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Abstract—In a multi-valued input classification function, each
input combination represents properties of an object, while the
output represents the class of the object. Each variable may
have different radix. In most cases, the functions are partially
defined. To represent multi-valued variables, both one-hot and
minimum-length encoding are considered. Experimental results
using University of California Irvine (UCI) benchmark functions
show that the one-hot approach results in fewer variables than
the minimum-length approach with linear decompositions.

I. INTRODUCTION

We consider data sets with multi-valued inputs. Various
methods exist to represent a multi-valued variable. To keep
the original structure of the data, we use one-hot encoding.
That is, to represent a q-valued variable, we use q binary
variables. Although this increases the total number of variables
temporarily, the number of variables can be reduced by a linear
decomposition. The original functions can be decomposed
into two parts: a linear part, and a general part, as shown
in Fig. 1.1. With this technique, many University of Cali-
fornia Irvine (UCI) data sets for machine learning [21] were
successfully decomposed. In contrast, conventional functional
decompositions [1], [3], [9], [12] are more constrained and
less likely to simplify. The rest of the paper is organized
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Fig. 1.1. Linear Decomposition

as follows: Section II shows definitions and basic properties;
Section III introduces linear decomposition; Section IV shows
an illustrative example; Section V shows experimental results
using UCI data sets; Section VI surveys related works; and
Section VII concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1: A multi-valued partially defined classifi-
cation function is a mapping f : D → M , where D ⊂ QN ,

TABLE 2.1
REGISTERED VECTOR TABLE

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 1
0 1 1 0 1 1 1
0 1 0 1 0 0 2
0 0 0 0 1 0 2
1 1 0 1 1 1 3
1 0 0 0 1 1 3

Q = {0, 1, 2, . . . , q − 1}, M = {1, 2, . . . ,m}, and N is
the number of multi-valued variables. Each element of D is
called a registered vector. There are k such vectors. k is
called the weight of the function. For each registered vector,
assign an integer between 1 and m, where 2 ≤ m ≤ k. A
registered vector table shows the function value for each
registered vector. A partially defined classification function
f produces the corresponding function value when the input
vector matches a registered vector. Let Fi be the set of
registered vectors which map to i ∈M . Then, D =

⋃m
i=1 Fi.

We assume that Fi �= ∅ (i = 1, 2, . . . ,m).
Example 2.1: The registered vector table in Table 2.1 shows

a classification function with N = 6, m = 3 and k = 6. Here,
the input variables are binary.

Definition 2.2: [4] For Fi, Fj ⊂ QN , (i, j = 1, 2, . . . ,m),
and i �= j, let Fi ∩ Fj = ∅. An m-tuple
(F1, F2, . . . , Fm) denotes a partially defined classification
function when

⋃m
i=1 Fi ⊂ QN . For a partially defined function

(F1, F2, . . . , Fm), the function (E1, E2, . . . , Em) that satisfies
Fi ⊆ Ei ⊂ QN is an extension of (F1, F2, . . . , Fm), where
Ei ∩ Ej = ∅ (i �= j).

Definition 2.3: For a subset U ⊆ QN and S ⊆
{1, 2, . . . , N}, we denote by U |S the projection of U to S. In
other words, U |S = {�a|S}, where �a|S is obtained from �a ∈ U
by considering only those components aj with j ∈ S.

Example 2.2: Let Q = {0, 1, 2} and N = 4. Let
U = {(1, 2, 0, 1), (0, 1, 1, 2), (2, 0, 1, 2)} and S = {2, 3}.
Then, we have the projection U |S = {(∗, 2, 0, ∗), (∗, 1, 1, ∗),
(∗, 0, 1, ∗)}.

Given a partially defined function, many extensions exist.
In this paper, we seek an extension of f that depends on the
fewest variables.

