
A Design Method for Multiclass Classifiers
Tsutomu Sasao Yuto Horikawa Yukihiro Iguchi

Meiji University
Kawasaki 214-8571, Japan.

Abstract—Logic minimization is used to design multiclass clas-
sifiers for machine learning. This can be an alternative to a neural
network. A partially defined classification function f is derived
from the training set. Our multiclass classifier correctly classifies
not only all the samples in the training set, but also much of
samples in the unseen test set. To improve the test accuracy, 1)
minimization of variables in f ; 2) minimization of the number
of products in a ternary SOP for f ; and 3) maximization of
the number of literals in a ternary SOP for f , are performed.
Experimental results using MNIST and fashion MNIST data set
show that logic minimization improves the test accuracy. Our
classifiers can be easily implemented by LUTs and glue logic.

Index Terms—partially defined function, support minimization,
classification, digit recognition, MNIST, machine learning, neural
network, ternary logic, generalization ability

I. INTRODUCTION

MNIST [14] is a well known data set for machine learning.
In [9], LeCun et al. showed that LeNet-5, a convolutional
neural network, can recognize the MNIST images with the test
accuracy higher than 0.99. After that, various binarized neural
networks [5] [12] have been developed. Now, accuracies of the
binarized neural networks are approaching to analog ones [15].
Unfortunately, development of such a network requires two
steps: 1) design of an analog neural net, and 2) conversion of it
into binary one. If we can generate binary circuits directly
without using neural nets, it would be more convenient.

In this paper, we use a logic synthesis technique to develop
multiclass classifiers. We derive a partially defined function
f from the training set, and design a simple circuit
for f . Such circuits satisfy the specification 100%, but have
poor generalization ability. Usually, the classifiers need to
predict correct results for unseen test data. To improve the
generalization ability, we use three techniques: 1) minimization
of variables for f , 2) minimization of products in a ternary
sum-of-products expression (SOP) for f , and 3) maximization
of literals in a ternary SOP for f .

This paper shows that a reduction of variables and mini-
mization of ternary SOPs improve the generalization ability
of the circuits. This is the main contribution1. Similar, but
different approaches were presented in [11], [4].

II. DEFINITIONS AND PROBLEMS

Definition 2.1: Consider a set of k distinct vectors of n
bits. These vectors are registered vectors. For each registered
vector, assign an integer between 1 and m, where 2 ≤ m ≤ k,
and k is the weight of the function. A registered vector
table shows the function value for each registered vector. A

1Supported in part by a Grant-in-Aid for Scientific Research of the JSPS.

TABLE 2.1
REGISTERED VECTOR TABLE WITH k = 6 AND m = 2.

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 1
0 1 1 0 1 1 1
0 0 0 0 1 0 1
1 1 0 1 1 1 2
1 0 0 0 1 1 2
0 1 0 1 0 0 2

partially defined classification function produces the corre-
sponding function value when the input vector matches to a
registered vector, and produces undefined function value when
the input vector mismatches to all the registered vectors.

Definition 2.2: A partially defined classification function
shows a mapping f : D → {1, 2, . . . ,m}, where D ⊂ Bn

is the set of registered vectors and B = {0, 1}. The set of
vectors �a ∈ D such that f(�a) = i is represented by Fi, where
D =

⋃m
i=1 Fi. We assume that Fi �= ∅ (i = 1, 2, . . . ,m).

Example 2.1: The registered vector table in Table 2.1 shows
a classification function with weight k = 6 and m = 2.

Definition 2.3: Let F1 and F2 be subsets of Bn, where B =
{0, 1}, and F1 ∩ F2 = ∅. Consider the function f such that

�a ∈ F1 ⇒ f(�a) = 1,

�a ∈ F2 ⇒ f(�a) = 2.

f is partially defined if F1 ∪ F2 ⊂ Bn. A classifier realizes
the function f .

To evaluate the performance of a classifier, we use:
Definition 2.4:

Accuracy =
of Correctly recognized samples

Total # of samples.

The training accuracy is calculated by using data in the
training set, while the test accuracy is calculated by using
data in the test set.

III. STRATEGY FOR MULTICLASS PROBLEMS

Before showing the detail of our method, we survey existing
methods for multiclass problems [2],[10],[3].

