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Abstract—A partially defined classification function is a map-
ping from the set of k distinct vectors of n bits to m elements,
where k& << 2". Such a function can often be represented with
fewer variables than n, by appropriately assigning values to don’t
cares. The number of variables can be further reduced by a
linear transformation of the input variables. This paper shows
an efficient method to find a linear transformation that reduces
the number of variables. The method is illustrated with examples.
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1. INTRODUCTION

Given disjoint sets of samples, to find a simple rule to
distinguish these sets is a major problem in machine learning
and data mining. Occam’s razor [2] recommends to use as
simple rule as possible [1]. In this paper, we consider the
problem to minimize the number of variables to represent such
a rule. In particular, we use a linear decomposition to reduce
the number of variables.

The rest of the paper is organized as follows: Section II
introduces partially defined functions; Section IIT shows a
method to minimize primitive variables for a function; Section
1V introduces compound variables and linear transformations;
Section V shows a method to reduce compound variables;
Section VI considers the number of variables to represent
a symmetric function; Section VII illustrates the reduction
method for compound variables; Section VIII shows an exact
minimization method for compound variables; and finally,
Section IX concludes the paper.

II. PARTIALLY DEFINED FUNCTIONS

Definition 2.1: Consider a set of k distinct vectors of n
bits. These vectors are registered vectors. For each registered
vector, assign an integer from 1 to m, where 2 < m < k.
A registered vector table shows function value for each
registered vector. A partially defined classification function
shows a corresponding integer value when the input vector is
equal to a registered vector. Otherwise, the value of the func-
tion is undefined (don’t care). A partially defined classification
function is a mapping f : D — {1,2,...,m}, where D C B"
shows the set of k registered vectors, and B = {0, 1}. k is the
weight of the function. Let F; be the set of vectors @ € D such

TABLE 2.1
REGISTERED VECTOR TABLE
T1 ®y w3 wmq | f
1 0 0 0|1
0 1 0 0|1
0 1 1 0|2
1 1 0 1|2
TABLE 2.2
ILL.USTRATION OF SUPPORT SET.

T xy w3 wmq | f

F1 | di 1 0 0 0|1
az | 0 1 0 0|1
Flbh|0o 1 1 0]2
b2 1 1 0 1|2

index generation function [12]. When m = 2, the function
f is a decision function.

Example 2.1: The registered vector table in Table 2.1 shows
a decision function with weight k = 4. [

Definition 2.2: An m-tuple (Fy, Fs, ..., F,,) shows a par-
tially defined classification function, when B™ > (JI_, F,
and a completely specified classification function when
B" =J", F..

Definition 2.3: [6] Let F; C B"™, fori = 1,2,...,m, and
F;NF; = ¢ for ¢ # j. For a partially defined function
(Fy, Fy, ..., Fy,), the function (E4, Ea, ..., Ey,) that satisfies

Ez:_DFL (i:1727"'7m)7

E,NE; = ¢,(i # j), and E;, E; C B", is an extension of
(F17F27"~:Fm)‘

For a given partially defined function, many extensions
exist. In this paper, we seek the extension that depends on
the least number of variables.

Definition 2.4: Let F; C B™ (i = 1,2,...,m). Given a
partially defined function (Fy, Fs, ..., F,,) and a subset S C
{1,2,...n}, when Fj|s N Fj|s = ¢, holds for i # j, then S
is a support set. In such a case, (Fils, Fals,..., Fimls) is
independent of the variable z;, where j € S. Such variable is
redundant.

Example 2.2: Consider the decision function (Fy, Fb)
shown in Table 2.2. In this case, S = {3,4} is the support
set, since Fi|s N Fy|s = ¢ holds, where

that f(a@) = i. We assume that F; # ¢ for i = 1,2,...,m. Fils = {(x,%,0,0),(x,%,0,0)}, and
Note that D = (J;~, F;. When m = k, the function f is an Fyls = {(x,%,1,0), (%,,0,1)}.
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Also, this function can be represented with two variables:
f=T3%4 V 2(x3%4 V T3xg),
where V denotes the max operation. Note that
Ey = {(%,%,0,0)} D F,
By = {(*,%,1,0), (x,%,0,1)} D Fy,
and * denotes either O or 1. [

The next section shows that {3,4} is the minimum support
set.

