
Realizing All Index Generation Functions By the
Row-Shift Method

Jon T. Butler
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943–5121 U.S.A.

Email: jon butler@msn.com

Tsutomu Sasao
Department of Computer Science and Electronics

Meiji University
Kawasaki, Kanagawa 214-8571 JAPAN

Email: sasao@ieee.org

Abstract—We propose a method that allows the realization of all
index generation functions using flexible decomposition charts.
It is based on the first-fit decreasing heuristic used by Tarjan
and Yao to store sparse matrices. We show that the first-fit-
decreasing heuristic can yield nonminimal tables in the case of
functions that do not satisfy the harmonic decay property. We
show that an index generation function representation that just
satisfies the harmonic decay property, called the perfect harmonic
decay sequence, allows a simple matrix approach for calculating
an error matrix, that describes the degree to which a given
function representation departs from a perfect harmonic decay
sequence. This gives insight into how function representations
can be changed to realize the harmonic decay criteria. We also
show the existence of sparse function representations for which
no compression is possible. In such a case, we can still implement
the corresponding index generation function, but it requires the
largest resources possible.
Index Terms—index generation functions, decomposition chart,
row-shift decomposition, sparse table storage, harmonic decay,
perfect harmonic decay sequence, first-fit-decreasing heuristic,
nonmergable rows

I. INTRODUCTION

Index generation functions [4] have application in the
storage of sparse data. Applications include password files,
memory-patch circuits, virus detection, and routing. Sasao [5]
showed that the row-shift method in a decomposition chart
representation of an index generation function often yields
a significant reduction in complexity. To accomplish this, he
developed a decomposition chart approach to accommodate
index generation functions. The row-shift method is a way to
adjust the position of indices in the decomposition chart so
that it induces a smaller circuit [2], [5], [6].

In applying the row-shift method, the first-fit heuristic was
used to find the amount of shift to apply. The row-shift method
is often effective in reducing the complexity of the realization
of index generation functions, especially when the function is
sparse. Indeed, as shown in [2], the probability that the row-
shift method can produce a realization depends on the degree
of sparseness of the index values. A smaller number of index
values corresponds to a larger probability of success. In this
paper, we show a row-shift method can be applied to all index
generation functions provided the decomposition chart has a
flexible size.

II. INDEX GENERATION FUNCTIONS

Definition 1. An index generation function f is a multiple-
valued function f : {0, 1}n = X → {0, 1, 2, . . . , k}, where
there exists Y ⊆ X , such that an into and one-to-one mapping
exists from Y to {1, 2, . . . , k}, and where all other elements of
X map to 0. Elements of Y are registered vectors. The values
of {1, 2, . . . , k} are indices, while 0 is the ambient value.
Typically, f is sparse, a term we use to (vaguely) describe the
fact that there are many more ambient values than indices.

Example 1. Table I shows an index generation function with
n = 4 variables, x1, x2, x3, and x4 and k = 7 indices, 1,
2, 3, 4, 5, 6, and 7. The table shows all assignments to the
variables that map to an index. An assignment that does not
map to an index is assumed to map to the ambient value 0
and is omitted. If this example represents a virus detection
application, then a registered vector is a potential virus, and
its index is an address where that virus is processed.

TABLE I: Index Generation Function Example

x1 x2 x3 x4 f
0 0 0 0 1
0 0 1 1 5
0 1 0 0 3
0 1 1 0 4
1 0 0 0 2
1 1 1 0 6
1 1 1 1 7

III. DECOMPOSITION CHARTS

To modify a function so that it can be realized by
physical circuits like LUTs in an FPGA, we seek to de-
compose the function into smaller functions. A useful tool
is the decomposition chart. Table II shows a
decomposition chart that realizes the function shown in
Table I. Here, the four variables are divided into two
parts. x1x2 label the rows, while x3x4 label the columns.
By shifting the rows, we seek to redistribute the in-
dices so that at most one index occurs in each column.
Fig. 1a shows the circuit to accomplish this. Here,

TABLE II: Decomposition Chart Example

0 0 1 1 x3
x1 x2 0 1 0 1 x4
0 0 1 0 0 5
0 1 3 0 4 0
1 0 2 0 0 0
1 1 0 0 6 7

G

G + G
H X1

f

h

g

h(X1)+X2

X2

n1

n2 n = n1+n2

X2 0

0

X1 Decompo-

sition Chart

2 -1 2 -1
 n2

2 -1 2 -1
 n1

(a) (b)

Fig. 1: Row-Shift Decomposition.