A. Direct Method

This method uses a single classifier to solve the m-class
problem. Since it treats all the training data at a time, the design
time tends to be large. Also, the size of hardware tends to be
large, and the test accuracy tends to be low.

2

0/3

0/2

0/1

1/2

1/3

2/3

∑

2

∑

2

Counter

Class 0 Class 1 Class 3

∑

2
Class 2

∑

Fig. 4.1.
(m
2

)
-Unit Realization (m = 4).

B. One-vs-Rest Method

This method uses m base classifiers to solve the m-class
problem. To design a base classifier, for each class, we use the
samples of that class as the positive samples, and the remaining
samples of (m− 1) classes as the negative samples.

If a classifier is binary, i.e. it produces only a positive or a
negative decision, then the total decision would be ambiguous
for unseen data.

C. One-vs-one Method

This method uses
(
m
2

)
base classifiers to solve an m-class

problem. Each base classifier distinguishes a pair of classes. To
design a base classifier, for each pair of classes, only the pairs
of samples from the original data set are used.

When the test data is applied, a voting scheme is used. The
outputs of all

(
m
2

)
classifiers are used to find the class that

received the highest number of positive predictions. However,
for unseen data, erroneous prediction may occur.

D. Our Method

We use LUTs as basic elements, and use the one-vs-one
approach. We use ternary classifiers instead of binary ones.
This decreases the chance of ambiguity, and increases the test
accuracy. To further improve the test accuracy, we use a simple
ensemble method. This method partitions the training data into
r disjoint sets, and uses r

(
m
2

)
-units to implement a classifier.

It is called a
(
m
2

)
-unit ×r realization.

IV. MULTI-CLASS CLASSIFIER

In this section, we show the details of our m-class classifier.
Fig. 4.1 shows the

(
m
2

)
-unit realization. It consists of

(
m
2

)

ternary classifiers, counters, and a max selector. Note that the
figure illustrates the case of m = 4, and the max selector is
omitted.

A ternary classifier, shown by a square symbol, decides if
the input data belongs to the class i, or the class j, or another
class or unknown. The classifier i/j has two outputs: The
output (1, 0) denotes that the input data belongs to the class i;

the output (0, 1) denotes that the input data belongs to the class
j; and the output (0, 0) denotes that the input data belongs to
another class or unknown. We assume that the ternary classifier
is implemented by an LUT. The detail of the design method is
shown in Section V.

A counter, shown by
∑

symbol, counts the number of 1’s
in the inputs, and represents it by a binary number. It has m−1
inputs and
log2 m� outputs. The max selector (not shown in
Fig. 4.1) selects the class with the largest count.

Example 4.1: Assume that a training sample in Class 0 is
applied to the circuit in Fig. 4.1. Then, top three units recognize
Class 0, and all the upper (blue) lines become 1. Thus, all the
inputs to the counter for Class 0 become 1, and the counter
receives three votes. On the other hand, all the lower (red,
green, and black) lines of top three units become 0. So, the
first inputs of the counters for Classes 1, 2, and 3 become 0.
Thus, they receives votes less than 3. Since, Class 0 has the
largest vote, Class 0 is detected by the max selector.

To design the classifier i/j, we use the training data for class
‘i’ and class ‘j’, only. In this case, only the input variables that
are necessary to distinguish class i from class j are selected,
and other variables are removed. For example, in the case of
MNIST, the total number of input variables is 784, but only 13
variables are used to distinguish class 0 from class 1. This not
only reduces the size of the LUT to implement the classifier,
but also improves the generalization ability.

When a registered vector for class i or j is applied, then the
classifier i/j produces non-zero output, which is always correct.
When a non-registered vector is applied, it often produces non-
zero output. This is because only the variables to distinguish a
pair of classes are used. In this way, the classifier i/j guesses
the class. In Section V, we show a simple example where
a reduction of redundant variables improves generalization
ability.

The
(
m
2

)
-unit realization produces much higher test accuracy

than the single-unit realization. The next theorem shows that
the training accuracy of the

(
m
2

)
-unit realization is 1.00.