III. MINIMIZATION OF PRIMITIVE VARIABLES

This section shows a method to minimize the number of
variables for a partially defined function.

Definition 3.1: Consider two vectors @ € F; and b € F},
where i # j:

= (al,ag,...7 a;, ...,an),

= (b17b27"'7 bia 7bn)

For some ¢ and arbitrary j € {1,2,...n}, if there exists a pair

-

(d@,b) satisfying the relation

a; =b; (When j #14) and
a; #b; (When j =1),

<Ly

then the function (Fy, Fy, ..., F,,) depends on x;.

Example 3.1: Consider the function (Fy, F5) shown in Ta-
ble 2.2. This function depends on x3. This can be verified by
the fact

d» =(0,1,0,0) € F; and
by = (0,1,1,0) € F.
[

Definition 3.2: In  a  partially  defined  function
(Fi,Fy,...,Fy), let @ € Fyand b € Fj, (i # j).
Then, d = @®b is a difference vector. The set of difference
vectors [20] is denoted by Dy. Let @ and b be two vectors. If
a; < b; for all 4, and a; < b; for some j, then @ < b. In the
set of difference vectors, the set after removing the vectors
b satisfying @ < b is called the set of minimal difference
vectors, and denoted by M Dy.

The following is an extension of the algorithm for two-
valued output functions [7], [11] into multi-valued output
functions.

Algorithm 3.1: (Minimization of primitive variables)

1) Obtain the set of minimal difference vectors M D; for

the partially defined function (F, Fy, ..., Fy,,). For each
d= (dv,da,...,d,) € MDy, make a clause

—

C(d)=2z1VzaV---Vzy,

where
T 0 (When d; =0)
2) Construct the product-of-sums expression

R= A cC(d).

deMDy

TABLE 3.1
THE SET OF DIFFERENCE VECTORS FOR THE FUNCTION IN TABLE 2.2

r1 X2 T3 T4 TAG

1 1 1 0] (@.h)
0 1 0 1 (ﬁl, bg)
0 0 1 0 | (d@2,b1)
1 0 0 1 | (d2,b2)

3) Convert R into a sum-of-products expression [10], and
simplify it. Then, the product term with the fewest
literals shows the minimum support set.

Example 3.2: Consider the decision function (Fi,F»)
shown in Table 2.2. To represent the function, vectors in F}
and F, must be distinguished. From the Table 2.2, we have
the following four conditions:

1) To distinguish @; and 51, either z1, o Or x3 is necessary.
2) To distinguish @; and 52, either x5 or x4 is necessary.
3) To distinguish @y and 51, T3 1S necessary.

4) To distinguish @ and 52, either x; or x4 is necessary.

Since the condition 1) is dominated by the condition 3), we
can remove the condition 1). ]

Usually, the number of the registered vectors is very large,
and the number of conditions tends to be huge. Experimental
results show that many dominated conditions are generated.
Also, the same conditions are generated many times. So,
we represent the conditions by binary vectors to remove
dominated conditions efficiently.

Example 3.3: Consider the decision function (Fy, Fb)

shown in Table 2.2.

1) Table 3.1 shows the set of difference vectors.
A TAG shows the pair of vectors that gener-
ates the difference vector. In the set Dy, since
(1,1,1,0) > (0,0,1,0), (1,1,1,0) is deleted from
Dy. The set of minimal difference vectors is M Dy =
{(0,1,0,1),(0,0,1,0),(1,0,0,1)}.

Corresponding to the set of minimal difference vectors,
we have the set of clauses:

0(51,52) = Y2V,
C(da,b1) = ys, and
C(dz,b2) = 31V s

2) The product of all the clauses is R = (y2Vy4)ys(y1Vya).

