
On a Memory-Based Realization of Sparse
Multiple-Valued Functions

Tsutomu Sasao
Department of Computer Science, Meiji University,

Kawasaki, Kanagawa 214-8571, Japan

Abstract—This paper presents multi-valued (MV) functions,
which are generalizations of index generation functions and
switching functions. First, an efficient memory-based realization
of sparse MV functions, where the number of specified com-
binations is much smaller than the number of possible input
combinations, is presented. Then, a formula for the expected
number of variables to represent random sparse MV functions
is derived. Finally, the theoretical analysis is compared with the
experimental results.

Keywords-logic minimization; incompletely specified function;
statistical analysis; random function.

I. INTRODUCTION

One of the important tasks in information processing is to
partition the given data into classes.

The simplest case is to partition the data into two classes.
A partition of the set of binary vectors of n bits into two sets
can be represented by a binary logic function (or a switching
function):

f : {0, 1}n → {0, 1}.
Another case is a partition of the set of vectors into single

elements. A partition of a subset D of p-nary vectors of n
digits into k distinct elements can be represented by an index
generation function [7]:

f : D → {1, 2, . . . , k}.
In this paper, we introduce a multi-valued function (MV
function), which partitions a set D of p-nary vectors of n
digits into q disjoint sets:

f : D → {1, 2, . . . , q}.
Note that, in the case of an index generation function, |D| =

k = q, while in the case of an MV function, |D| = k > q,
where |D| denotes the number elements in D. Thus, an MV
function is a generalization of an index generation function,
and also a generalization of a binary logic function.

When |D| < pn, the function is incompletely specified (or
partially defined). When |D| � pn, the function is sparse.
Sparse functions of n variables can be often represented with
fewer variables than n.

In this paper, we present an efficient memory-based method
to realize sparse MV functions. Also, we derive a formula for
the expected number of variables to represent random sparse
MV functions.

TABLE 2.1
REGISTERED VECTOR TABLE.

Vector Index
x1 x2 x3 x4

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 0 1 1 1

The rest of the paper is organized as follows: Section II
defines the MV function; Section III considers the number of
variables to represent sparse MV functions; Section IV shows
efficient methods to implement sparse MV functions; Section
V derives the expected number of variables to represent
random sparse MV functions; Section VI shows experimental
results; Section VII surveys related works; and Section VIII
concludes the paper.

II. MV FUNCTIONS

In this part, we introduce MV functions.
Definition 2.1: Let D be a set of k distinct p-nary vectors

of n digits. That is, D ⊆ Pn, where P = {0, 1, . . . , p − 1},
and |D| = k. These vectors are registered vectors. Assume
that these vectors are partitioned into q disjoint subsets:
T1, T2, . . . , Tq , where T1∪T2∪. . .∪Tq = D and Ti∩Tj = φ for
(i �= j). For each subset Ti, assign a unique index from 1 to q.
A registered vector table shows the index of each registered
vector. An incompletely specified MV function is a mapping
D → Q, where Q = {1, 2, . . . , q}, and D �= Pn. It produces
the corresponding index i if the input matches a registered
vector in Ti. The number of registered vectors in D is called
the weight. The weight |D| = k is often much smaller than
pn, the total number of possible input combinations. In such
a case, the function is sparse. Note that p may be different
from q.

Example 2.1: Table 2.1 shows a registered vector table for
the MV function with n = 4, p = 2, q = 3, and weight k = 4.

III. NUMBER OF VARIABLES TO REPRESENT A SPARSE
MV FUNCTION

In this part, we show that a sparse MV function f can often
be represented with fewer variables than the original function,
if its don’t care values are properly replaced by index values.

Lemma 3.1: Assume that an MV function f is represented
by a decomposition chart [4]. If no column of the decomposi-

50

2018 IEEE 48th International Symposium on Multiple-Valued Logic

2378-2226/18/$31.00 ©2018 IEEE
DOI 10.1109/ISMVL.2018.00017



2

3

1

1

x1

x3

x4

x2

Fig. 3.1. 4-variable MV function.

tion chart has indices with different values, then the function
can be represented by only the column variables.

Example 3.1: Consider the decomposition chart in Fig. 3.1.
It shows the MV function in Table 2.1. x1 and x2 specify
columns, while x3 and x4 specify rows. Also, blank cells
denote don’t cares. Since all care values in each column are
the same, it is possible to represent the function with only the
column variables x1 and x2:

f = 1 · x1 ∨ 2 · x̄1x2 ∨ 3 · x̄1x̄2.

In this case, don’t care values in the column (x1, x2) = (1, 1)
are assigned to 1.

Thus, the minimization of the variables is to obtain a com-
pletely specified function of as few variables as possible,
that is compatible with the given sparse function.

As for an upper bound on the number of variables to
represent index generation functions, by an extensive computer
simulation using randomly generated functions, we have the
following:

Conjecture 3.1: [10] When the number of the variables n
is sufficiently large, most sparse index generation functions
with weight k (≥ 7) can be represented by 
2 logp(k + 1)−
logp 5.485� variables.

A lower bound on the number of variables to represent an
index generation function is given by:

Theorem 3.1: [9] To represent an index generation function
f with weight k, at least LB = 
logp(k + 1)� variables are
necessary.

