
Maximally Asymmetric Multiple-Valued Functions
Jon T. Butler

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943–5121 USA
Email: jon butler@msn.com

Tsutomu Sasao
Department of Computer Science

Meiji University
Kawasaki-shi, Kanagawa-ken, 214-8571 JAPAN

Email: sasao@ieee.org

Abstract—The asymmetry of a function f(x1, x2, . . . , xn) is the
fewest elements of the range of f that must be changed so that
f becomes a symmetric function. The functions with maximal
asymmetry for the case of r-valued n-variable functions have
been characterized and counted for r = 2 in two previous papers.
In this paper, we extend these results to r > 2. We do this for two
types of symmetry, functions whose value is unchanged by 1) any
permutation of the variable labels and by 2) any permutation of
variable labels and variable values. We also derive the maximum
possible asymmetry. We show that, as n→∞ and r is fixed, the
maximum asymmetry approaches (r − 1)rn−1.

Index Terms—Asymmetric functions, maximally asymmetric
functions, multiple-valued, symmetric functions, v-symmetry, vv-
symmetry, partitions of integers, characterization and count

I. INTRODUCTION

The asymmetry of a function f is the minimum number
of function values that must be changed so that f becomes a
symmetric function. All symmetric functions have asymmetry
0. We are interested in the set of functions that are maximally
asymmetric. Maximally asymmetric functions share an impor-
tant property with random functions. Namely, the distributions
of the function values of maximally asymmetric functions and
random functions are similar [4]. One result of this is that we
can take a random function, change relatively few function
values, and produce a function that is maximally asymmetric.
This is interesting because both symmetric functions and
random functions are prominent in benchmark applications for
the evaluation of circuits and algorithms. Maximally asymmet-
ric functions share properties with pseudo random functions
(PRFs) [2], [5]. Such functions are essential to crypto-systems
and have found application in message authentication systems,
distribution of unforgeable ID numbers, dynamic hashing, and
friend-or-foe identification [6].

Similarly, bent functions serve as a substitute for random
sequences. They are useful in the creation of additional chan-
nels in synchronous code-division multiple-access (CDMA)
systems that employ Walsh sequences for spreading informa-
tion signals and separating channels [11]. On the other hand,
binary bent functions have a pallid distribution by weight;
among all binary bent functions, there are only two weights,
2(n−1) ± 2(

n
2 −1). Maximally asymmetric functions, on the

other hand, have a distribution that is more like random
functions, as shown for binary functions in Fig. 1 [10].
Also, bent functions are hard to generate, unlike maximally
asymmetric functions.

Fig. 1: [10] Distribution of Binary Maximally Asymmetric and
Bent Functions By Weight

This paper extends three papers. It extends [3], which counts
two kinds of multiple-valued symmetric functions; functions
that are unchanged by a 1) permutation of variable labels or by
a 2) permutation of variable labels and variable values. This
paper also extends [7], [10], which count binary maximally
asymmetric functions. In this paper, we count multiple-valued
maximally asymmetric functions, and we do it for the two
kinds of symmetry. As a further justification for the study of
multiple-valued functions, we note that quarternary functions
have been used in the analysis of quadrature phase shift keying
CDMA-type applications [1], [9], [11].

II. DEFINITIONS

An n-variable r-valued function f is a mapping from the
n dimensional vector space Fn

r = {0, 1, . . . r − 1}n into the
r-element field Fr.

Definition 1. A function is v-symmetric (variable-symmetric)
if it is unchanged by any permutation of variable labels. A
function is vv-symmetric (variable/value-symmetric) if it is
unchanged by any permutation of the variable labels and any
permutation of the variable values [3].

Example 1. Table I shows two 3-variable 3-valued functions,
f1 and f2. Here, f1 is v-symmetric but not vv-symmetric, while



f2 is vv-symmetric (and also v-symmetric).

TABLE I: Examples of
v-Symmetric (f1) and vv-
Symmetric (f2) Functions

x1 x2 x3 f1 f3 f2 f4

0 0 0 1 0 0 0
1 1 1 1 2 0 1
2 2 2 2 2 0 2
0 0 1 2 0 1 0
0 1 0 2 1 1 0
1 0 0 2 2 1 0
0 0 2 0 0 1 0
0 2 0 0 1 1 0
2 0 0 0 2 1 0
0 1 1 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 2 1 1
0 2 2 2 0 1 1
2 0 2 2 1 1 1
2 2 0 2 2 1 1
1 1 2 1 0 1 2
2 1 1 1 1 1 2
1 2 1 1 2 1 2
1 2 2 2 0 1 2
2 1 2 2 1 1 2
2 2 1 2 2 1 2
0 1 2 0 0 2 0
0 2 1 0 0 2 0
1 0 2 0 1 2 1
1 2 0 0 1 2 1
2 0 1 0 2 2 2
2 1 0 0 2 2 2

TABLE II: The alpha vectors
of f1 and f2 from Table I.

