ 1)2(3) =0, and (g7 1)(4) = 1. The cardinalities of both
y1 and y; are 2.

In this way, linear decomposition can significantly reduce
memory size needed to realize an index generation function.

III. OPTIMIZATION OF LINEAR DECOMPOSITION

This section formulates the optimization problem for
linear decomposition of index generation functions, and
outlines an existing heuristic method based on balanced
decision trees [10].

A. Formulation of Optimization Problem

We formulate the optimization problem for linear decom-
position of index generation functions as follows:

Problem 1: Given an index generation function f and the
maximum compound degree ¢, find a linear decomposition
of f such that the number of linear functions p is minimum,
and all compound degrees are at most ¢.

As shown in the previous sections, the memory size of
G using linear decomposition exponentially increases with
the number of linear functions p. Thus, minimization of
p is important. In general, we can reduce the number of
linear functions by using large compound degree [10], [22]
However, large compound degree makes the circuit size
of L large (L is implemented with EXOR gates, registers,
and multiplexers). To obtain an optimum design considering
balance of both sizes of L and G, a careful choice of 7 is
important as well. In this paper, however, we focus on the
minimization of p under a given ¢.

Example 3: The linear decomposition of f shown in
Example 2 is optimum when ¢ = 2. This is because at least
2 variables are needed to distinguish 4 indices, and the
compound degrees of y; and y, are at most 2. 0

B. Outline of Balanced Tree Based Heuristic Method

Problem 1 can be reduced to the minimization of tree
height of an ordered binary decision tree that recursively
divides sets of indices by compound variables until only
singletons remain [10].

Example 4: Fig. 2 shows an ordered binary decision tree
representing g in Table II with the smallest height. The tree



Set of indices:
1,2,3,4

Figure 2. Binary decision tree for g of Table II [16].
Heuristic 1: Overview of heuristic for a compound variable
Input: a partition of indices P, an index generation

function, and a compound degree ¢

Output: a compound variable y,

1. Let y be O (the constant zero function).

2. Evaluate x1,x3,..., and x, using (1) and (2).

3. Choose the best x; among them.

4. Replace y with y®x; and deg(y) with deg(y)+ 1.

5. If the candidate y is better than the best one so
far, then y,p; = y.

6. Iterate Steps 2 to 5 until deg(y) =1.

divides the set of 4 indices into singletons by compound
variables y; and y;. The tree height corresponds to the
number of compound variables.

Since an ordered binary decision tree with the smallest
height is a balanced decision tree, a heuristic to construct a
balanced decision tree using compound variables has been
proposed [10]. The heuristic recursively divides a set of
indices into two subsets by a compound variable so that the
divided subsets have balanced sizes. In the heuristic, such
a compound variable is heuristically chosen by using the
following cost function: [10]

2
cost) (P,y;) = Z <I| —|IN 0N(y,~)|> , (1)

Ie? 2

where P is a partition of a set of indices with already chosen
compound variables. A smaller value of the cost function (1)
means that a partition obtained by y; is closer to the ideal
one, where all subsets in P are divided into halves. When
values of the cost function are equal, the heuristic chooses
a compound variable using the following as the second cost
function for breaking a tie: [10]

costy(%,yi) = max(max ([l NON(yi)|, I\ ON()l))- ()

By choosing a compound variable y; with a smaller value
of this cost function, the size of the largest subset among
divided subsets becomes smaller.

Heuristic 1 is a heuristic to find a compound variable
using the cost functions. Since it chooses promising original
variables x; using the cost functions, and compounds only

Heuristic 2: Overview of heuristic for linear decomposition
Input: an index generation function and a compound
degree t

Output: a set of compound variables

Let P={K} and i=1.

Find a compound variable y; by Heuristic 1.
Divide each I € P with y;.

Update P with the divided subsets.

i=i+1.

Iterate Steps 2 to 5 until |P| =k.

SNk W=

those variables, a good compound variable can be found with
small time and space complexities. In Steps 2 and 5, the cost
functions are used to evaluate candidates of solutions.

Heuristic 2 is a heuristic to find a good linear decompo-
sition using Heuristic 1 iteratively. Heuristic 2 divides a set
of indices recursively using compound variables selected by
Heuristic 1, and it terminates when a set of indices is divided
into singletons.