X1 specifies the row number and h the amount of shift
required for that row. The adder is a modulo adder, so that
values shifted off the edge wrap around. Fig. 1b shows the
corresponding decomposition chart. The process of designing
the circuit shown in Fig. 1 is called the row-shift method [2],
[5], [6].

From [2], we know that, for the example in Table II, no
row-shift exists that results in at most one index per column.
Specificially, there are seven indices and four columns, and,
by the Pigeonhole Principle, at least one column has at least
two indices. However, if we apply a different approach [8], we
can use row-shifts to realize any decomposition chart. This is
shown in Fig. 2 for the example shown in Table II.

1 0 0 5 0

3

5

0 4 0

2

3

0

0

0

4

0 0

0

0

0 6 7

Fig. 2: Decomposition Chart Without a Size Limit.
Here, the row-shifts do not wrap around; they simply extend

out, as needed. The row-shifts are chosen so that 1) no two
indices occur in the same column and 2) as few columns as
possible have only ambient values. In Fig. 2, the dotted lines
define the extent of the decomposition chart needed for this
row-shift. The circuit to realize this approach is shown in Fig.
1a where the adder is not a mod adder; rather, its output value
accommodates the largest output value possible.

IV. HARMONIC DECAY

Tarjan and Yao [8] use the first-fit heuristic of Ziegler [9],
in which r(i) is computed one at a time, with r(0) first, r(1)
second, etc., such that r(i) is the smallest value such that no
index of the i-th row falls into the same column as an index in

a previously chosen row. This is improved by first arranging
rows in decreasing order of the number of indices in each row,
forming the first-fit-decreasing heuristic.

An important question is how to measure the extent to which
an array is sparse. Tarjan and Yao [8] use the harmonic decay
property.

Definition 2. [8] Let η(l), for l ≥ 0, be the total number
of indices in rows with more than l indices. Array A has the
harmonic decay property, if, for all l, k

l+1 ≥ η(l). where k
is the number of stored elements (indices).

Example 2. Consider an array in which the number of stored
elements (indices) k is 144. Let there be 9 rows with 4 indices,
4 rows with 3 indices, 12 rows with 2 indices, and 72 rows with
1 index. This specification is shown in the first two columns
of Table III. The third column shows η(l), while the fourth
(rightmost) column shows k

l+1 . Comparing the third and fourth
column shows that this array just satisfies the harmonic decay
property, such that the condition k

l+1 ≥ η(l) is always satisfied
as k

l+1 = η(l).

TABLE III: An array with the harmonic decay property

of l =# of η(l) k
l+1

rows indices
9 4 0
4 3 9 · 4 = 36 144

3+1
= 36

12 2 36 + 12 = 48 144
2+1

= 48

72 1 36 + 12 + 24 = 72 144
1+1

= 72

0 36 + 12 + 24 + 72 = 144 144
0+1

= 144

In an array with the harmonic decay property, the number
of indices decreases relatively quickly as l increases, and is,
therefore sparse. The following theorem by Tarjan and Yao
[8] states that, if the harmonic decay property holds, then the
first-fit-decreasing heuristic works well.

Theorem 1. [8] Suppose that array A has the following
harmonic decay property

k

l + 1
≥ η(l),

where k is the total number of indices. Then, every row
displacement r(i) computed for A by the first-fit-decreasing
heuristic satisfies 0 ≤ r(i) ≤ k.

The specification 0 ≤ r(i) ≤ k guarantees that the linear
array corresponding to A will not be ‘too long’. However, in
the next section, we show that the first-fit-decreasing heuristic
may fail to find the absolute minimum memory.