3) By converting R into a sum-of-products expression, and
by simplifying it, we have: R = y1y2y3 V y3y4.

The minimum support set is {3,4}. Thus, this function

can be represented by x3 and 4. [

Theorem 3.1: Tf the set of difference vectors for the func-

tion f contains the unit vector ¢; (only the i-th element is 1,

and other elements are 0), then the function f depends on x;.

IV. COMPOUND VARIABLES AND LINEAR
TRANSFORMATION

For partially defined functions, the number of variables
often can be reduced further by a linear decomposition [8],
(91, [13], [14], [16].
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Linear General
Function Function
n p q
x4 L G =
Cost: O(np) Cost: O(q2r )
Fig. 4.1. Linear Decomposition

In the linear decomposition shown in Fig. 4.1, L realizes
linear functions, while (G realizes general functions (in most
cases, non-linear functions). The cost of the linear part is
O(np), while the cost of the general part is O(¢2P).

Definition 4.1: A compound variable has a form y =
111 B oy B - -+ B Ty, Where ¢; € {0,1}. The compound
degree of a variable y is ) . ¢;, where > denotes an
ordinary integer addition, and ¢; is treated as an integer. A
primitive variable is a compound variable with the degree
one.

In this paper, we use the following linear transformation;

Z21 = hl(yl7y27'~'7yp)
zo = ha(yi,y2,. -, Yp)
zg = he(y1y2--- . yp),
where
Y1 = 011701 Dar202D - D ay Ty
Y2 = 02121 D az2T2 D - D a2 Ty
Yp = Gp1T1 5] ap 22 DD Ap nTn

Note that z1, 22, . . .
4.1.

Theorem 4.1: To represent a partially defined function
(F1, Fa,...,Fy,), at least ¢ = [log, m] compound variables
are necessary.

Definition 4.2: Given an incompletely specified function
f, the linear transformation that minimizes the number of
compound variables p is the optimal transformation.

When the number of the compound variables can be reduced
to [logym] by a linear transformation, the transformation is
optimum by Theorem 4.1.

, Zq are output functions of block G in Fig.

V. REDUCTION OF COMPOUND VARIABLES

This part shows that the number of the variables can be
reduced by a linear transformation, when a partially defined
function satisfies a certain condition [17].

Definition 5.1: A classification function is reducible if it
can be represented with fewer variables than the original ones
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when a linear decomposition is used. Otherwise, the function
is irreducible.

Lemma 5.1: An n-variable partially defined function f =
(Fy, Fsy, ..., F,,) is reducible if and only if there exists a non-
zero vector « that satisfies the condition:

i€ B" — Df,

where Dy is the set of difference vectors of f.

(Proof <) Without loss of generality, we can assume that
there exist a vector 4 such that zq7 = 1. Let S(F;, 21 = a),
(i =1,2,...,m) be the sets of vectors in F; such that 1y = a,
where a € {0,1}. Next, consider the following 2m sets of
vectors:

Ai
B!

S(Fi,.fl :0)
= {baid|be S(F,z =1)}

In this case, f can be represented with n — 1 compound
variables. The first bits of A;, (i = 1,...,m) are all 0’s.
Also, the first bits of B}, (¢ = 1,...,m) are all 0’s. Thus, the
first bit of each vector is 0 in these 2m sets of vectors.

From the property of registered vectors, all the vectors in
A;, (i = 1,...,m) are distinct. Similarly, all the vectors in
B!, (i=1,...,m) are distinct.

Next, we will show that all the vectors in A; and B;-, (i # j)
are distinct.

On the contrary, assume that a vector @ in A;, and a vector
b in B;- are equal. Then, we have the relation @ b
Since b = b @ i, we have a relation @ = b i, and the
relation @ = @ @ b. However, this contradicts the condition
of 4. Thus, any vector in A; and any vector in B, (i # j)
are different. To summarize, the first bits of the vectors in
Aq,As, ..., Ay, Bl B, ... B, are all 0’s, and all the vectors
in the sets A1 U B}, Ay U B}, ... Ay, U B., are distinct.