Definition 2.4: Let Fi ⊂ QN (i = 1, 2, . . . ,m). Given a
partially defined function (F1, F2, . . . , Fm), and a subset S ⊆
{1, 2, . . . N}, if Fi|S ∩ Fj |S = ∅, (i �= j) holds, then S



TABLE 2.2
CLASSIFICATION FUNCTION WITH REDUCED VARIABLES

x1 x2 x4 f TAG y1 = x1 y2 = x2 ⊕ x4

1 1 0 1 1 1 1
0 1 0 1 2 0 1
0 1 1 2 3 0 0
0 0 0 2 4 0 0
1 1 1 3 5 1 0
1 0 0 3 6 1 0

is a support set. In such a case, (F1|S , F2|S , . . . , Fm|S) is
independent of the variable xj , j ∈ {1, 2, . . . , n}−S, and the
variable is redundant.

Example 2.3: Consider the function (F1, F2, F3) shown in
Table 2.1. In this case, S = {1, 2, 4} is a support set, since
for

F1|S = {(1, 1, ∗, 0, ∗, ∗), (0, 1, ∗, 0, ∗, ∗)},
F2|S = {(0, 1, ∗, 1, ∗, ∗), (0, 0, ∗, 0, ∗, ∗)},
F3|S = {(1, 1, ∗, 1, ∗, ∗), (1, 0, ∗, 0, ∗, ∗)},

Fi|S ∩ Fj |S = ∅ holds for i < j. Thus, this function can be
represented by three variables, as shown in Table 2.2.

Algorithms to represent a given function by using the
minimum number of variables have been developed [11].

III. LINEAR DECOMPOSITION

In this section, we assume that the input variables are binary.
Let n be the number of binary variables.

The number of variables of a partially defined classification
function f : D → M , where D ⊂ Bn and B = {0, 1} often
can be reduced by a linear decomposition [6], [8], [18]. In
the linear decomposition shown in Fig. 1.1, L realizes a linear
function, while G realizes a general function (in most cases,
a non-linear function).

Definition 3.1: A compound variable has the form y =
c1x1⊕ c2x2⊕ · · · ⊕ cnxn, where ci ∈ {0, 1}. The compound
degree of a variable y is

∑n
i=1 ci, where

∑
denotes ordinary

integer addition, and ci is treated as an integer. A primitive
variable is a variable whose compound degree is one.

When a partially defined function satisfies a certain con-
dition, there exists a linear transformation that reduces the
number of variables p.

Definition 3.2: In a partially defined function
(F1, F2, . . . , Fm), let �a ∈ Fi, and �b ∈ Fj , (i �= j).
Then, the vector �d = �a⊕�b is a difference vector. The set of
the difference vectors is denoted by Df .

Lemma 3.1: [20] An n-variable partially defined classifi-
cation function f can be represented with n − 1 compound
variables if and only if there exists a non-zero vector �u such
that �u ∈ Bn −Df , where Df is the set of difference vectors
of f .

Theorem 3.1: [20] An n-variable partially defined classi-
fication function f can be represented with at most n − 1
compound variables if and only if the set of difference vectors
Df contains less than 2n − 1 distinct difference vectors.

Algorithm 3.1: (Reduction of Compound Variables [19])

TABLE 3.1
THE SET OF DIFFERENCE VECTORS FOR THE FUNCTION IN TABLE 2.2

x1 x2 x4 Vector Pairs
0 0 1 (1, 5), (2, 3)
0 1 0 (1, 6), (2, 4)
1 0 0 (3, 5), (4, 6)
1 0 1 (1, 3), (2, 5)
1 1 0 (1, 4), (2, 6)
1 1 1 (3, 6), (4, 5)

TABLE 3.2
CLASSIFICATION FUNCTION AFTER LINEAR TRANSFORMATION

y1 y2 f
1 1 1
0 1 1
0 0 2
0 0 2
1 0 3
1 0 3

1) Derive the set of difference vectors Df of an n-variable
function.

2) If |Df | = 2n − 1, then stop, since reduction is impossi-
ble.

3) Obtain a non-zero vector �d ∈ Bn −Df with minimum
weight.

4) Remove one variable from �d, and apply the linear
transformation to the function.

5) Let n← n− 1, and go to step 1.

Example 3.1: Let us reduce the number of variables in the
classification function shown in Table 2.2.

1) Table 3.1 shows the set of difference vectors. The right-
most column shows the pairs of registered vectors that
produced the difference vectors. 12 difference vectors
were generated, but only 6 vectors are distinct.