V. THE FIRST-FIT-DECREASING HEURISTIC DOES NOT
ALWAYS MINIMIZE MEMORY

Example 3. Table IV shows four rows of 0’s and indices, with
indices indicated by asterisks. On the left are the unshifted
rows. Shown in the middle is the result of applying the
first-fit-decreasing heuristic, and on the right is an optimum

TABLE V: Beta Vectors for Perfect Harmonic Decay Sequences.

m k β10 β9 β8 β7 β6 β5 β4 β3 β2 β1 Density

2 22=4 1 2 0.66667
3 2232=36 4 3 18 0.48000
4 2432=144 9 4 12 72 0.37113
5 243252=3,600 144 45 100 300 1,800 0.30138
6 243252=3,600 100 24 45 100 300 1,800 0.25327
7 24325272=176,400 3,600 700 1,176 2,205 4,900 14,700 88,200 0.21822
8 26325272=705,600 11,025 1,800 2,800 4,704 8,820 19,600 58,800 352,800 0.19159
9 26345272=6,350,400 78,400 11,025 16,200 25,200 42,336 79,380 176,400 529,200 3,175,200 0.17071

10 26345272=6,350,400 63,504 7,840 11,025 16,200 25,200 42,336 79,380 176,400 529,200 3,175,200 0.15390

arrangement. First-fit-decreasing results in 12 columns, while
the optimum arrangement requires 11 columns. These memory
counts include trailing 0’s, which do not need to be stored.
By not storing the trailing 0’s, the optimum method is even
better than the first-fit-decreasing method, requiring 9 columns
versus 12 columns. This is shown in the last row of Table IV
in the row labeled ‘w/o Tr. 0s’. We cannot do better than 9,
since that is the number of stored indices.

VI. PERFECT HARMONIC DECAY SEQUENCES

Definition 3. The beta vector (βm, . . . , β2, β1) of a harmonic
decay sequence specifies how many rows contain a specified
number of indices. Specifically, there are βi rows with i
indices.

The total number of indices, k, in a sequence satisfies k =∑m
j=1 jβj . Further, η(i) =

∑m
j=i+1 jβj by definition.

Definition 4. An array A has the perfect harmonic decay
property if, for all i, k

i+1 − η(i) = αi = 0, where η(i) is the
total number of indices in rows with more than i indices, for
i ≥ 0, and k is the total number of indices.

Example 4. Example 2 shows an array with the perfect
harmonic decay property. Table V shows the beta vectors of
arrays with the perfect harmonic decay property, where the
vector width m ranges from 2 up through 10. Note that k
takes on specific values depending on m, as shown in the
second column in Table V.

A. Calculation of βi as a Function of k

Table V has some notable characteristics. For example, the
values in the column labeled “β1” are exactly 6 times the

TABLE IV: Comparing the First-Fit-Decreasing Heuristic
With An Optimum Algorithm

Original F-F-Decr. (12) Optimum (11)
0***00 0***00 *0000*
**0000 **0000 **0000
0000 *0000* 00**00
00**00 00**00 0***00

Columns 0********00* *********00
w/o Tr. 0’s (12) (9)

corresponding values in the column labeled “β2”, except for
the first row. The values in the column labeled “β2” are exactly
3 times the corresponding values in the column labeled “β3”,
except for the first two rows, etc.. We can make the following
general statement about these relationships.

Theorem 2. Let βi be the number of rows with i indices in
a perfect harmonic decay sequence, where each row has m
elements. Let k be the total number of indices across all rows;
k =

∑m
j=1 βj . Then,

βi =
k

m2
, for i = m and, (1)

βi =
k

i2(i+ 1)
, for 1 ≤ i ≤ m− 1. (2)

Proof: Since this is a perfect harmonic decay sequence,

k

1
− η(0) = α0 ≥ 0,

k

2
− η(1) = α1 ≥ 0,

k

3
− η(2) = α2 ≥ 0,

...

k

µ+ 1
− η(µ) = αµ ≥ 0. (3)

apply with the inequalities replaced by equalities. (1) follows
directly from (3) by solving for βm in η(m − 1) = mβm =
k
m . Regarding (2), because this is a perfect harmonic decay
sequence, we have, for any i, such that 1 ≤ i ≤ m− 1,

k

i
=η(i−1)= iβi+(i+1)βi+1+(i+2)βi+2+. . .+mβm. (4)

But,

k

i+ 1
= η(i) = (i+ 1)βi+1 + (i+ 2)βi+2 + . . .+mβm,

and we can write (4) as

k

i
= iβi +

k

i+ 1
.