α0 α1 α2 f1 f2

3 0 0 1 0
2 1 0 2 1
2 0 1 0 1
1 2 0 1 1
1 1 1 0 2
1 0 2 2 1
0 3 0 1 0
0 2 1 1 1
0 1 2 2 1
0 0 3 2 0

TABLE III: The beta vectors
of f2 from Table I.

β0 β1 β2 f2

3 0 0 0
2 1 0 1
1 1 1 2

Definition 2. A v-symmetric function is specified by the
function values associated with alpha vectors,

−→
A =

(α0, α1, . . . , αr−1), where αi is the number of variables that
have logic value i, where

∑r−1
i=0 αi = n.

Example 2. Shown in Table II are the alpha vectors of
functions f1 and f2 from Table I.

Definition 3. A vv-symmetric function is specified by
the function values associated with beta vectors

−→
B =

(β0, β1, . . . , βr−1), where β0 is the number of variable values
that are the most polific, β1 is the number of variable values
that are the next most prolific, etc., and where

∑r−1
i=0 βi = n.

Here, n ≥ β0 ≥ β1 ≥ . . . ≥ βr−1 ≥ 0, and if two alpha
vectors are permutations of each other, there is exactly one
corresponding beta vector, the lexicographically highest alpha
vector. Each beta vector represents an integer partition on n
with r or fewer parts.

Example 3. Shown in Table III are the beta vectors of function
f2 from Table I.

Example 4. In this case of r = 2, a v-symmetric function
is specified by n + 1 function values, while a vv-symmetric
function is specified by bn+1

2 c function values. For r = 2 and
n = 2, there are eight v-symmetric functions, f = 0, x1x2,
x1 ⊕ x2, x1 ∨ x2, and their complements, and there are two
vv-symmetric functions, f = x1 ⊕ x2, and its complement.

Definition 4. The v-asymmetry of a function f , denoted by
v asym(f), is the minimum number of truth table entries that
must be changed to convert f to a v-symmetric function; that
is,

v asym(f) = d(f, Sv) = min{d(f, s)|s ∈ Sv},

where Sv is the set of n-variable v-symmetric functions and,
d is the Hamming distance function.

Definition 5. Similarly, the vv-asymmetry of a function f ,
denoted by vv asym(f), is the minimum number of truth table
entries that must be changed to convert f to a vv-symmetric
function; that is,

vv asym(f) = d(f, Svv) = min{d(f, s)|s ∈ Svv},

where Svv is the set of n-variable vv-symmetric functions, and
d is the Hamming distance function.

Definition 6. A maximally v-asymmetric function f has
the maximum v-asymmetry among all n-variable functions. A
maximally vv-asymmetric function f has the maximum vv-
asymmetry among all n-variable functions.

Example 5. f3 is maximally v-symmetric because it has v-
asymmetry 16, which, we know is maximum among 3-valued,
3-variable functions. f4 is maximally vv-symmetric because
it has vv-asymmetry 18, which, we know is maximum among
3-valued, 3-variable functions.

III. THE NUMBER OF SYMMETRIC FUNCTIONS

Lemma 1. [3] The number Nv(n, r) of r-valued n-variable
v-symmetric functions is

Nv(n, r) = r(
n+r−1
r−1 ), (1)

where
(
n+r−1
r−1

)
is the number of ways to choose r objects from

n with repetition.

From this, we can conclude that the number of function
values needed to completely specify a v-symmetric functions
is
(
n+r−1
r−1

)
, one for each element of the alpha vector.

Lemma 2. [3] The number Nvv(n, r) of r-valued n-variable
vv-symmetric functions is

Nvv(n, r) = rp(n,r;n), (2)

where p(σ, r;n) is the number of partitions of n with r or
fewer parts and with no part greater than σ.

From this, we can conclude that the number of function
values needed to specify completely vv-symmetric functions
is p(n, r;n), one for each element of the beta vector.