Theorem 4.1: The
(
m
2

)
-unit realization always produces

correct results for the data in the training set.
(Proof) The number of inputs to each counter is m− 1. For

an input data representing the class 0, the value of the counter
for the class 0 is m− 1. On the other hand, the values of the
other counters are less than m− 1. Thus, any training data for
class 0 produces correct result. This is true for other classes.

�

Fig. 4.2 illustrates the
(
m
2

)
-unit ×r realization, where

m = 10 and r = 4. The max selector is omitted. In this case,
the registered vectors are partitioned into r groups of similar
sizes. Note that, the number of input lines to each counter is
(m− 1)r. With this ensemble method, the test accuracy is
improved, and at the same time the total memory size is reduced
drastically.

Since there always exists a counter with the maximum value,
input data is always recognized either correctly or incorrectly.

V. DESIGN OF TERNARY CLASSIFIER

Generalization ability is power to adapt properly to new,

t ∑ ∑Counter ∑

45-unit 45-unit 45-unit45-unit

class 0 class 1 class 9
6 6 6

Fig. 4.2.
(m
2

)
-unit ×r realization (m = 10, r = 4).

TABLE 5.1
EXAMPLE FUNCTION WITH k = 10 AND m = 2.

x1 x2 x3 x4 x5 f
F1 �a1 1 1 0 1 1 1

�a2 1 0 1 1 1 1
�a3 1 0 1 0 0 1
�a4 1 0 0 1 1 1
�a5 0 0 0 1 0 1

F2
�b1 1 0 1 1 0 2
�b2 0 1 1 1 1 2
�b3 0 1 0 1 0 2
�b4 0 0 1 0 1 2
�b5 0 0 0 1 1 2

previously unseen data, drawn from the training data. Design of
networks with a high generalization ability is a major research
topic in machine learning. Networks with a high test accuracy
have a good generalization ability. Occam’s razor recommends
to use as simple rule as possible [1].

In this part, we show a design method for a ternary clas-
sifier. Also, we show that logic optimization can improve the
generalization ability.

Example 5.1: Consider the function f in Table 5.1. The
number of variables in f is five. The upper five vectors form
the F1 set, while the lower five vectors form the F2 set. Since
the variable x3 is redundant2 in f , x3 can be removed from
f to obtain the function f̂ shown in Table 5.2. A method
to reduce variables is shown in Section VI. Next, consider
the generalization ability of the functions. Fig. 5.1 shows the
map for the example function, where the blank cells denote
undefined. The number of undefined cells is 22. This function
has no generalization ability, but only stores the data in the

TABLE 5.2
EXAMPLE FUNCTION AFTER REMOVAL OF x3 .

x1 x2 x4 x5 f̂
1 1 1 1 1
1 0 1 1 1
1 0 0 0 1
1 0 1 1 1
0 0 1 0 1
1 0 1 0 2
0 1 1 1 2
0 1 1 0 2
0 0 0 1 2
0 0 1 1 2

2This can be verified by the fact that f(|x3 = 0) and f(|x3 = 1) are
compatible [13].

x1

x2

x3

x4
1

x1

x5

x2

2

1

1

1

1

2

2

2

2

Fig. 5.1. Example function (Original)

x1

x2

x3

x4
1

x1

x5

x2

2

1

1

1

1

2

2

2

2

1* 2*

1*

1*

2* 2*

2*

2*

Fig. 5.2. Example function (After removal of x3)

training set.
Fig. 5.2 shows the map for f̂ , the example function after

removal of x3. Note that 8 cells with 1*, and 2* denote newly
introduced minterms by the reduction of x3. The values of
the function for these 8 minterms are guessed by the removal
of x3. This means that the reduction of variables improves
generalization ability. However, there still remain 14 undefined
cells.

Fig. 5.3 shows the map for the reduced function f̂ , after
minimization of the ternary SOP. Note that f̂ takes three values
0, 1, 2, where 0 corresponds to undefined. Also, cells for 1’s
and 2’s cannot be combined together. The minimized ternary
SOP for f̂ is

F = 1 · (x1x4x5 ∨ x1x̄2x̄4x̄5 ∨ x̄1x̄2x4x̄5)

2 · (x̄1x5 ∨ x1x̄2x4x̄5 ∨ x̄1x2x4x̄5).

Two cells with + marks denote newly introduced minterms
that are guessed by the minimization of the ternary SOP for f̂ .
Note that there still remain 12 undefined cells.