Solving for βi yields (2). �

TABLE VI: Relation Among Elements of Beta Vectors

βi (2) βi (1)
1 ≤ i ≤ m− 1 i = m

β1 = k
122

= k
2

= 6.00000× β2
k
12

(=1)
β2 = k

223
= k

12
= 3.00000× β3

k
22

(=4)
β3 = k

324
= k

36
= 2.22222× β4

k
32

(=9)
β4 = k

425
= k

80
= 1.87500× β5

k
42

(=144)
β5 = k

526
= k

150
= 1.68000× β6

k
52

(=100)
β6 = k

627
= k

252
= 1.55556× β7

k
62

(=3,600)
β7 = k

728
= k

392
= 1.46939× β8

k
72

(=11,025)
β8 = k

829
= k

576
= 1.40625× β9

k
82

(=78,400)
β9 = k

9210
= k

810
= 1.35802× β10

k
92

(=63,504)

The relations among various values of βi noted at the
beginning of this section can now be quantified. For example,
we noted that the values in the column labeled “β1” are exactly
6 times the corresponding values in the column labeled “β2”.
Table VI shows the expressions for β1 through β9 for the β’s
shown in Table V, as specified by (1) and (2). For example,
the observation that the values in the column labeled “β1” are
exactly 6 times the corresponding values in the column labeled
“β2” appears as the second line in Table VI.

B. Calculation of the Basic Perfect Harmonic Sequence

Up to this point, we have shown relations that must hold
between various βi values, as a function of k, the total number
of indices. It remains to show how βi depends on k.

Theorem 3. Let k be the number of indices in a perfect
harmonic decay sequence, where the row width is m. k is
the least common multiple of {12, 22, . . . ,m2}.

Proof: Because the sequence is a perfect harmonic sequence,
(1) and (2) hold. Since βi is an integer, k must be a multiple of
i2, for all i, such that 1 ≤ i ≤ m. Because k is a multiple of
i2, for 1 ≤ i ≤ m, k is a multiple of i+ 1 for 1 ≤ i ≤ m− 1.
Since the sequence is a perfect harmonic sequence, k is the
least common multiple of {12, 22, . . . ,m2}. �

The second column in Table V shows the
calculation of k for various m. This sequence,
(4, 36, 144, 3,600, 3,600, 176,400, 705,600, 6,350,400,
6,350,400), is Sloane’s integer sequence A051418 [7].

There are as many conditions as there are divisors of m.
Computationally, it is easier to check only the prime divisors
of k. If pm divides k, so does pm

′
, where m > m′. This

suggests that we need only check the largest multiple of prime
divisors. Therefore, we can restate Theorem 3 as follows.

Corollary 1. Let k be the total number of indices in a perfect
harmonic decay sequence, and let m be the maximum number
of indices in any row. Let 2, 3, . . ., and z be prime divisors
of k. Then,

n = [2ξ23ξ3 . . . zξz]2, (5)

where ξi is the largest k such that ik ≤ m.

Theorem 2 and either Theorem 3 or Corollary 1 completely
characterize the sequences with the perfect harmonic decay
property.

C. Density of Indices in Sequences That Have the Perfect
Harmonic Decay Property

From the rightmost column of Table V, it can be seen that
the density of indices decreases as m increases. These values
were computed in a straightforward computation, in which we
take the size of the array to be (β1 + β2 + . . .+ βm)m, since
β1 + β2 + . . .+ βm is the total number of rows with indices,
and where m is the array width just wide enough to contain
the longest column of all indices, a column of width m.