Example 6. The third and fourth columns of Table V show the
number of r-valued n-variable v-symmetric and vv-symmetric
functions, respectively, for 2 ≤ n ≤ 8 and 2 ≤ r ≤ 6. This
occurs in the columns labeled #v-S and #vv-S, respectively. For
larger values of n and r, there are many more v-symmetric
functions than there are vv-symmetric functions.

IV. CHARACTERIZATION OF MAXIMALLY V-ASYMMETRIC
AND MAXIMALLY VV-ASYMMETRIC FUNCTIONS

A. Maximally v-Asymmetric Functions

In determining the v-asymmetry of a given function f , we
start by partitioning the vectors according to the assignment
of values to the variables. For example, consider function f1
in Table I. Since f1 is v-symmetric, f1 has the same value
(2) for x1x2x3 = 001, 010, and 100, for example. A critical
observation is that these three assignments contribute a value
to the maximum v-asymmetry of f1 that is independent of all
other assignments. The contribution to the v-asymmetry of a
maximally v-asymmetric function occurs when the values of
the function for x1x2x3 = 001, 010, and 100 are uniformly
distributed across all three logic values, since this maximizes
the minimum distance to a v-symmetric function. In this case,
a uniform distribution occurs with one 0, one 1, and one 2,
and creates a distance contribution of 2. The following theorem
extends the result in [7], [10] to general r-valued functions,
where r > 2. Here, we characterize maximally v-asymmetric
functions.

Theorem 1. An n-variable r-valued function f is maximally
v-symmetric if and only if the logic values of f are uniformly
distributed across all assignments of values to variables that
correspond to the same alpha vector component.

An important observation about maximally asymmetric
functions is that each alpha vector contributes a part of the total
asymmetry in a sum across all alpha vectors. From this and
Theorem 1, we can compute the v-asymmetry of maximally
v-asymmetric functions.

Theorem 2. Let
−→
A i be the i-th alpha vector of a functionf ,

and Ai the number of assignments of values to variables
corresponding to

−→
A i. Then, a maximally v-asymmetric n-

variable r-valued function has v-asymmetry Θv(n, r), where

Θv(n, r) =

(n+r−1
r−1 )∑
i=1

⌊
Ai
r − 1

r

⌋
. (3)

Example 7. The fifth column of Table V shows, in bold,
Θv(n, r), for 2 ≤ n ≤ 8 and 2 ≤ r ≤ 6.

B. Maximally vv-Asymmetric Functions

Theorem 3. An n-variable r-valued function f is maximally
vv-asymmetric if and only if the logic values of f are uniformly
distributed across all assignments of values to variables that
correspond to the same beta vector.

From this, we can compute the vv-asymmetry of maximally
vv-asymmetric functions.

Theorem 4. Let
−→
B i be the i-th beta vector, and Bi the number

of assignments of values to variables corresponding to
−→
B i.

Then, a maximally vv-asymmetric n-variable r-valued function
has vv-asymmetry Θvv(n, r), where

Θvv(n, r) =

p(n,r;n)∑
i=1

⌊
Bi
r − 1

r

⌋
, (4)

where p(n, r;n) is the number of partitions of n with no more
than r parts.

Example 8. The sixth column of Table V shows, in bold,
Θvv(n, r), for 2 ≤ n ≤ 8 and 2 ≤ r ≤ 6.

Along with Θv and Θvv , Table V shows, also in bold,
the maximum possible distance between n-variable r-valued
functions, as ‘Max.’, in the seventh column. This is rn, the size
of the truth table, which corresponds to a different function
value for every assignment of values to the variables. The data
shows that, as n → ∞ and r is fixed, Θ → r−1

r rn. We can
show this analytically, as follows.

Consider the case of Θv(n, r), as given in (3). The case for
Θvv(n, r) is similar. The sum in (3) enumerates all possible
Ai, assignments of values to the variables. Each contributes in
proportion as b r−1

r c. When n is large and r is fixed, the floor
function has negligible effect, and the proportion is close to
r−1
r . This outlines the proof of the following.

Theorem 5. Let Θv(n, r) and Θvv(n, r) be the maximal v-
asymmetry and vv-asymmetry, respectively, among n-variable
r-valued functions. Then,

Θv(n, r)→ (r − 1)rn−1 and Θvv(n, r)→ (r − 1)rn−1, (5)

as n→∞ and r is fixed.