The above example shows the influence of logic minimiza-
tion on the prediction of values in a classifier. When the training
set and test set are completely random, such a guess is useless.
However, for functions for image recognition, experimental
results show that such a guess is really useful.

Note that the logic minimization of ternary classification for
machine learning is different from that of binary function for
circuit optimization. If we use a binary minimizer for circuit
design, more undefined cells are assigned values. In this case,
the minimized SOP lost the information on the confidence.

x1

x2

x3

x4
1

x1

x5

x2

2

1

1

1

1

2

2

2

2

1* 2*

1*

1*

2* 2*

2*

2*

+

+

Fig. 5.3. Example function (After ternary SOP minimization)

In the circuit minimization, all the true minterms are covered
by the loops, where the loops must be as large possible. This
is to reduce the interconnection (literals in the SOP). However
in the optimization for machine learning, the loops must be as
small as possible. With ternary minimization of SOP, only the
minterms with high confidence are assigned values.

In the case of
(
m
2

)
-unit realization, many units guess the

classes, and the counters and the max selector find the most
probable class.

VI. OPTIMIZATION ALGORITHMS

A. Reduction of Variables

This part shows a method to reduce the number of variables
in the classification function. Since the number of the original
input variables are very large, we cannot use the exact method
[8], but have to use a heuristic method.

To reduce the variables, we introduce the impurity measure
μ. The reduction of μ tends to make the decision tree as
balanced as possible.

Definition 6.1: Let �a be a vector showing the selected
variables. Let Size(j) be the number of vectors that belong
to the partition j generated by �a. Let Hist(j, V alue) be the
number of vectors that belong to the partition j and whose value
corresponds to V alue. In this case, the following relations hold:

m∑

V alue=1

Hist(j, V alue) = Size(j),
2t−1∑

j=0

Size(j) = k,

where k denotes the total number of vectors, and t denotes the
number of variables specified by �a. In this case, the impurity
measure of the function is

μ =
2t−1∑

j=0

[
Size(j)2 −

m∑

V alue=1

Hist(j, V alue)2
]

When μ = 0, the classification function f can be represented
by the variables specified by �a.

Algorithm 6.1: (A heuristic method to reduce the number of
variables)

1) Given a classification function f .
2) Compute the impurity measures μ, where each variable

xi is fixed, for i = 1, 2, . . . n.
3) Select a variable xi that minimizes the value of μ. Let �a

denote the set of selected variables. Let �a ← �ei, where

TABLE 6.1
WHEN THE FUNCTION IS EXPANDED BY x1 .

x1 x2 x3 x4 x5 x6 f
0 1 1 0 1 1 1
0 0 0 0 1 0 1
0 1 0 1 0 0 2
1 1 0 0 1 1 1
1 1 0 1 1 1 2
1 0 0 0 1 1 2

TABLE 6.2
WHEN THE FUNCTION IS EXPANDED BY x2 .

x1 x2 x3 x4 x5 x6 f
0 0 0 0 1 0 1
1 0 0 0 1 1 2
1 1 0 0 1 1 1
0 1 1 0 1 1 1
0 1 0 1 0 0 2
1 1 0 1 1 1 2

�ei is the unit vector whose i-th element is 1, and other
elements are 0’s.

4) Among the remaining variables, select a variable xj that
minimizes μ. Let �a← �a ∨ �ej .

5) If μ > 0, then go to step 4.
6) If μ = 0, then stop.

Example 6.1: Consider the 6-variable function shown in
Table 2.1. When the function is expanded by x1, we have Table
6.1. Note that Size(0) = 3 and Size(1) = 3.
For the partition x1 = 0, Hist(0, 1) = 2, Hist(0, 2) = 1.
For the partition x1 = 1, Hist(1, 1) = 1, Hist(1, 2) = 2.
Thus, the impurity measure is μ = [32 − (22 + 12)] + [32 −
(11 + 22)] = 8.

When the function is expanded by x2, we have Table 6.2.
Note that Size(0) = 2 and Size(1) = 4.
For the partition x2 = 0, Hist(0, 1) = 1, Hist(0, 2) = 1.
For the partition x2 = 1, Hist(1, 1) = 2, Hist(1, 2) = 2.
Thus, the impurity measure is μ = [22 − (12 + 12)] + [42 −
(22 + 22)] = 10.