IV. EVALUATION METHOD OF SOLUTIONS

As shown in the previous section, the existing heuris-
tic [10] evaluates the quality of solutions by only the cost
functions. Although in the best-case scenario, the heuristic
can find a compound variable producing a partition close
to the ideal one by using the cost functions, a given index
generation function does not always have such a compound
variable. This is because the number of 1’s included in y;
is not always balanced (i.e., k/2). Specifically, when the
number of 1’s in y; is small, an unbalanced tree is neces-
sarily constructed, regardless of which compound variable
is chosen. In that case, another evaluation criterion should
be used, instead of the criteria with the goal of constructing
a balanced tree.

The cost functions (1) and (2) are criteria for mainly
evaluating whether a current partition of indices is closer
to the ideal one than others, or not. They do not look ahead
to a whole solution (i.e., total tree height). In unbalanced
trees, however, considering reduction of tree height directly
is more important than considering balance of the partition
on an ad hoc basis. This is because it is hard to keep balance
in a partition in unbalanced trees. Unpromising partitions
can be chosen by the cost functions (1) and (2). In addition,
when tree height is not reduced even if the largest subset
in a partition is divided, dividing other subsets as well as
the largest subset is more desirable than making the largest
subset smaller according to the cost function (2). That is,
in that case, a compound variable dividing more subsets
is more promising than a compound variable making the
largest subset smaller.

Example 5: As an example where unbalanced trees are
necessarily constructed, let us consider an index generation
function defined by Table III and its linear decomposition
with a compound degree t = 2. Since the number of 1’s in



Table III
AN INDEX GENERATION FUNCTION (1-OUT-OF-10 CODE).

Registered vectors indices
X|  Xp X3 X4 X5 Xg X7 X3 Xg X|g f
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 5
0 0 0 0 0 1 0 0 0 0 6
0 0 0 0 0 0 1 0 0 0 7
0 0 0 0 0 0 0 1 0 0 8
0 0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 0 1 10

Set of indices
1,2,3,4,5,6,7,8,9,10

Set of indices
1,2,3,4,5,6,7,8,9,10

AvE
o) < t
1
O

4,5
g ()

9.10
¥=0/ Y6=0/ Y6=0/
(a) Non-optimal tree. (b) Optimum tree.

Figure 3. Binary decision trees for 1-out-of-10 code with r =2 [12].

a compound variable is at most two, up to two indices can
be separated from subsets of indices by using a compound
variable. The heuristic using the cost functions (1) and (2)
preferentially divides the largest subset without dividing
smaller subsets, and thus, it produces a binary decision tree
of the type shown in Fig. 3(a). In this case, 7 compound
variables are needed to isolate each index, resulting in a non-
optimal solution. This is because unpromising partitions are
chosen by the cost functions (1) and (2).

On the other hand, by dividing more subsets at each level
of a binary decision tree as shown in Fig. 3(b), we have
the optimum solution. It uses 6 compound variables. This is
because in this example, tree height is not reduced even if
the largest subset is preferentially divided. 0

To avoid choosing such unpromising partitions, we pro-
pose an evaluation method of sub-solutions consisting of the
following three criteria:

1) estimate of tree height,

2) the number of divided subsets, and

3) balance of partition (i.e., the cost function (1)).

We begin with estimating tree height to evaluate a sub-
solution. Since a subset of indices I is recursively divided
into two, a lower bound on tree height of [ is

[log, (|7])7-

Using this lower bound, we estimate tree height after subsets
in a partition P are divided by a compound variable y; as
follows:

tree_height(?,y;) =
max(max([log, (I N ON(y:) )1, [oga (I1\ ON (y:) )1T)).

We choose a compound variable y; producing smaller tree
height by using this estimate. When estimates of tree height
are equal, the number of divided subsets by y; is evaluated
at the second step. At the second step, we choose y; dividing
more subsets. When the numbers of divided subsets are also
equal, we use the cost function (1) at the third evaluation.

This improvement just changes the cost functions in
Heuristics 1 and 2 into the above three-step evaluation. Since
the computational complexity of the three-step evaluation is
the same as the computational complexity of the cost func-
tions, the improved heuristic also has the same complexity
as Heuristic 2 that is [10]

O(nklog(k)),

where n is the number of original variables, and k is the
number of indices for an index generation function. Thus,
the proposed evaluation method can improve the quality of
solutions of the heuristic without sacrificing scalability.