It is interesting to compare the maximal asymmetry associ-
ated with binary asymmetric functions and the “bent” distance
associated with binary bent functions. Substituting r = 2 into
(5) yields the maximal asymmetry associated with both v-
symmetric and vv-symmetric binary functions as 2n−1 in the
limit as n→∞. This is the minimum of the distance between
v-symmetric and vv-symmetric functions and v-asymmetric
and vv-asymmetric functions, respectively. The minimum of
the distance between affine functions and bent functions is
the “bent” distance 2n−1− 2

n
2 −1. This is less, but approaches

2n−1, as n → ∞. That is, for large n, both distances are
nearly the same. Indeed, they are both approximately one-
half the maximum distance between two functions that are
the complement of each other.

V. COUNT OF THE MAXIMALLY V-SYMMETRIC AND
MAXIMALLY VV-SYMMETRIC FUNCTIONS

A. v-Asymmetric Functions

Theorem 6. The number of n-variable r-valued v-asymmetric
functions Nv(n, r) is

Nv(n, r) =

p(n,r;n)∏
i=1

[
r!

(r −Ri)!Ri!

Ai!

(Qi)!(r−Ri)(Qi+1)!Ri

]Gi

(6)



where
1) n is the number of variables and r is the number of

values,
2) p(n, r;n) is the number of partitions on n with r or

fewer parts,
3) Gi is the number of groups associated with the

i-th partition. Specifically, if the i-th partition is
nmn . . . 2m21m1 , where jmj is a part of size j and mj

is the number of such parts, then

Gi=

(
r

mn

)(
r−mn

mn−1

)(
r−mn−mn−1

mn−2

)
. . .

(
r−mn−mn−1−. . .−m2

m1

)
, (7)

4) Ai is the number of assignments of values to variables in
all parts associated with the i-th partition. Specifically,

Ai =
n!

n!mn(n− 1)!mn−1 . . . 1!m1
, and (8)

5) Qi is the quotient and Ri is the remainder resulting from
the division Ai

r .

Proof: Each partition on n with ρ ≤ r parts specifies
how ρ logic values are assigned to n variables when the
corresponding functions are symmetric. So, if the partition is

nmn(n− 1)mn−1 . . . 1m1 , (9)

then there are mn sets of n variables and every variable within
each set is assigned to a distinct logic value, there are mn−1

sets of n − 1 variables and every variable within each set is
assigned to a distinct logic value, . . . , and there are m1 sets
of 1 variable1 and every variable within each set is assigned
to a distinct logic value. The partition does not specify which
specific logic value is assigned to a specific variable, only that
there are so many sets of variables of a certain size that are
assigned the same logic value. We note that mn + mn−1 +
. . .+m1 = ρ ≤ r and n·mn+(n−1)·mn−1+. . .+1·m1 = n.

When specific logic values are assigned, each partition
forms groups of assignments to variables such that any per-
mutation of the variable labels preserves the distribution of
variable values. The number of groups associated with the i-
th partition is given with the understanding that each mj in
(7) is associated with the i-th partition.

We next compute Ai, the number of assignments of values
to variables that exist within each group associated with the i-
th partition. This is (8). n! counts the arrangements of variables
when all are distinct. However, they are not all distinct. There
are mn sets of n variables that have the same value, mn−1

sets of n−1 variables that have the same value, . . . , and m1

sets of 1 variable that have the same value.
From Theorem 1, a function has maximum v-asymmetry if

there is a uniform distribution of function values across the
assignments to variables that map to the same function value
in a symmetric function. That is, a maximally v-asymmetric

1For n > 2, mn∈{0, 1}, mn−1∈{0, 1}, . . . , and m1∈{0, 1, 2, . . . , n}.

function has the property that, for each of the Gi groups,
r logic values must be distributed uniformly across the Ai

assignments of values that are in all groups. A uniform
distribution is specified by the quotient Qi and remainder Ri

of the division Ai/r. That is, Qi + 1 assignments will map
to Ri(< r) values each, while Qi assignments will map to
r −Ri values each.

It now remains only to count how a uniform distribution
of logic values can occur across the logic values and across
the assignments of values to the variables. With respect to the
logic values, the distribution occurs as

Li =
r!

(r −Ri)!Ri!
. (10)

With respect to the distribution across assignments of values to
variables, the distribution is divided by those function values
having Qi + 1 assignments and those having Qi assignments,
and are distributed as

Vi =
Ai!