When the function is expanded by x4, we have Table 6.3.
Note that Size(0) = 4 and Size(1) = 2.
For the partition x4 = 0, Hist(0, 1) = 3, Hist(0, 2) = 1.
For the partition x4 = 1, Hist(1, 1) = 0, Hist(1, 2) = 2.
Thus, the measure is μ = [42−(32+12)]+[22−(02+22)] = 6.

In this way, for each variable, we compute the measure. In
summary, when the function is expanded by xi, the measures
are μ(x1) = 8, μ(x2) = 10, μ(x3) = 12, μ(x4) = 6, μ(x5) =
12, μ(x6) = 10. Since x4 yields the smallest measure, we use
x4 to expand the function.

In the next step, we select the second variable in a similar
way, and find that when the function is expanded with x1 and
x4, the measure becomes minimum.

In this case, Table 6.4 shows the partition. Note that

TABLE 6.3
WHEN THE FUNCTION IS EXPANDED BY x4 .

x1 x2 x3 x4 x5 x6 f
0 1 1 0 1 1 1
0 0 0 0 1 0 1
1 1 0 0 1 1 1
1 0 0 0 1 1 2
0 1 0 1 0 0 2
1 1 0 1 1 1 2

TABLE 6.4
WHEN THE FUNCTION IS EXPANDED BY x1 AND x4 .

x1 x2 x3 x4 x5 x6 f
0 1 1 0 1 1 1
0 0 0 0 1 0 1
0 1 0 1 0 0 2
1 1 0 0 1 1 1
1 0 0 0 1 1 2
1 1 0 1 1 1 2

Size(00) = 2, Size(01) = 1, Size(10) = 2, Size(11) = 1.
For (x1, x4) = 00, Hist(00, 1) = 2, Hist(00, 2) = 0.
For (x1, x4) = 01, Hist(01, 1) = 0, Hist(01, 2) = 1.
For (x1, x4) = 10, Hist(10, 1) = 1, Hist(10, 2) = 1.
For (x1, x4) = 11, Hist(11, 1) = 0, Hist(11, 2) = 1.

Thus, the measure is μ = [22 − (22 + 02)] + [12 − (02 +
12)] + [22 − (12 + 12)] + [12 − (12 + 02)] = 2.

In the next step, we select the third variable in a similar way,
and find that when the function is expanded with x1, x2 and
x4, the measure μ becomes zero. Table 6.5 shows the partition.
Thus, the function is represented by (x1, x2, x4).

TABLE 6.5
WHEN THE FUNCTION IS EXPANDED BY x1 , x2 AND x4 .

x1 x2 x3 x4 x5 x6 f
0 0 0 0 1 0 1
0 1 1 0 1 1 1
0 1 0 1 0 0 2
1 0 0 0 1 1 2
1 1 0 0 1 1 1
1 1 0 1 1 1 2

Since this algorithm is a heuristic one, it does not always
produce a minimum solution.

B. Simplification of Ternary SOP

Algorithm 6.2: (Minimization of a ternary SOP)
1) Assume that F1 and F2 are given as SOPs, where

F1 ∩ F2 = ∅.
2) Merge the cubes of F1 and F2, respectively.
3) DC ← F1 ∪ F2.
4) Simplify F1 using DC as don’t cares.
5) Simplify F2 using DC as don’t cares.
6) F2 ← F2 ∩ F1.

In the simplifications of ternary SOPs in Steps 4) and 5), we
try to minimize the number of produces, while trying to reduce
the volume of cubes [7]. This corresponds to maximize the
number of literals in an SOP. Thus, values are assigned only
to the minterms that are near to the minterms for registered
vectors. Since minimizations of Steps 4) and 5) are done
independently, some undefined minterms are assigned to both
F1 and F2. Thus, Step 6) is necessary to remove inconsistency.

Example 6.2: Consider the function in Example 6.1. After
the removal of redundant variables, we have

G1 = 1 · (x̄1x̄2x̄4 ∨ x̄1x2x̄4 ∨ x1x2x̄4)

2 · (x̄1x2x4 ∨ x1x̄2x̄4 ∨ x1x2x4).