Theorem 4. The density δ of indices in a perfect harmonic
array approaches 0 as m→∞.

Proof: From the discussion above, the density of indices in a
perfect harmonic array is

δ =
(β11 + β22 + β33 + . . .+ βmm)

(β1 + β2 + β3 + . . .+ βm)m
=
N

D
. (6)

The numerator N is k, the total number of indices. From (1)
and (2), we can write the denominator as

D = (β1 + β2 + β3 + . . .+ βm)m =

mk

(
1

122
+

1

223
+

1

324
+ . . .+

1

(m− 1)2m
+

1

m2

)
.

From 1
i(i+1) = 1

i −
1
i+1 , we have

D = mk

(
1

12
+

1

22
+

1

32
+

1

42
+ . . .+

1

(m− 1)2
+

1

m2

)
−

mk

(
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+

1

5 · 6
+ . . .+

1

(m− 1)m

)
.

After some algebra and repeating 1
i(i+1) = 1

i −
1
i+1 , we have

D =mk

(
1+

1

22
+

1

32
+. . .+

1

(m− 1)2
+

1

m2

)
−mk.

The series is the Basel series, which was solved by Euler
in 1734[1]: specifically,

∑m
i=1

1
i2 →

π2

6 as m → ∞. After
cancellations and substitutions, we have δ = N/D → 0, as
m→∞. �

D. Fraction of Square Arrays That Have the Harmonic Decay
Property

Table VII shows the fraction of square arrays that have the
harmonic decay property. The first three rows of Table VII
were calculated by exhaustive enumeration. Specifically, all
square arrays were enumerated and tested. An array that has
the harmonic decay property contributes 1 to the count. In the
case of 2×2 (m = 2) arrays, there are a total of 16 arrays, and
nine or 0.5625 satisfied the criteria. In the case of m = 3 and
4, the fraction of arrays that have the harmonic decay property
is 0.2832 and 0.0506, respectively.

TABLE VII: Fraction of Square Arrays That Have the Har-
monic Decay Property

m # Inst. Max./Sample Sz. Fraction Avg Dens δ
Exhaustive Search
2 9 16 .562500 0.33333
3 145 512 .283203 0.35862
4 3313 65536 .050552 0.26954
Monte Carlo Simulation
2 56404 100000 .5640400 0.33297
3 28336 100000 .2833600 0.35895
4 5005 100000 .0500500 0.26897
5 2178 1000000 .0021780 0.20825
6 820 10000000 .0000820 0.20986
7 153 100000000 .0000015 0.19394
8 4 1000000000 .0000000 0.15625
9 0 1000000000 .0000000 -

Excessive computation time prevented the computation of
all 5×5 or larger arrays. The next eight entries were computed
in a Monte Carlo simulation, where m × m matrices are
randomly generated and tested to determine if they have
the harmonic decay property. The first three of these entries
correspond to arrays for which we can do an exhaustive
enumeration. This serves as a comparison between the Monte
Carlo simulation and exhaustive enumeration.

In Table V, the rightmost column shows the exact density
of indices for each perfect harmonic decay sequence. In the
case of Table V, the array size is (β1+β2+. . .+βm)m, where
m is the largest i such that βi is nonzero. This is the smallest
array that will fit around the specified perfect harmonic decay
sequence. The density is then computed as (β1 · 1 + β2 · 2 +
. . .+ βi · i+ . . .+ βmm)/((β1 + β2 + . . .+ βm)m). Table V
shows that the densities associated with the perfect harmonic
decay sequences are similar to those shown in Table VII. It
should be noted that each row in Table V represents exactly
one array, albeit a special one, namely the perfect harmonic
decay sequence that just satisfies the harmonic decay sequence
inequalities.

Tarjan and Yao [8] state “It is useful to reflect a bit on
the meaning of harmonic decay. If A has the harmonic decay
property, at least half the nonzeros in A must be in rows with
only a single index.” Note, from Table V, that, in the case of
perfect harmonic sequences, exactly half of the indices are in
rows with only a single index.