Qi!r−Ri(Qi + 1)!Ri
. (11)

Thus, the total number of maximally v-symmetric n-variable
r-valued functions is

Nv(n, r) =

p(n,r;n)∏
i=1

[LiVi]
Gi . (12)

Substituting (10) and (11) into (12) completes the proof. �

Example 9. Table IV shows how to calculate the number
of 4-variable 5-valued functions v-asymmetric functions. The
calculation is based on the partitions of n = 4 into r = 5
or fewer parts. Since a partition of n = 4 can have no more
than 4 parts, we consider all partitions of n = 4. The second
column of Table IV shows all five partitions of n = 4 in
standard form, and the third column shows the exponent form.
Here, for example, partition 4 = 2 + 1 + 1 is written as 2112.
The fourth column shows one example assignment of values
to the four variables that corresponds to the partition in the
second and third column. For example, in the case of partition
2 + 1 + 1 (2112), one assignment is (x1x2x3x4) = 0012. That
is, 0 is assigned to two variables, 1 is assigned to another
variable, and 2 is assigned to the final variable. Indeed, any
assignment of values to four variables with two variables the
same and a single copy of two different variables could have
been chosen as an example. We have chosen, for Table IV, the
lexicographically smallest assignment, 0012 in this example.

The fifth column specifies the number of groups of assign-
ments of values to variables that corresponds to a specific
choice of values for the variables, according to the partition
specified in the second and third column. In the case of
partition 2 + 1 + 1(2112), there are

(
5
1

)
ways to choose the

single pair and
(
4
2

)
ways to choose the other two values. As

shown in the fifth column, this yields a total of
(
5
1

)(
4
2

)
= 30

groups of assignments of variables that corresponds to this
partition.

The sixth column shows how many assignments exist in each
group. For the case of our running example, partition 2 + 1 +



TABLE IV: Computation of the Number of Maximally v-Asymmetric 4-Variable 5-Valued Functions

Partition Information # of Grps. of # of Assgnmnts Ai/r Contribution from
i n = 4 r = 5 Example Assgnmnts Gi in Each Gr. Ai Qi Ri Each Partition

1 4 41 0000
(
5
1

)
= 5 4!

4! = 1 0 1
[(

5!
4!1!

) (
1!

0!41!1

)]5
= 211.6

2 3+1 3111 0001
(
5
1

)(
4
1

)
= 20 4!

3!1! = 4 0 4
[(

5!
1!4!

) (
4!

0!11!4

)]20
= 2138.1

3 2+2 22 0011
(
5
2

)
= 10 4!

2!2! = 6 1 1
[(

5!
4!1!

) (
6!

1!42!1

)]10
= 2108.1

4 2+1+1 2112 0012
(
5
1

)(
4
2

)
= 30 4!

2!1!1! = 12 2 2
[(

5!
3!2!

) (
12!

2!33!2

)]30
= 2719.6

5 1+1+1+1 14 0123
(
5
4

)
= 5 4!

1!1!1!1! = 24 4 4
[(

5!
1!4!

) (
24!

4!15!4

)]5
= 2245.7

TOTAL 1.6592× 10368 = 21223.2

TABLE V: Number Maximally v-/vv-Asymmetric Functions
# of v/vv-Symmetric and Maximally v/vv-Asymmetric Functions