In Step 2) of Algorithm 6.2, products of G1 are merged to

G2 = 1 · (x̄1x̄4 ∨ x2x̄4) ∨ 2 · (x2x4 ∨ x1x̄2x̄4).

TABLE 7.1
RESULT FOR 45-UNIT REALIZATION (MNIST).

Result Variable ternary SOP
minimization minimization

Correctly recognized 8773.5 9053.6
Incorrectly recognized 1219.5 939.4
Test Accuracy 0.878 0.906

TABLE 7.2
RESULT FOR 45-UNIT×8 REALIZATION (MNIST).

Result Variable ternary SOP
minimization minimization

Correctly recognized 9024.8 9291.3
Incorrectly recognized 968.2 701.7
Test Accuracy 0.903 0.930

For this particular example, Steps 4) ∼ 6) of Algorithm 6.2
does not change the function.

Table 6.1 shows a 6-variable function, and specifies the
outputs for 6 combinations, while G2 shows a 3-variable
function, and specifies the outputs for 6 combinations. Each
minterm of G2 corresponds to 23 = 8 minterms of Table 6.1.
So, G2 specifies 6 × 8 = 48 combinations in Table 6.1. Thus,
48−6 = 42 combinations are guessed by the simplification .

VII. EXPERIMENTAL RESULTS

A. MNIST

The MNIST [14] data set consists of bit maps of 28 × 28
handwritten digits images. The training set consist of 6× 104

images, while the test set consists of 104 images. They are
grayscale images, but we converted them into binary ones, by
setting the threshold to 96. In this way, we had an n-variable
binary-input m-valued function, where n = 28 × 28 = 784,
and m = 10. Also in this process, we removed duplicated data.
The number of samples in the training set is 59981, while the
number of samples in the test set is 9993. Since the number of
different classes is m = 10,

(
m
2

)
= 45 ternary classifiers are

used. Such realization is called 45-unit realization.
Table 7.1 shows recognition results of the 45-unit realization.

In this process, we had 45 component functions, each of which
has about 1.25 × 104 samples. The number of variables for
each component function is reduced to 13 ∼ 25 by Algorithm
6.1. The second column shows the results when only the
minimization of variables was used. The last column shows the
results when the ternary SOP minimization was applied after
variable minimization. Note that the ternary SOP minimization
(Algorithm 6.2) improved the test accuracy.

Table 7.2 shows recognition results of the 45-unit×8 real-
ization. In this case, each component function has 1.5 × 103

samples, on the average, and the number of variables for each
component function is reduced to 6 ∼ 17. Both the ensemble
method and the ternary SOP minimization improved the test
accuracy. For example, consider the classifier 0/1, the unit
that distinguishes digit 0 from digit 1. The number of training
images (minterms) was 12646, and the number of variables was
784. Algorithm 6.1 reduced the number of variables to 13, and
the number of minterms to 895. Algorithm 6.2 increased the
number of minterms to 6216. Thus, the classifier 0/1 recognizes

TABLE 7.3
RESULT FOR 45-UNIT REALIZATIONS (FASHION-MNIST).

Result Variable ternary SOP
minimization minimization

Correctly recognized 6934.8 7719.1
Incorrectly recognized 3051.2 2266.9
Test Accuracy 0.694 0.773

TABLE 7.4
RESULT FOR 45-UNIT×8 REALIZATIONS (FASHION-MNIST).

Result Variable ternary SOP
minimization minimization

Correctly recognized 8079.3 8310.3
Incorrectly recognized 1906.7 1675.7
Test Accuracy 0.809 0.832

6216×2{784−13} � 7.72×10235 images. This shows the power
of generalization ability of logic minimizations.

B. Fashion-MNIST

Fashion-MNIST [6] is a dataset of Zalando’s article images.
Similarly to MNIST, each sample is a 28×28 grayscale image,
associated with a label from 10 classes. Each training and
test example is assigned to one of the following labels: 0
(T-shirt/top); 1 (Trouser); 2 (Pullover); 3 (Dress); 4 (Coat); 5
(Sandal); 6 (Shirt); 7 (Sneaker); 8 (Bag); 9 (Ankle boot). In this
case, the threshold of the grayscale was set to 32. The number
of samples in the training set is 59954, while the number of
samples in the test set is 9986.