V. EXPERIMENTAL RESULTS

The proposed three-step evaluation method is incorporated
into the heuristic [10] implemented in the C language, and
run on the following computer environment: CPU: Intel
Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS
5.7 Linux, and C-compiler: gcc -O2 (version 4.1.2).

A. For Symmetric Index Generation Functions

To evaluate the effectiveness of the proposed method,
we begin with computer experiments for symmetric index
generation functions [14], [16], [32]. This is because in sym-
metric index generation functions, all compound variables
have the same number of 1’s [16], and thus, it is easier
to see the effectiveness of the proposed method, excluding
other influences. In addition, the exact smallest numbers
of compound variables have been obtained even for large
symmetric index generation functions [14], [16], [32].

We compare the proposed method with existing heuristic
methods [10], [12], in terms of the number of compound
variables. Table IV shows the number of compound variables
obtained by each method for symmetric index generation
functions. The column labeled “opt” in Table IV shows
the smallest number of compound variables found by the
exact optimization method [16]. Boldfaced numbers denote
the exact optimum solutions found by heuristic methods.
Computation time is not shown in Table IV, since the
heuristic methods are fast, and their computation time for
any of the functions is shorter than 0.01 msec.



Table IV
NUMBER OF COMPOUND VARIABLES FOR SYMMETRIC FUNCTIONS.

Symmetric t | opt | Existing | Existing | Proposed
functions [10] [12]

1-out-of-10 code | 1 9 9 9 9

(n=k=10) 2 6 7 6 6

3 5 5 5 5

4 4 4 4 4

5 4 4 4 4

1-out-of-20 code | 1 19 19 19 19

(n=k=20) 21 13 14 13 13

3 10 10 10 10

4 8 8 8 8

5 7 7 7 7

1-out-of-30 code | 1 | 29 29 29 29

(n=k=730) 2120 22 20 20

3 15 16 15 15

4 12 12 12 12

5 10 11 11 10

1-out-of-40 code | 1 39 39 39 39

(n=k=40) 2| 26 29 26 26

31 20 22 20 20

4 16 17 17 16

5 13 14 14 14

1-out-of-50 code | 1 49 49 49 49

(n=k=1>50) 2| 33 37 33 33

31 25 27 25 25

4120 21 21 20

5 17 17 18 17

1-out-of-60 code | 1 59 59 59 59

(n=k=60) 2| 40 44 40 40

31 30 33 30 30

4| 24 26 25 24

5120 21 21 20

1-out-of-70 code | 1 69 69 69 69

(n=k=170) 2 | 46 52 46 46

3| 35 38 35 35

4| 28 30 29 28

5123 25 25 24

1-out-of-80 code | 1 79 79 79 79

(n=k=280) 2| 53 59 53 53

3| 40 44 40 40

41 32 34 33 32

5| 27 29 28 27

Boldface numbers are optimum.

From Table IV, we can see that the heuristic [10] tends
to produce worse solutions as the number of indices k
increases. This is because as mentioned in Section IV, par-
titions of indices are necessarily unbalanced. The degree of
unbalance becomes larger as k increases when the compound
degrees t is relatively small. Thus, unpromising partitions are
chosen by the cost functions (1) and (2), resulting in non-
optimal solutions. Although in [12], the heuristic method is
modified by introducing a constraint to improve the quality
of solutions, it still tends to choose unpromising partitions
when k is large since the same cost functions are used. On
the other hand, the proposed method produces the exact
optimum solutions for almost all cases. Indeed, when the
proposed method does not yield the optimum results, it is
only off by 1.

B. For Large General Index Generation Functions

Table V shows the number of compound variables and
computation time of the existing method [12] and the
proposed method for larger benchmark index generation
functions presented in [10]: random social security and tax
numbers (SST numbers) in Japan, the bible, and the US
constitution including amendments.

In these benchmark functions, the number of 1’s included
in an original variable x; is relatively large [10], [12]. In
that case, balanced decision trees tend to be constructed, and
thus, the existing heuristic, with the goal of keeping balance
in partitions, works well. Specifically, for “Bible” with t =1,
it works well. Since the proposed method gives preference to
“the number of divided subsets” over “balance of partition”
and it is a greedy search without backtracking, a worse
local optimum solution is produced. However, the proposed
method improves the quality of solutions for some cases. We
need further analysis to know which “the number of divided
subsets” or “balance of partition” should be prioritized for
each function. That is one of our future works.