E. Matrix Representation of the Alpha Vector Values

The perfect harmonic sequence can be used as a method
for the direct calculation of the alpha vectors from the beta
vectors. This can be seen in Tables VIII and IX. Consider m =
4, whose perfect harmonic beta vector is (β4, β3, β2, β1) =
(9, 4, 12, 72). Table VIII shows the alpha vector calculation
to the left and the calculation of η(i) to the right. What this
shows is how a change in the beta vector affects the alpha
vector. For example, in Table VIII if β1 = 72 is increased by
1, then all of the elements of the alpha vector are increased,
thus ‘improving’ the harmonic decay property.

TABLE VIII: Calculation of the Alpha Vector and η(i)

αi η(i)
k
1
− η(0) = α0 72 · 1 + 12 · 2 + 4 · 3 + 9 · 4 = η(0) = 144

k
2
− η(1) = α1 12 · 2 + 4 · 3 + 9 · 4 = η(1) = 72

k
3
− η(2) = α2 4 · 3 + 9 · 4 = η(2) = 48

k
4
− η(3) = α3 9 · 4 = η(3) = 36

TABLE IX: Delta Calculation of Alpha Vectors

Elements of Change in
Beta Vector Alpha Vector
72 + ∆1 α0 → α0

α1 + 1
2
∆1 → α1

α2 + 1
3
∆1 → α2

α3 + 1
4
∆1 → α3

12 + ∆2 α0 → α0

α1 −∆2 → α1

α2 + 2
3
∆2 → α2

α3 + 1
2
∆2 → α3

4 + ∆3 α0 → α0

α1 − 3
2
∆3 → α1

α2 − 2∆3 → α2

α3 + 3
4
∆3 → α3

9 + ∆4 α0 → α0

α1 −∆4 → α1

α2 − 2 2
3
∆4 → α2

α3 − 3∆4 → α3

The data in Table IX can be represented in matrix form,
−→α =

−→
A
−→
∆ , where

−→α =


α0

α1

α2

α3

, −→A =


0 0 0 0
1
2 −1 − 3

2 −1
1
3

2
3 −2 −2 2

3
1
4

1
2

3
4 −3

, −→∆ =


∆1

∆2

∆3

∆4

. (7)

From the data, it can be seen that, when ∆1 is increased, then
all elements of the αi vector are increased. This is due to the
fact that a positive ∆1 value corresponds to an increase in β1,
the number of indices due to rows that have exactly one index.
This increases η1 and leaves all other ηi values unchanged.
Since it increases k, the total number of indices, it increases
all αi values, except α0. Thus, an increase in β1 increases the
margin by which a binary sequence has the harmonic decay
property.

The matrix representation shows quantitatively what is
intuitive. That is, when there are more rows with many indices,
then it is less likely that the two-dimensional array has the
harmonic decay property. Quantitatively, the larger β values
cause decreases in the α values, which decrease the α values,
making it less likely that the α values will be positive.

VII. WORST CASE ARRANGEMENTS

In this section, we consider worst case arrangements of
indices. These are arrangements in which it is impossible to
merge any two rows because, regardless of the relative shift
of each row to each other, there will always be at least one
column with two indices. Tarjan and Yao [8] show that, if
the indices are distributed according to the harmonic decay
property, the number of memory locations will be close to k,
the number of indices.

Fig. 3 shows an example 2 × 57 array. Here, indices are
shown as large dots, while ambient values are shown as small
dots. The two rows cannot be merged together. That is, when
any algorithm is applied to these two rows to form a shortest
sequence of memory locations to store the indices, the rows
must be contiguous; i.e. the maximum of 2·57 = 114 locations
is needed. There are 8 + 16 = 24 indices, for a density of
0.21. We now use another measure for sparseness besides the
harmonic decay property. More specifically,

Definition 5. The density of an m×p array is the total number
of indices divided by the total number of array elements, k

m·p .