n r #v-S #vv-S Θv(n, r) Θvv(n, r) Max=rn # v-Asym # vv-Asym rr
n

2 2 23.0 22.0 1 2 4 23.0 22.0 24.0

3 2 24.0 22.0 2 4 8 27.2 25.3 28.0

4 2 25.0 23.0 7 8 16 211.5 211.5 216.0

5 2 26.0 23.0 14 16 32 226.6 226.5 232.0

6 2 27.0 24.0 30 32 64 255.4 255.6 264.0

7 2 28.0 24.0 60 64 128 2119.3 2118.3 2128.0

8 2 29.0 25.0 127 128 256 2236.9 2242.3 2256.0

2 3 29.5 23.2 3 6 9 212.5 29.1 214.3

3 3 215.8 24.8 16 18 27 226.8 233.1 242.8

4 3 223.8 26.3 48 54 81 2100.5 2111.3 2128.4

5 3 233.3 27.9 153 162 243 2338.2 2358.6 2385.1

6 3 244.4 211.1 483 486 729 21042.9 21112.5 21155.4

7 3 257.1 212.7 1449 1458 2187 23303.4 23407.8 23466.3

8 3 271.3 215.8 4356 4374 6561 210172.8 210316.1 210398.9

2 4 220.0 24.0 6 12 16 229.5 223.1 232.0

3 4 240.0 28.0 40 48 64 2103.3 2109.9 2128.0

4 4 270.0 210.0 186 192 256 2386.5 2474.7 2512.0

5 4 2112.0 212.0 744 768 1024 21816.4 21989.0 22048.0

6 4 2168.0 218.0 3052 3072 4096 27671.4 28088.2 28192.0

7 4 2240.0 222.0 12236 12288 16384 231874.1 232616.7 232768.0

8 4 2330.0 230.0 49146 49152 65536 2129275.1 2130837.6 2131072.0

2 5 234.8 24.6 10 20 25 254.8 245.1 258.0

3 5 281.3 27.0 80 100 125 2237.9 2262.8 2290.2

4 5 2162.5 211.6 465 500 625 21223.2 21393.1 21451.2

5 5 2292.6 216.3 2496 2500 3125 26262.0 27153.3 27256.0

6 5 2487.6 223.2 12480 12500 15625 234111.7 236102.6 236280.1

7 5 2766.2 230.2 62450 62500 78125 2177201.8 2181124.3 2181400.6

8 5 21149.4 241.8 312400 312500 390625 2899435.2 2906566.9 2907003.2

2 6 254.3 25.2 15 30 36 289.1 275.8 293.1

3 6 2144.8 27.8 160 180 216 2412.6 2521.0 2558.4

4 6 2325.7 212.9 1065 1080 1296 22555.7 23270.0 23350.1

5 6 2651.4 218.1 6440 6480 7776 217903.0 219956.8 220100.7

6 6 21194.3 228.4 38850 38880 46656 2114373.1 2120337.5 2120604.0

7 6 22047.3 236.2 233130 233280 279936 2710581.4 2723211.7 2723624.1

8 6 23326.8 251.7 1399470 1399680 1679616 24315354.7 24341070.8 24341744.4

1(2112) corresponds to the number of arrangements specified
by the multinomial 4!

2!1!1! = 12. That is, among four variables,
there are two of the same type, one of another type, and one of
still another type, and this can occur in 12 ways. It specifies
how many assignments of variables should all produce the
same logic value in a symmetric function, and it is labeled
Ai. In a maximally v-asymmetric function, the function’s value
should be distributed uniformly.

In such a distribution, there are at least Qi = b 125 c = 2
instances of certain function logic values, while Ri = 12 −
b 125 c × 5 = 2 of the function logic values are represented
by three logic values. The values of Qi = b 125 c = 2 and
Ri = 12− b 125 c × 5 = 2 are shown in the seventh and eighth

columns, respectively.
The rightmost column shows the contribution to the product

of contributions of the present partition. As shown, there are
5!
3!2! ways to distribute function logic values so that there is
a uniform distribution (two logic values as triples and three
as doubles for a total of 5). There are 12!

2!33!2 assignments in
each group. As there are 30 groups, each with 5!

3!2!
12!

2!33!2 ways
to assign function values, the contribution of this partition is
[ 5!
3!2!

12!
2!33!2 ]30 = 2719.6. Now, repeat this computation for the

four other partitions, and then compute the product for a total
of 21223.2 functions.

B. vv-Asymmetric Functions

Theorem 7. The number of n-variable r-valued vv-
asymmetric functions Nvv(n, r) is

Nvv(n, r) =

p(n,r;n)∏
i=1

(AiGi)!

(Qi)!r
, (13)

where Ai is given by (8), Gi is given by (7), Qi is the quotient
resulting from the division Ai

r , and p(n, r;n) is the number of
partitions on n with r or fewer parts.

Proof: This proof is similar to that of Theorem 6. In the
case of maximally vv-symmetric functions, for each partition,
there is exactly one (large) group of assignments of values
to the variables over which the function logic values should
be distributed uniformly. For the i-th partition, the size of
this group is AiGi. Further, AiGi is divisible by r, and so
all uniform distributions are exactly uniform. The number of
ways to uniformly distribute the assignments of values to the
variables is (AiGi)!/Qi!

r. The theorem follows immediately.
�

Example 10. Table VI shows how to calculate the number of
4-variable 5-valued vv-asymmetric functions. The first three
columns are identical to the first three columns in Table IV.
The remaining columns illustrate the application of (13) in
Theorem 7.