Adding the vector # to an element in the set S(F;, x3 = 1)
corresponds to perform a linear transformation to S(F;, z; =
1). Thus, to represent f, the first bit x; is not necessary,
and the remaining n — 1 compound variables are sufficient
to represent the function.

(Proof =) We prove by contraposition. Since B" = D} ua,
for any non-zero 4 that we chose in the operation of the proof
<« of Lemma 5.1, we have that & = d @ l_;, where @ € F; and
be I}, and ¢ # j. Since 4 is a non-zero vector, without loss
of generality, we can assume that 1 = 1 in 4. Hence, in d,
z1 = 0 and in g, r1 = 1 (or vice-versa), which means that
GeAandd=b=0adbec Bj, implying that @ cannot
be used to reduce variable x;. Thus, we cannot reduce any
variable. a

Theorem 5.1: An n-variable function (Fy, Fs,..., Fy,) is
reducible if and only if the set of difference vectors for f
contains fewer than 2" — 1 elements.

(Proof) This is a direct consequence of L.emma 5.1. |

Theorem 5.2: A classification function (Fy, Fs,..., Fy,)
can be represented with r = [log,(S + 1)] compound

variables, where
S=" kikj,
(i<j)



i,] € {1,2,.. .,m}. and k; = |Fz‘

(Proof) Note that S denotes an upper bound on the number
of difference vectors. By Theorem 5.1, if §' < 2™ —1, then we
can reduce one variable. By reducing variables repeatedly, we
have 2" > S+ 1, and r > log, (S +1). When S+ 1 # 2P, we
can reduce the number of variables up to r = [log, (S + 1)].
When S + 1 = 2P, we can show that the function can be
represented with p variables. O

Theorem 5.3: In an n-variable decision function f : D —
{1,2}, where D C B™, let h, be the number of registered
vectors in D whose j-th bit is @ € {0,1}. If hohy < 2771,
then f can be represented with n — 1 variables.

(Proof) The number of difference vectors whose j-th bit is
1, is at most hohy. Since hohy < 2™ 1, at least one non-zero
vector exists that is missing in the set of difference vectors
Dy. Thus, |Dy| < 2" —1, and f is reducible by Theorem 5.1.

O

VI. SYMMETRIC DECISION FUNCTION

Lemma 6.1: Consider the n-variable decision function:
f(€)
£(0)
where €; denotes the unit vector where only the i-th compo-
nent is 1. To represent f, we need n primitive variables if we
can use only the primitive variables. If we can use a compound
variable: y = x1 © x5 @ - - & x,, then the function can be
represented by only one variable.
(Proof) By Definition 3.1, f depends on all the variables.
Thus, all the variables are necessary. O
As shown in the previous lemma, the number of variables
can be reduced drastically when a linear transformation can
be used to represent a symmetric classification function.
Lemma 6.2: Consider the n = 2s-variable symmetric deci-
sion function:

f(@)
f(@)
This function can be represented with n—1 primitive variables.
However, even if compound variables can be used, the number
of variables cannot be reduced to n — 2 or less.
Consider the n 2s + 1-variable symmetric decision
function:

1(G=1,2,...,n)
2,

1, (when |Z] = [n/2] — 1),
2, (when |Z] = [n/2] 4+ 1).

/(@)
f(@)
This function can be represented with n—2 primitive variables.
However, even if compound variables can be used, the number
of variables cannot be reduced to n — 3 or less.
Example 6.1: Consider the case of n = 8. We have
f(@) 1, (when |Z| = 3),
F (@) 2, (when |Z] = 5).
The number of vectors & such that f(Z) =1 is (g) = 56,
the number of vectors & such that f(¥) = 2 is (8) = 56. When

5

1, (when |Z] = |n/2] — 1),
2, (when |Z] = [n/2] + 2).
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TABLE 7.1
4-VARIABLE PARTIALLY DEFINED DECISION FUNCTION.

input s [ | TAG
L1 X2 XT3 T4
1 1 1 1|1 1
1 0 1 1|1 2
1 0o 0 01 3
0 0 1 0|1 4
1 0 1 0|2 5
0 1 1 112 6
0 1 1 0|2 7
0 0 0 1|2 8
0 0 1 1|2 9

we omit the the first bit, the set of difference vectors contains
27 — 1 = 127 elements. Thus, to represent the function f, we
need 7 compound variables, by Theorem 5.1.