2) |Df | = 6 < 23 − 1.
3) In this case, the set of difference vectors does not contain

�d = (0, 1, 1). We select �d = (0, 1, 1).
4) Perform the linear transformation that converts (x2, x4)

into y2 = x2 ⊕ x4. Thus, Table 2.2 is converted into
Table 3.2, where y1 = x1.

5) In this case, the function can be represented with two
variables: y1 = x1 and y2 = x2⊕x4. The input columns
in Table 3.2 show that y1 and y2 distinguish the three
function values.

An efficient linear decomposition algorithm has been devel-
oped [19]. With this algorithm, functions with more than one
thousand inputs have been successfully decomposed.

IV. ILLUSTRATIVE EXAMPLE

Our method to find multi-valued decompositions consists of
two steps:

1) Represent the function using a binary encoding.
2) Perform a linear decomposition.

To show the method, consider the 2-variable 3-valued function,
where the variables are 5-valued, as shown in Table 4.1.



TABLE 4.1
5-VALUED INPUT 3-VALUED OUTPUT FUNCTION.

X1 X2 f
2 4 0
0 3 0
0 1 0
3 1 1
2 3 1
2 2 1
4 0 2
3 3 2
1 4 2

A. One-hot Encoding

In one-hot representations, 0, 1, 2, 3, 4, and 5 become
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and
(0, 0, 0, 0, 1), respectively. Similarly, the three output values
for f , 0, 1, and 2, become (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively. With this substitution, Table 4.1 becomes Table
4.2.

TABLE 4.2
ONE-HOT ENCODED FUNCTION.

x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 z0 z1 z2
0 0 1 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 1

The function in Table 4.2 is represented algebraically as

Z = f(X,Y ),

where X = (x0, x1, x2, x3, x4), Y = (y0, y1, y2, y3, y4),
and Z = (z0, z1, z2). This function has a sum-of-products
expression

z0 = x2y4 ∨ x0y3 ∨ x0y1,

z1 = x3y1 ∨ x2y3 ∨ x2y2, (4.1)

z2 = x4y0 ∨ x3y3 ∨ x1y4.

Using Algorithm 3.1 yields the linear transformation:

w0 = x3 ⊕ y2 ⊕ y3,

w1 = x2 ⊕ y1.

In this case, Z = (z0, z1, z2) can be represented by only two
variables, as shown in Table 4.3. Thus, the function can be
represented by the following equations.

z0 = w̄0w1 ∨ w0w̄1,

z1 = w0w1, (4.2)

z2 = w̄0w̄1.

Therefore, only two variables, w0 and w1, are needed between
L and G in Fig. 1.1.

TABLE 4.3
ONE-HOT ENCODED FUNCTION: AFTER LINEAR TRANSFORMATION

w0 w1 z0 z1 z2
0 1 1 0 0
1 0 1 0 0
0 1 1 0 0
1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

B. Minimum-length Encoding

In minimum-length encoding, a q-valued variable is rep-
resented by log2 q� bits. We assume that the input part is
represented by minimum-length encoding, while the output
part is represented by one-hot encoding. Thus, Table 4.1
becomes Table 4.4. In this case, the number of variables can be

TABLE 4.4
MINIMUM-LENGTH ENCODED FUNCTION.

x2 x1 x0 y2 y1 y0 z0 z1 z2
0 1 0 1 0 0 1 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 0 0
0 1 1 0 0 1 0 1 0
0 1 0 0 1 1 0 1 0
0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1
0 1 1 0 1 1 0 0 1
0 0 1 1 0 0 0 0 1

reduced to four variables: x1, x0, y1, and y0. Table 4.5 shows
the function.

TABLE 4.5
MINIMUM-LENGTH ENCODED FUNCTION:AFTER REDUCTION OF

VARIABLES

x1 x0 y1 y0 z0 z1 z2
1 0 0 0 1 0 0
0 0 1 1 1 0 0
0 0 0 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 1 0
1 0 1 0 0 1 0
0 0 0 0 0 0 1
1 1 1 1 0 0 1
0 1 0 0 0 0 1

Algorithm 3.1 further reduced the number of variables to
three as shown in Table 4.6, where w = x0 ⊕ y1.