Table 7.3 shows the results for fashion-MNIST. In this case,
linear transformations [13] of degree two was used to reduce
the number of variables. Again, both the ensemble method and
the ternary SOP minimization improved the test accuracy.

Table 7.4 shows recognition results of the 45-unit×8 real-
izations. Again, ternary SOP minimization improved the test
accuracy. The test accuracies are not so good as neural nets,
but the circuits are simpler.

C. Comparison of Total Memory Sizes

We assume that all the units are realized by LUTs. Table 7.5
compares the average number of input variables for each unit.
The 45-unit realization requires LUTs with

∑8
i=0

∑9
j=i+1 2×

2pij bits, where pij denotes the number of the variables for the
unit i/j. Note that each base classifier has two outputs. Table
7.6 compares the total memory size for various classifiers. 45-
unit×8 realizations require smaller amount of memory, because
the number of input variables for each unit is smaller than that
of 45-unit realizations. Note that they do not contain the costs
for counters and the max selector.

VIII. CONCLUDING REMARKS

In this paper, we showed a design method for an m-class
classifier. It consists of

(
m
2

)
ternary classifiers, m counters, and

TABLE 7.5
AVERAGE NUMBER OF INPUT VARIABLES FOR EACH UNIT.

Architecture MNIST Fashion MNIST
45-unit 19.42 14.17
45-unit×8 12.34 7.70

TABLE 7.6
COMPARISON OF TOTAL MEMORY SIZES (MEGA BITS).

Architecture MNIST Fashion MNIST
45-unit 197.94 1, 692.34
45-unit×8 7.09 4.10

a max selector. A partially defined function f is derived from
the training set, and a classifier is designed for f .

Our contributions of this paper are:

• Showed a new design method for a multiclass classifier.
• Showed methods to improve the test accuracy. 1) Mini-

mization of variables, 2) Minimization of products in a
SOP, and 3) Maximization of literals in a SOP.

• Showed that ternay SOP minimization improves the test
accuracy for MNIST and Fashion MNIST data sets.

To the best of authors’ knowledge, we are the first
to have successfully minimized the ternary SOPs for the
MNIST/fashion MNIST data set, and to show that logic mini-
mization improves the test accuracy.

REFERENCES

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Occam’s razor,” Information Processing Letters, Vol. 24, Issue
6, 1987, pp. 377-380.

[2] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, CRC Press, New York,
1984.

[4] S. Chatterjee,“Learning and memorization,” International Con-
ference on Machine Learning (ICML 2018), Stockholm, Swe-
den, July 10-15, 2018, pp. 754-762.

[5] M. Courbariaux, Y. Bengio, and J.P. David, “BinaryConnect:
Training deep neural networks with binary weights during prop-
agations,” Advances in Neural Information Processing Systems,
pp. 3123-3131, 2015.

[6] https://www.kaggle.com/zalando-research/fashionmnist
[7] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A heuristic

approach for logic minimization,” IBM J. Res. and Develop.,
pp. 443-458, Sept. 1974.

[8] J. Kuntzmann, Algèbre de Boole, Dunod, Paris, 1965. English
translation: Fundamental Boolean Algebra, Blackie and Son
Limited, London and Glasgow, 1967.

[9] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “ Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, Vol. 86, No. 11, pp.2278-2324, November 1998.

[10] A. Mohamed,“Survey on multiclass classification methods,”
Technical Report, Caltech, Nov. 2005.

[11] A. L. Oliveira and A. Sangiovanni-Vincentelli, “Learning com-
plex boolean functions:Algorithms and applications,” Advances
in Neural Information Processing Systems, No. 6, pp. 911-918.
Morgan-Kaufmann, 1994.

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet classification using binary convolutional neural
networks,” European Conference on Computer Vision, pp.525-
542, 2016.

[13] T. Sasao, Index Generation Functions, Morgan & Claypool, Oct.
2019.

[14] http://yann.lecun.com/exdb/mnist/
[15] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets:

Co-designed neural networks and circuit for extreme-throughput
applications,”, Int. Conf. on Field-Programmable Logic and
Applications (FPL-2020), pp. 291-297. 31 Aug.- 4 Sept. 2020.