Consider the case of n = 7. We have

1, (when |Z| = 2),
2, (when |Z] = 5).

The number of vectors & such that f(Z) =1 is (;) =21,

the number of vectors Z such that f(Z) = 2 is (g) = 21.
When we omit the first two bits, the set of difference vectors
contains 2° — 1 = 31 elements. Thus, to represent the function
f, by Theorem 5.1, we need 5 compound variables. u

VII. EXAMPLES OF REDUCTION METHOD

Example 7.1: Table 7.1 shows a 4-variable partially defined
decision function f. Among 2% = 16 possible combinations,
the value 1 is assigned to 4 combinations, while the value
2 is assigned to 5 combinations. Table 7.2 shows the set of
difference vectors Dy of f. The TAG part of the table shows

TABLE 7.2
SET OF DIFFERENCE VECTORS DF.
xr1 a2 x3 x4 | TAG
0 0 0 1 2,5
0 0 1 0 3,5
0 0 1 1 4,8
0 1 0 0 4,7
0 1 0 1 1,5
1 0 0 0 1,6
1 0 0 1 1,7
1 0 1 0 2,8
1 0 1 1 3,9
1 1 0 0 1,9
1 1 0 1 2,7
1 1 1 0 1,8
1 1 1 1 3,6

the pair of vectors that produced the difference vector. The
set of difference vectors Dy contains all the unit vectors:
(1,0,0,0),(0,1,0,0),(0,0,1,0) and (0,0,0,1). Thus, all the
variables are essential. Hence, if no compound variable are
used, to represent the function f all the primitive variables
are necessary.

Next, check if the number of variables can be reduced by us-
ing a linear transformation. Note that the vector @ = (0, 1, 1,0)
is missing in the set of difference vectors. With this vector, we
can reduce the number of variables. Here, we try to reduce the
variable x5. Consider the linear transformation y3 = x3 @ .



TABLE 7.3
MODIFIED REGISTERED VECTOR TABLE.

r1 ys x4 | g | TAG
1 0 1 [1] 1

1 1 11| 2
1 0 01| 3
0 1 01| 4

T 1 02 5
0 0 12| 6
0 0 02| 7
0 0 1 |2] 8
0 1 112 9

Table 7.3 shows the modified registered vector table. Note
that vectors with TAGs 1, 6, and 7 are modified by @ =
(0,1,1,0). In Table 7.3, consider the set H; that consists of
vectors for g = 1, and the set Ho that consists of vectors for
g = 2. Note that H; and H, are disjoint. Thus, the function
f can be represented with the variables z1,ys and x4. In
Table 7.3, the vectors that correspond to TAG6 and TAGS
are the same. Also, as for the registered vectors, the following
relation holds: f (21, xe, x3,24) = g(21,y3,24), Y3 = T2 Dxs.

L]

To minimize primitive variables, we can use the set of min-
imal difference vectors. However, to minimize the compound
variables, we have to use the set of all the difference vectors.

Example 7.2: In the world, there are 197 independent coun-
tries [3]. The continent of these countries can be classified into
m = 6 areas: Europe, Asia, Africa, North America, South
America, and Oceania.

Now, consider the classification function that produces
the area for each country. The names of the countries are
described by alphabets (26 characters), blank and hyphen(-).
The country with the longest name is “Saint Vincent and the
Grenadines,” having 32 characters. However, all the countries
can be distinguished by the first 12 characters.

Thus, to show the countries, we used the first 12 characters.
All the upper case letters are converted into lower case letters,
and all the characters are coded by 5 bits. For the countries
whose name have less than 12 characters, blank characters
were appended to make the lengths of all the names 12.