The calculation of the number of maximally vv-asymmetric
functions is similar to that of maximally v-asymmetric func-
tions. The difference is in the assignment of variables where
the corresponding symmetric function takes on a constant
value. In the case of maximally vv-asymmetric functions, the
region includes all assignments corresponding to a single



TABLE VI: Computation of the Number of Maximally vv-Asymmetric 4-Variable 5-Valued Functions

Partition Information # of Grps. of # of Assgnmnts Total # of Contribution from
i n = 4 r = 5 Example Assgnmnts Gi in Each Gr. Ai Assgnmnts Ti Qi Ri Each Partition
1 4 41 0000

(
5
1

)
= 5 4!

4! = 1 5 · 1 = 5 1 0
(

5!
5!0!

) (
5!

1!52!0

)
= 26.9

2 3+1 3111 0001
(
5
1

)(
4
1

)
= 20 4!

3!1! = 4 20 · 4 = 80 16 0
(

5!
5!0!

) (
80!

16!517!0

)
= 2173.6

3 2+2 22 0011
(
5
2

)
= 10 4!

2!2! = 6 10 · 6 = 60 12 0
(

5!
5!0!

) (
60!

12!513!0

)
= 2128.0

4 2+1+1 2112 0012
(
5
1

)(
4
2

)
= 30 4!

2!1!1! = 12 30 · 12 = 360 72 0
(

5!
5!0!

) (
360!

72!573!0

)
= 2819.4

5 1+1+1+1 14 0123
(
5
4

)
= 5 4!

1!1!1!1! = 24 5 · 24 = 120 24 0
(

5!
5!0!

) (
120!

24!525!0

)
= 2265.3

TOTAL (54=)625 2.3791× 10419 = 21393.1

partition (beta vector). The column labeled “# of Grps. of
Assgnmnts Gi” in Table VI specifies the number of arrange-
ments, and the column labeled “# of Assgnmnts of Each Gr.
Ai” specifies the number of ways values can be assigned to ar-
rangements. Their product is the total number of assignments
to the variables that should be constant in a vv-symmetric
function. This is the same region over which the function logic
values should be uniformly distributed. All partitions in Table
VI correspond to a region length that is a multiple of r = 5.
So, a perfectly uniform distribution of assignments of values
to variables occurs. In the case of partition 2+1+1, there
are 360 assignments of variables, and the number of ways to
achieve a uniform distribution of assignments to function logic
values is the multinomial 360!

72!72!72!72!72! . The right column of
Table VI shows the number of distributions for each partition
(beta vector). Each can be chosen independently, and so the
total number of maximally vv-asymmetric functions is 21393.1,
a large number.

VI. CONCLUDING REMARKS

Every vv-symmetric function is v-symmetric (e.g., f2), but not
every v-symmetric function is vv-symmetric (e.g., f1). With
respect to v-asymmetric and vv-asymmetric functions, there
are v-asymmetric functions that are not vv-asymmetric (e.g.,
f3) and vv-asymmetric functions that are not v-asymmetric
(e.g., f4). And, there are functions that are both v-asymmetric
and vv-asymmetric (e.g., f5, which is f3 with [0, 2, 2]T re-
placed by [0, 1, 2]T). The Venn diagram in Fig. 2 shows this.

 

vv-asymmetric 

v-asymmetric 
All Functions 

vv-symmetric 
v-symmetric 

Θv 

Θvv 

f3 

f4 

f5

f1 

f2 

Fig. 2: Venn Diagram of Symmetric/Asymmetric Functions

Although their number was found combinatorially, maxi-
mally asymmetric functions seem difficult to quantify. Indeed,
in the writing this paper, we were unable to find a maximally
asymmetric function with r > 2 that would be familiar to
the reader. Maximally asymmetric functions tend to resist
classification, in the same way that random functions tend to
resist classification.

An n-variable maximally asymmetric function has the
largest possible asymmetry among all n-variable functions. We
consider two types of symmetry, v-symmetric functions which
are unchanged by a permutation of the variable labels and vv-
symmetric functions, which are unchanged by a permutation of
variable labels and variable values. For each, we characterize
maximally asymmetric functions, and, from this, enumerate
them. There is no similar construction of bent functions.
Maximally asymmetric functions tend to be balanced, with
function values evenly distributed among the r function values.
Thus, they are more like random functions than bent functions.
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