TABLE 4.6
MINIMUM-LENGTH ENCODED FUNCTION:AFTER LINEAR

TRANSFORMATION

x1 w y0 z0 z1 z2
1 0 0 1 0 0
0 1 1 1 0 0
0 0 1 1 0 0
1 1 1 0 1 0
1 1 1 0 1 0
1 1 0 0 1 0
0 0 0 0 0 1
1 0 1 0 0 1
0 1 0 0 0 1



V. EXPERIMENTAL RESULTS

Table 5.1 summarizes the benchmark functions used in the
experiments. N is the original number of variables; m is the
number of classes; k is the number of instances, and r is the
radix. Original data were taken from the UCI (University of
California, Irvine) machine learning repository [21].

Both one-hot encoding and minimum-length encoding were
considered. First, original data were represented by one-hot
encoding or minimum length encoding. Second, the linear
decomposition algorithm in [19] was used to reduce the
number of variables. Table 5.2 shows the experimental results.
n is the number of bits; p0 is the number of bits after
removing redundant bits; and p is the number of bits after
linear decomposition. The superior approach is indicated by
a bold entry in Table 5.2. For these benchmark functions,
one-hot encodings tend to produce smaller p. Over all 17
benchmark functions, the one-hot approach was superior to
the minimum-length approach in 8 cases, while the minimum
length approach was superior in one case. In 8 cases, both
approaches produced the same number p of variables.

The most time-consuming problem was Connect-4. It took
5709 seconds to reduce 126 variables into 22 variables using
one-hot encoding. We used a computer with an Intel Core i7
7700 CPU, 4 cores, with 64GB main memory, on Windows
10.

Brief descriptions of benchmark functions follow. Details
are available in [21].

TABLE 5.1
FUNCTION DATA [21]

Data Name N m k r
Tic Tac Toe 9 3 958 3
Connect-4 42 3 67557 3
Chess3196 36 2 3196 2, 3, 4
Chess28056 6 18 28056 4, 8
Poker 10 10 25010 4, 13
Balance 4 3 625 5
MONK’s 6 2 432 2, 3, 4
Lymphography 18 4 147 2, 3, 4, 8
Breast Cancer 9 2 677 10
Hepatitis 19 2 80 2 ∼ 11
Nursery Schools 8 5 12960 2, 3, 4, 5
Car Evaluation 6 4 1728 3, 4
Zoo 16 7 101 2, 6
Vote 16 2 435 3
Promoter 57 2 106 4
Splice 60 3 3174 4
Mushrooms 22 2 5644 2 ∼ 12

N : Original number of variables m: Number of classes
k: Number of instances r: Radix

A. Tic-Tac-Toe

In tic-tac-toe, two players, X and Y, take turns marking the
spaces in a 3 × 3 grid shown in Fig. 5.1. The player who
first succeeds in placing three of their marks in a horizontal,
vertical, or diagonal row is the winner [22]. This dataset
encodes the complete set of possible board configurations at
the end of a tic-tac-toe game, where X is assumed to have
played first. The target concept is ”win for X”, i.e. true when
X has one of 8 possible ways to create a ”three-in-a-row”.
The number of instances is k = 958 (legal tic-tac-toe endgame

TABLE 5.2
COMPARISON OF ENCODINGS.

One-hot Minimum-length
Data Name n p0 p n p0 p

Tic Tac Toe 27 9 9 18 12 9
Connect-4 126 61 22 84 63 22
Chess3196 75 30 15 38 30 15
Chess28056 40 34 16 16 16 16
Poker 85 61 21 30 26 23
Balance 20 16 11 12 12 12
MONK’s 17 5 3 10 8 4
Lymphography 59 11 8 29 11 9
Breast Cancer 90 13 10 36 11 9
Hepatitis 67 7 5 32 7 6
Nursery Schools 27 17 14 16 16 15
Car Evaluation 21 14 12 12 12 12
Zoo 36 6 5 19 7 5
Vote 48 11 8 32 11 8
Promoter 228 6 6 114 7 7
Splice 240 18 15 120 18 17
Mushrooms 118 5 4 53 7 4

n : Number of bits
p0 : Number of bits after removing blueundant bits
p : Number of bits after linear decomposition

boards). The number of variables is N = 9, and each variable
takes q = 3 values: (0) player X occupies, (1) player Y
occupies, and (2) empty. The function takes m = 3 classes1 :
(0) player X wins, (1) player Y wins, and (2) draw. Among
958 instances, player X wins for 626 instances, player Y wins
for 316 instances, and a draw occurs for 16 instances.