In the original classification function, the number of inputs
is n = 5 x 12 = 60, the number of outputs is m = 6 (one-hot
code), and the number of registered vectors is k = 197. Among
these, Armenia, Azerbaijan, Cyprus, Georgia, Kazakhstan,
Turkey, Russia, are classified to Europe.

1) When we minimized the number of primitive variables
by Algorithm 3.1, we had a 12-variable solution.
When we applied the iterative minimization using
Lemma 5.1 to the result of 1), we had a 10-variable
solution. In this case, the maximum compound degree
was three.

When we directly applied the iterative minimization
using Lemma 5.1, we had a 9-variable solution. In this
case, the maximum compound degree was 11.

2)

3)

L]

Table 7.4 summarizes the experimental results. The column
headed with AL3.1 denotes the number of the primitive
variables obtained by Algorithm 3.1. The column headed

121

TABLE 7.4
MINIMIZATION RESULTS FOR EXAMPLES 7.2-7.5.
Example | n | m k AL3.1 | AL3.1+THb5.1 | TH5.1
7.2 60 | 6 197 12 10 9
1) (3) (11)
7.3 60 | 7 118 10 9 8
(1) (2 (12)
7.4 30 | 9 | 3700 20 18 18
1) (3) (4)
7.5 30 | 4 | 4000 20 18 18
1) (3) (3)

The number in the parenthesis denotes the maximum compound degree.

with AL3.1 + T'H5.1 denotes the number of the compound
variables obtained by Algorithm 3.1 and by the iterative
algorithm using Lemma 5.1. The column headed with TH5.1
denotes the number of the compound variables obtained by
the iterative algorithm using LL.emma 5.1. The number in the
parenthesis shows the maximum compound degree.

Example 7.3: Up to now, 118 chemical elements are known
[5]. These chemical elements can be classified into m = 7
periods according to their number of protons. For example,
Hydrogen is in the first period; Lithium is in the second period;
Sodium is in the third period; Potassium is in the fourth period;
Rubidium is in the fifth period; Caesium is in the sixth period;
and Francium is in the seventh period.

Consider the classification function that gives the corre-
sponding period for a given name of a chemical element. The
name of the chemical elements is represented by 13 alphabet
characters. However, all the elements can be distinguished by
the first 12 characters. Thus, in the classification functions, we
consider only the first 12 characters. Similarly to Example 7.2,
each character is coded by 5 bits. In the original classification
function, the number of inputs is n = 5 x 12 = 60, the
number of outputs is m = 7 (one-hot code), and the number
of registered vectors is k = 118. We minimized the variables
in the same way as in Example 7.2. The second row of Table
7.4 shows the experimental results. [

Example 7.4: Consider the classification function, where
the inputs are the telephone numbers of 3700 Japanese com-
panies [19], and the outputs show the names of the stock
exchange. There are m = 9 different stock exchange. 1) Tokyo
Ist; 2) Tokyo 2nd; 3) Tokyo Mothers; 4) Sapporo; 5) Nagoya;
6) Fukuoka; 7) JASDAQ; 8) REIT; and 9) Foreign.

The telephone numbers are represented by 9-digit decimal
numbers. We converted them to binary numbers of 30-bits.
Thus, the number of inputs is n 30. Also, the number
of outputs is 9 (one-hot code), and the number of registered
vectors is k = 3700. We minimized the variables in the same
way as in Example 7.2. The third row of Table 7.4 shows the
experimental results. [

Example 7.5: We generated 4000 distinct random vectors
of 30 bits, and partitioned them into m = 4 sets, each consists
of 1000 vectors. From this, we made a classification function
with n = 30 inputs, four outputs, and 4000 registered vectors.
We minimized the variables in the same way as in Example
7.2. The last row of Table 7.4 shows the experimental results.

]



TABLE 8.1
REGISTERED VECTOR
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Example 7.5 can be used as a packet filter of the internet.