The computation time of the proposed method is com-
parable to the computation time of the existing one. From
this result, we can see that the computational overhead of
the three-step evaluation is small. Therefore, the proposed
method can improve the quality of solutions without sacri-
ficing scalability.

VI. CONCLUSION AND COMMENTS

This paper proposes a three-step evaluation method to
improve the quality of solutions of a heuristic linear de-
composer for index generation functions. Since the proposed
evaluation method chooses a candidate while predicting
the quality of the solution, the heuristic incorporating the
proposed three-step evaluation method can find a better
solution than the previous heuristics. Experimental results
show that the proposed method can improve the quality of
solutions with the same computational overhead.

Since the proposed evaluation method is inspired by the
study on analytic approach to exact optimization for sym-
metric index generation functions, it works well especially
for symmetric index generation functions. On the other hand,
for functions such that balanced decision trees tend to be
constructed, it still has room for improvement. This would
be our future work.

ACKNOWLEDGMENTS

This research is partly supported by the JSPS KAKENHI
Grant (C), No.19K11881, 2020. The reviewers’ comments
were helpful in improving the paper.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,”
International Symposium on the Theory of Switching, pp. 74-116,
April 1957.

[2] J. Astola, P. Astola, R. Stankovic, and I. Tabus, “An algebraic
approach to reducing the number of variables of incompletely defined
discrete functions,” 46th International Symposium on Multiple-Valued
Logic, pp. 107-112, May 2016.

[3] V. Bertacco and M. Damiani, “The disjunctive decomposition of
logic functions,” International Conference on Computer Aided Design
(ICCAD), pp. 78-82, 1997.

[4] H. A. Curtis, A New Approach to the Design of Switching Circuits,
D. Van Nostrand Co., Princeton, NJ, 1962.



[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Table V
NUMBER OF COMPOUND VARIABLES AND COMPUTATION TIME FOR LARGE INDEX GENERATION FUNCTIONS.

Number of compound variables Compound degree ¢

Benchmarks Methods t=1 t=2 t=3 t=4 t=35 t=6 t=7 t=38 t=9 t=10
SST numbers [12] 42 37 36 35 35 35 35 35 35 35
(n=48.k=1.000.000) | Proposed 41 36 36 35 35 35 35 35 35 35
Bible [12] 44 31 28 27 25 25 25 24 24 24
(n=560.k = 20,827) Proposed 47 31 28 27 26 25 25 25 24 24
US constitution [12] 15 12 11 11 10 10 10 10 11 11
(n=1.512.k=253) Proposed 16 12 11 10 10 10 10 10 10 10
Computation time (sec.) t=1 t=2 t= t=4 t= t=06 t= t= t=9 t=10
SST numbers [12] 81.31 167.19 25292 33485 416.14 499.50 57241 64832 720.80 790.85
Proposed 87.55 176.30 264.63 349.18 439.85 521.89 602.10 682.86 758.79  831.27
Bible [12] 3.96 6.72 9.55 12.42 15.11 17.93 20.73 23.44 26.25 29.01
Proposed 5.31 8.42 12.05 15.34 18.67 21.92 25.41 28.83 32.23 35.37
US constitution [12] 0.06 0.08 0.11 0.14 0.15 0.18 0.20 0.22 0.25 0.28
Proposed 0.07 0.10 0.14 0.16 0.19 0.22 0.26 0.28 0.31 0.33

Boldfaced numbers denote better solutions.

C. Files, R. Drechsler, and M. A. Perkowski, “Functional decompo-
sition of MVL functions using multi-valued decision diagrams,” 27th
International Symposium on Multiple-Valued Logic, pp. 27-32, 1997.

R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, Chapter V, pp. 121-228, 1971.

T. Mazurkiewicz, “Non-disjoint functional decomposition of index
generation functions,” 50th International Symposium on Multiple-
Valued Logic, pp. 137-142, Nov. 2020.