The function corresponds to a mapping: D → {0, 1, 2},
where D ⊂ {0, 1, 2}9, and |D| = 958.

X1 X2 X3

X4 X5 X6

X7 X8 X9

Fig. 5.1. Board for tic-tac-toe

With one-hot encoding, this function was converted to a
function with n = N×q = 27 binary variables. n corresponds
to the number of bits to represent the input part of the function.
The number of primitive variables is reduced to p0 = 9
variables.

B. Connect-4

Connect-4 is a two-player board game. Two players, X and
Y, drop disks into a vertically suspended 6× 7 grid shown in
Fig. 5.2. The disks fall straight down, occupying the lowest
available space within the columns. The objective of the game
is to be the first to form a a horizontal, vertical, or diagonal
line of four of one’s own disks.

This dataset contains all legal 8-ply (8 turn) positions in the
game of Connect-4 in which neither player has won, and in
which the next move is not forced. The number of variables is
N = 6 × 7 = 42, since there are 6 rows and 7 columns
in the grid. Each variable takes q = 3 values, empty, X,
and Y. The number of classes is m = 3: (0) player X wins,
(1) player Y wins, and (2) draw. The number of instances is

1The function does not show how to win. Instead, it represents a win for
X, a win for Y or, a win for neither, assuming each player plays optimally.
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Fig. 5.2. Board for Connect-4

k = 67557. Among these, player X wins for 44473 instances,
player Y wins for 16635 instances, and a draw occurs for
6449 instances. The number of bits to represent the input part
is n = 42 × 3 = 126. The number of primitive variables is
reduced to p0 = 61, and a linear decomposition reduced the
number of compound variables to p = 22,

C. Chess3196

Chess3196 is chess with k = 3196 starting positions. The
number of classes is m = 2: (0) white can win, and (1)
white cannot win. The number of variables is N = 36: 34
of them take two values; one of them takes three values; and
one of them takes four values. Thus, the total number of binary
variables is n = (34× 2) + (1× 3) + (1× 4) = 75.

D. Chess28056

Chess28056 is chess with k = 28056 starting positions. The
number of classes is m = 18. It shows the optimal depth-of-
win for White in 0 to 16 moves, otherwise draw. The number
of variables is N = 6: two of which take four values; and four
of which take eight values. Thus, the total number of binary
variables is n = (2× 4) + (4× 8) = 40.

E. Poker

Each hand consists of five playing cards drawn from a
standard deck of 52. Each card is described by two attributes
(suit and rank). Thus, the number of variables is N = 10:
five of which take four values (Hearts, Spades, Diamonds,
Clubs); and five of which take 13 values (Ace, 2, 3, ... ,
Queen, King). Thus, the total number of binary variables is
n = (5 × 4) + (5 × 13) = 85. The class denotes the poker
hand, and the number of classes is m = 10: (1) Nothing, (2)
One pair, (3) Two pairs, (4) Three of a kind, (5) Straight, (6)
Flush, (7) Full house, (8) Four of a kind, (9) Straight flush,
and (10) Royal flush. The number of instances is k = 25010.

F. Balance Scale

This data models the operation of a balance scale. The
number of classes is m = 3: (1) tip on the right, (2) balanced,
and (3) tip on the left. N = 4 variables are used: X1 (the
left weight), X2 (the left distance), X3 (the right weight), and
X4 (the right distance). Each variable takes one of q = 5
values: 1, 2, 3, 4, 5. The total number of binary variables is
n = 4× 5 = 20. The instances completely cover the attribute

space. Thus, the number of instances is k = 54 = 625. The
class is represented by

f =

⎧⎨
⎩

1 When (X1 ×X2) > (X3 ×X4)
2 When (X1 ×X2) = (X3 ×X4)
3 When (X1 ×X2) < (X3 ×X4)

G. MONK’s Problem

The MONK’s problems were the basis of the first inter-
national comparison of learning algorithms. The number of
classes is m = 2. The number of variables is N = 6: two
of them take two values; three of them take three values;
and one of them takes four values. Thus, the total number
of binary variables is n = (2× 2) + (3× 3) + (1× 4) = 17.
The instances completely cover the attribute space. Thus, the
number of instances is k = 22 × 33 × 4 = 432.