VIII. EXACT MINIMIZATION OF COMPOUND VARIABLES

When we apply LLemma 5.1 repeatedly, the number p of
the compound variables can be reduced. However, with this
method, we may fail to find the solution with the exact
minimum number of compound variables. To obtain an exact
minimum solution, we have to consider all possible linear
transformations. Here, we show a method using a SAT (satis-
fiability decision) solver [4], [15].

Theorem 8.1: A partially defined classification function can
be represented with p compound variables:

Y1 = 01171 D a1 222D - D aypTy
Y2 = 2171 Dag 222D D aznTy
Yp = Gp1T1 2 ap,2T2 D---D Ap,nTn

if and only if the value of (y1,y2, ...
the difference vectors.

(Proof) The given function can be represented with
(y1,Y2,-..,yp) if and only if the values of (y1,y2,...,9p)
are distinct for all the registered vectors that produce distinct
functional values.

Suppose that the value (y1,ya, .. .
difference vector d € Dy. Since d= a; @ a; is a difference
vectors, f(d;) # f(d;). Thus, for any pair of registered vectors
d; and d; (i # j) such that d = a; @ d;, the function
hj (j = 1,2,...q) take distinct values. This means that the
functions (y1,y2, ..., ym) must take distinct values for these
registered vectors. Thus, the function can be represented by
(ylvyZa cee :yp)'

Suppose that the value (y1,y2,...,yp) is zero for some
difference vector d € Dy. Let d= a; @ a;, where @; and d;
are registered vectors that produce distinct functional values.
Then, we have

ye(d;) = ye(dy), (t=1,2,...

Thus, @; and @; produces the same function values. This means
that the function cannot be represented by (y1,¥2,...,yp). O

Example 8.1: The three-variable decision function shown
in Table 8.1 requires three variables even if any linear trans-
formations is used. To prove this, assume that this function
could be represented with two compound variables:

,Yp) is non-zero for all

,Yp) 18 non-zero for any

D)

Y1 a1,171 D ay 2202 D ay 373

Y2 2,121 D ag 272 O az 313
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TABLE 8.2
THE SET OF DIFFERENCE VECTORS DF'

1 X2 X3
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

Table 8.2 shows the set of difference vectors. The values of
the vector (y1,y2) for the difference vectors are:

(a1,1,a2,1)
(a1,2,a2,2)
(a1,3, a2,3)
4) (a11 ® a2, a21 ® azz2)
(a1,1 @ ai3,a21 ® az3)
(a1,2®a13,a22 @ az3)
7) (a11®©a12 @ arz,az1 @ azz @ azs)
If there exists an assignment of a;; that makes these 7
vectors all non-zero, then the function can be represented with
two compound variables. Otherwise, the function cannot be
represented with two compound variables. We can use a SAT
solver to prove that there is no such assignment. That is, to
represent this function, at least three compound variables are
necessary. [
Algorithm 8.1: (Exact Minimization of Compound Vari-
ables)

1) By applying Lemma 5.1 repeatedly, reduce the number
of compound variables to p. Save this solution.

By using Theorem 8.1, check if the current partially
defined function can be represented by p — 1 compound
variables.

If no solution exist, then output the solution with p
compound variables, and stop. If the solution exist, then
save this solution, p < p — 1, and go to Step 2.

2)

3)

Example 8.2: The 3-variable decision function f shown in
Table 8.1 requires three compound variables. As shown in
Table 8.2, the set of difference vectors of f contains 23 —
1 elements. From Theorem 5.1, at least three variables are
necessary. [

IX. CONCLUSION

In this paper, we showed methods to reduce the number
of variables for partially defined classification functions. The
major contributions are:

It shows a minimization method of primitive variables.
It shows a reduction method for compound variables
using a linear transformation.

It shows an exact minimization method for compound
variables using a linear transformation.

In [18], circuits for handwritten digit recognition is designed
using classification functions. In these circuits, the number of
variables is n = 196, the number of classes is m = 10, and
the total number of registered vectors is k = 58191.
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