S. Minato, ‘“Zero-suppressed BDDs for set manipulation in combina-
torial problems,” 30th Design Automation Conference, pp. 272-2717,
1993.

A. Mishchenko, B. Steinbach, and M. A. Perkowski, “An algorithm
for bi-decomposition of logic functions,” 38th Design Automation
Conference, pp. 103-108, 2001.

S. Nagayama, T. Sasao, and J. T. Butler, “An efficient heuristic for
linear decomposition of index generation functions,” 46th Interna-
tional Symposium on Multiple-Valued Logic, pp. 96—-101, May 2016.

S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
algorithm for linear decomposition of index generation functions,”
47th International Symposium on Multiple-Valued Logic, pp. 161—
166, May 2017.

S. Nagayama, T. Sasao, and J. T. Butler, “A balanced decision tree
based heuristic for linear decomposition of index generation func-
tions,” IEICE Transactions on Information and Systems, Vol. E100-D,
No. 8, pp. 1583-1591, Aug. 2017.

S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
method using ZDDs for linear decomposition of index generation
functions,” 48th International Symposium on Multiple-Valued Logic,
pp. 144-149, May 2018.

S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
method using ZDDs for linear decomposition of symmetric index
generation functions,” International Federation of Computational
Logic Journal of Logic and Their Applications, Vol. 5, No. 9,
pp. 1849-1866, Dec. 2018.

S. Nagayama, T. Sasao, and J. T. Butler, “A dynamic programming
based method for optimum linear decomposition of index generation
functions,” 49th International Symposium on Multiple-Valued Logic,
pp. 144-149, May 2019.

S. Nagayama, T. Sasao, and J. T. Butler, “On optimum linear decom-
position of symmetric index generation functions,” 50th International
Symposium on Multiple-Valued Logic, pp. 130-136, Nov. 2020.

E. I. Nechiporuk, “On the synthesis of networks using linear transfor-
mations of variables,” Dokl, AN SSSR, Vol. 123, No. 4, pp. 610-612,
Dec. 1958 (in Russian).

T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[31]

[32]

Publishers 1999.
T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

T. Sasao, “Index generation functions: recent developments (invited
paper),” 41st International Symposium on Multiple-Valued Logic,
pp. 1-9, May 2011.

T. Sasao, “Linear transformations for variable reduction,” Reed-
Muller Workshop 2011, May 2011.

T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference, pp. 781-788,
Jan. 2012.

T. Sasao, “Row-shift decompositions for index generation functions,”
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1585-1590, 2012.

T. Sasao, Y. Urano, and Y. Iguchi, “A lower bound on the number
of variables to represent incompletely specified index generation
functions,” 44th International Symposium on Multiple-Valued Logic,
pp- 7-12, May 2014.

T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear decom-
positions for incompletely specified index generation functions using
difference matrix,” IEICE Transactions on Fundamentals, Vol. E97-
A, No. 12, pp. 2427-2433, Dec. 2014.

T. Sasao, “A reduction method for the number of variables to rep-
resent index generation functions: s-min method,” 45th International
Symposium on Multiple-Valued Logic, pp. 164—-169, May 2015.

T. Sasao, I. Fumishi, and Y. Iguchi, “A method to minimize variables
for incompletely specified index generation functions using a SAT
solver,” International Workshop on Logic and Synthesis, pp. 161-
167, June 2015.

T. Sasao, I. Fumishi, and Y. Iguchi, “On an exact minimization of
variables for incompletely specified index generation functions using
SAT,” Note on Multiple-Valued Logic in Japan, Vol. 38, No. 3, pp. 1—-
8, Sept. 2015 (in Japanese).

T. Sasao, Index Generation Functions, Morgan & Claypool Publish-
ers, 2017, Chapt. 2.

T. Sasao, K. Matsuura, and Y. Iguchi, “An algorithm to find optimum
support-reducing decompositions for index generation functions,”
Design Automation and Test in Europe, pp. 812-817, March 2017.

D. A. Simovici, M. Zimand, and D. Pletea, “Several remarks on index
generation functions,” 42nd International Symposium on Multiple-
Valued Logic, pp. 179-184, May 2012.

B. Steinbach and C. Postoff, “Fast optimal synthesis of symmetric
index generation functions,” International Workshop on Boolean
Problems, paper 1, pp. 1-16, Sept. 2020.