H. Lymphography

This data came from the University Medical Center, Institute
of Oncology, Ljubljana, Slovenia in Nov. 1988. The number of
instances is k = 148. The number of classes is m = 4: normal,
metastases, malignant lymph, and fibrosis. The number of
variables is N = 18. Nine of them take two values; three of
them take three values; four of them take four values; and one
of them takes eight values. Thus, the total number of binary
variables is n = (9× 2) + (3× 3) + (4× 4) + (1× 8) = 59.

I. Breast Cancer

This data came from the Clinical Sciences Center, Univer-
sity of Wisconsin. Features are computed from a digitized
image of a fine needle aspiration (FNA) of a breast mass.
The original dataset consists of 699 instances, including 16
incomplete instances, which are removed. We also removed
the minimum number of instances so that the resulting dataset
became consistent [17]. The number of remaining instances is
k = 677. The number of classes is m = 2: (0) malignant, and
(1) benign. The number of variables is N = 9, and each takes
q = 10 values. Thus, the total number of binary variables is
n = 9× 10 = 90.

J. Hepatitis

This data came from Ljubljana, Slovenia in Nov. 1988. The
number of instances is k = 80. The number of classes is
m = 2: (0) die and (1) live. The original dataset has 13
two-valued variables and 6 numerical variables. As for the
numerical variables, 6 to 10 cut points are used to make multi-
valued variables. Thus, the resulting number of variables is
N = 19: 13 of which take two values; two of which take
seven values; two of which take five values; one of which
takes 6 values; and one of which takes 11 values. Thus, the
total number of binary variables is n = (13× 2) + (2× 7) +
(2× 5) + (1× 6) + (1× 11) = 67.

K. Nursery Schools

A nursery school dataset was used to rank applications for
nursery schools. It was used during 1980’s when there was
excessive enrollment in these schools in Ljubljana, Slovenia,



since rejected applications frequently needed an objective ex-
planation. The number of classes is m = 5: not recommended,
recommended, very recommended, priority, special priority.
The number of variables is N = 8: one of which takes two
values; four of which take three values; two of which take
four values; and one of which takes five values. Thus, the
total number of binary variables is n = (1 × 2) + (4 ×
3) + (2 × 4) + (1 × 5) = 27. The instances completely
cover the attribute space. Thus, the number of instances is
k = 2× 34 × 42 × 5 = 12960.

L. Car Evaluation

This data model for evaluating cars based on their price
and technical characteristics. The number of classes is m =
4: (0) unacceptable, (1) acceptable, (2) good, (3) very good.
The number of variables is N = 6: three of which take three
values; and three of which take four values. Thus, the total
number of binary variables is n = (3 × 3) + (3 × 4) = 21.
The instances completely cover the attribute space. Thus, the
number of instances is k = 33 × 43 = 1728.

M. Zoo

Given the properties of animals, this function shows the
animal class. The number of classes is m = 7: (1) Mammals,
(2) Birds, (3) Reptiles, (4) Fish, (5) Amphibians, (6) Insects,
(7) Others. Properties of animals include: whether it drinks
milk when it is a baby, whether it has feathers or not, number
of legs etc. The number of variables is N = 16: 15 of them
take two values, and one of them takes 6 values. Thus, the total
number of binary variables is n = (15 × 2) + (1 × 6) = 36.
The number of instances is k = 101.

N. Vote

This data is from the 1984 United States Congressional
Voting Records. The number of instances, that is equal to the
number of representatives, is k = 435. The number of classes
is m = 2: (0) democrat, and (1) republican. The number of
variables is N = 16; each takes three values: (0) yes, (1)
no, (2) other. Thus, the total number of binary variables is
n = 16× 3 = 48.