57

8
2

16

Fig. 3: Array With Two Nonmergable Rows

Example 5. In the array shown in Fig. 3, the density is 24
114 '

0.21. However, a “stretched” version of Fig. 3 has a lower
density. In Fig. 3, the density of the first row is 8

57 , which is
approximately 1

8 . Indeed, if this row is extended in a natural
way, with an index occurring every eighth position, then the
density approaches 1

8 as row length increases. For the second
row, the density, in the limit, approaches 0. Thus, the density of
this 2×p array approaches 1

2 ·
1
8 = 1

16 ' 0.06, as p increases.

Example 6. The arrays shown in Fig. 3 can only be chosen
once. That is, if there is more than one copy of the first row
or more than one copy of the second row, the copies can be
merged with themselves. Fig. 4 shows a row that cannot be
merged with itself. Note that there can be more than one copy
of this row if the indices are all distinct.

56

1 14

14

14

Fig. 4: A Row That Is Nonmergable With Itself

In general, we can say

Theorem 5. There exists an m × p array consisting of m
nonmergable sequences whose density approaches 1

η , as p
increases, where η > 2 is some fixed (possibly large) integer.

Theorem 5 says that, for some (possibly very small) density,
we can find an m × p array such that all m rows are
nonmergable for any m. This is counter to the intuition that
low-density arrays are likely to have mergeable rows. Indeed,
this is counterintuitive to the result of Tarjan and Yao [8],
which says that, if the number of indices in rows of an
m×p array has the harmonic decay property, then the number
of memory locations is approximately the same as the total
number of indices.

VIII. CONCLUDING REMARKS

Index generation functions are multiple-valued functions [4]
in which the input variables are binary valued, and the output
variables are multiple-valued. While the row-shift method is
effective in the design of index generation functions when the
function is sparse, it fails in the case of functions that are less
sparse. [2] addresses the issue of when the row-shift method
is effective. It leaves open the question of whether some
variant of the row-shift method applies to all index generation
functions. In this paper, we show a row-shift method that
can be applied to all index generation functions regardless
of the degree of sparseness. It is shown in [8] that the first-fit-
decreasing heuristic produces ‘reasonably’ good compression
when the array has the harmonic decay property.

However, we show that the first-fit-decreasing heuristic
produces nonminimal arrays. We analyze the perfect harmonic
decay property, which is an extreme of the harmonic decay
property. We show that a vector

−→
∆ of delta values can be

used to specify a distance measure for sparseness, and gives
insight as to how arrays can be modified to have the harmonic
decay property. We show the existence of sparse arrays for
which absolutely no compression is possible by a row-shift
method.

ACKNOWLEDGMENT

This research is partly supported by a Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research. Three anonymous reviewers provided comments to
improve the paper.

REFERENCES

[1] R. Ayoub, “Euler and the zeta function,” Amer. Math. Monthly Vol. 81,
pp. 106786, 1974.

[2] J. T. Butler and T. Sasao, “Analysis of cyclic row-shift decompositions
for index generation functions,” The Workshop on Synthesis and Sys.
Integration of Mixed Info. Tech. (SASIMI-2018), March 26–27, 2018.

[3] S. Even, D. I. Lichtenstein, and Y. Shiloach, Remarks on Ziegler’s method
for matrix compression, Unpublished manuscript, 1977.

[4] T. Sasao, Memory-Based Logic Synthesis, Springer, New York, Dordrecht,
Heidelberg, London. 2011.

[5] T. Sasao, “Row-shift decompositions for index generation functions,”
Design, Automation and Test in Europe, (DATE-2012), March 12-16,
2012, Dresden, Germany, pp. 1585–1590.

[6] T. Sasao, “Cyclic row-shift decompositions for incompletely specified
index generation functions,” The 22nd International Workshop on Logic
Synthesis, (IWLS), June 7–8, 2013, Austin, TX.

[7] N. J. A. Sloane, https://oeis.org/A051418/internal.
[8] R. E. Tarjan and A. C.-C. Yao, “Storing a sparse table,” Comm. of the

ACM, Vol. 22, No. 11, November 1979, pp. 606–611.
[9] S. F. Ziegler, “Smaller faster table driven parser,” Unpublished

manuscript, Madison Academic Computing Center, University of Wis-
consin, Madison, Wisconsin, 1977.