O. Promoter

This data is related to gene sequences (DNA), where the
number of instances is k = 106. The number of classes is
m = 2: positive or negative. The number of variables is N =
57, each takes four values: (1) A, (2) G, (3) T, and (4) C. Thus,
the total number of binary variables is n = 57× 4 = 228.

P. Splice

This data is related to gene sequences (DNA). Originally,
the data consists of 3191 instances. Removing 16 instances
that had ambiguous inputs (D, N, S, R), resulted in a data set
with k = 3174 instances. The number of classes is m = 3:
(0) donor, (1) acceptor, (2) neither. The number of variables is
N = 60; each takes four values: (1) A, (2) G, (3) T, and (4) C.
Thus, the total number of binary variables is n = 60×4 = 240.

Q. Mushroom

This dataset includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota Family. Each species is identified as
definitely edible, definitely poisonous, or of unknown edibility
and not recommended. This latter class was combined with the
poisonous class. The original data contains 8124 mushrooms;
among them, 2480 are incomplete, which are removed. Thus,
the number of instances is k = 5644. The number of classes is
m = 2: (1) edible, and (2) not edible. The number of variables
is N = 22. Among them, four variables take two values; two
take three values; five take four values; three take six values;
one takes seven values; one takes eight values; four take nine
values; one takes 10 values; and one takes 12 values. Thus, the
total number of binary variables is n = (4×2)+(2×3)+(5×
4)+(3×6)+(1×7)+(1×8)+(4×9)+(1×10)+(1×12) = 125.
Since, we removed incomplete data, the number of binary
variables was reduced to 118.

VI. RELATED WORKS

Decompositions of multi-valued input functions In [23],
many multi-valued benchmark functions were decomposed
to show the usefulness for machine learning. However, they
did not show the numbers of bits after decompositions in
the table. But, they did show that the numbers of reduced
attributes (multi-valued variables) for MONK’s, vote, splice,
and mushrooms are 3, 10, 12, and 5, respectively.

In [5], bi-decompositions of multi-valued functions were
considered. In [16], an efficient optimum functional decom-
positions algorithm was developed for index generation func-
tions. In [14], [15], linear decompositions of multi-valued in-
put index generation functions were considered, where mod(p)
additions were used in the linear transformations.

Support reduction of multi-valued input functions In
[7], BDDs were used to reduce the support of binary encoded
multi-valued functions. This is the most relevant work to our
research. They did not use the UCI data set, but used the POLO
benchmark set, which is not available now. So, we cannot
check if the data are the same. They used minimum-length
encoding to represent multi-valued input and output values.
On the other hand, we used one-hot encoding to represent the
output values. So, direct comparison is difficult. As for zoo
and mushrooms, the results are the same. As for tic-tac-toe,
they obtained an p = 8-bit solution.

In [2], one-hot encodings were used to find essential vari-
ables. In [17], variable minimization of multi-valued input
binary functions (i.e., m = 2) was considered.

VII. CONCLUSION AND COMMENTS

This paper shows a method to decompose multi-valued
input classification functions. First, original functions were
converted into partially defined functions. Then, linear decom-
positions were used to reduce the number of variables. With
this strategy, functions with many variables were decomposed
successfully. Both one-hot encoding and minimum-length en-
coding were considered. Over all 17 benchmark functions,



the one-hot approach was superior to the minimum-length
approach in 8 cases, while the minimum length approach was
superior in one case. In 8 cases, both approaches produced the
same number p of variables. The superior approach is indicated
by a bold entry in Table 5.2.

In a one-hot encoding, a function has more variables in
the initial representation. This means that more choices exist
for a linear transformation to reduce the variables. On the
other hand, in a minimum-length encoding, fewer choices
exist, and the number of applicable linear transformations is
smaller. Thus, the one-hot encodings tend to result in fewer
variables. This result is consistent with the experimental results
in index generation functions [18]. That is, when the number of
registered vectors are the same, randomly generated functions
with more variables in the original representations tend to
result in a fewer variables by linear transformations.

This method is promising for data mining.
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