IV. REALIZATION OF COMPLETELY SPECIFIED FUNCTIONS

Consider the index generation function of 6 variables shown
in Table 4.1. Note that only the outputs for 6 registered
vectors are specified. Table 4.1 can be interpreted in two

TABLE 4.1
REGISTERED VECTOR TABLE FOR EXAMPLE 4.1.

Inputs Index
x1 x2 x3 x4 x5 x6

1 0 0 0 0 0 1
0 1 1 1 1 0 2
0 0 1 0 0 1 3
1 0 1 1 1 1 4
0 1 0 0 1 0 5
0 1 0 0 0 0 6

different ways. The first interpretation is that for non-registered
vectors, the outputs are unspecified. In this case, it shows an
incompletely specified function.

The second interpretation is that for non-registered vectors,
the outputs are zero. In this case, it shows a completely
specified function f : {0, 1}6 → {0, 1, 2, . . . , 6}. Such a case
occurs quite often in practical applications.

For example, assume that you have a trouble with many
spam mails, and want to avoid them. In such a case, you can
use a white list that stores registered senders. You can accept
mails only from the sender in the white list. Note that the
number of entries in the white list is much smaller than that
of all possible addresses.1

In this part, we consider the case for the second interpre-
tation. That is, a completely specified function, where the
number of registered vectors is much smaller than the possible
combinations. In such a case, we can often reduce the number
of variables for the memory, and design an efficient memory-
based circuit.

In this paper, we use binary hardware to implement func-
tions, and assume that the cost of the circuit is proportional
to the total memory size, since the area for the memory is
dominant in the LSI chip.

A. Circuit for Index Generation Functions

X1

X2

Linear 
Circuit

m
Main 
Memory

AUX 
Memory

CMP
X2

AND

m

n-m

n-m

n-m

 )1(log2 += ks

s

Fig. 4.1. Index Generation Unit (IGU).

Definition 4.1: An index generation unit (IGU) [7] is
shown in Fig. 4.1. The linear circuit has n inputs and m
outputs, where m < n. It produces different outputs for
different registered vectors. It is used to reduce the size
of the main memory. Let X1 = (xi1 , xi2 , . . . , xim) and
X2 = (xim+1

, xim+2
, . . . , xin) be a partition of the input

variables X = (x1, x2, . . . , xn). The main memory has m
inputs and s = 
log2(k + 1)� outputs. The main memory
produces correct indices for registered vectors. However, it
may produce incorrect indices for non-registered vectors,
because the number of the input variables to the main memory
is reduced. To check whether the main memory produces
the correct index or not, we use the AUX memory. The
AUX memory has s = 
log2(k + 1)� inputs and (n − m)
outputs. It stores the X2 part of the registered vectors for

1IP addresses used in the internet are often represented with 128-bit
numbers. Even if the white list contains a million entries, only 2.94×10−33

of the possible combinations are specified.

51



each index. The comparator (CMP) checks if the X2 part
of the inputs are the same as the X2 part of the registered
vector. If they are the same, the main memory produces a
correct index. Otherwise, the main memory produces a wrong
index, and the input vector is non-registered. In this case,
the output AND gates produce 0, showing that the input
vector is non-registered. Thus, the IGU realizes a completely
specified function f : {0, 1}n → {0, 1, 2, . . . , k}. In this way,
the main memory can implement an incompletely specified
index generation function instead of a completely specified
one. When the output value of the comparator is 0, the output
of the circuit is 0, corresponding to a non-registered vector.
An index generation function can be realized as follows:

Algorithm 4.1: (Realization of an Index Generation Func-
tion)

1) Given a set of registered vectors. Partition the input
variables X into two (X1, X2), so that for any pair
of distinct registered vectors (A1, A2) and (B1, B2),
A1 �= B1 holds.

2) In the main memory, realize the index, where X1 denotes
the inputs to the main memory. For non-registered
vectors, realize 0.

3) In the AUX memory, realize the X2 part of the registered
vectors for each index.

4) Check if the input vector is a registered vector or not
by the comparator.

Example 4.1: Consider the index generation function in
Table 4.1.

Single LUT realization: A LUT requires 26 × 3 = 192
bits, because to represent 6 different output values, three bits
are necessary.
Realization using an IGU: Let X = (x1, x2, . . . , x6) be the
input variables. Let (X1, X2) be the partition of X , where
X1 = (x1, x3, x4) and X2 = (x2, x4, x5). In this case, the
linear circuit realizes the transformation:

y1 = x1; y2 = x3; y3 = x5.

Consider the function g in Table 4.2. In this case, for any
pair of distinct registered vectors, (A1, A2) and (B1, B2),
g(A1) �= g(B1) holds. Thus, the registered vectors in Table 4.1
can be distinguished with only three variables: (y1, y2, y3) =
(x1, x3, x5). Consider the realization with an index generation
unit (IGU) shown in Fig. 4.1. In this case, n = 6, m = 3,
k = 6, s = 3, n − m = 3, X1 = (x1, x3, x5), and
X2 = (x2, x4, x6).

The linear circuit realizes (y1, y2, y3). The main memory
realizes the function g in Table 4.2, where (w1, w2, w3)
denotes the outputs. The AUX memory realizes the function in
Table 4.3. It realizes (x2, x4, x6), the corresponding values of
X2 = (x2, x4, x6) for the input (w1, w2, w3). Note that with
the values for (y1, y2, y3), the values for (x1, x3, x5) can be
obtained as follows:

x1 = y1; x3 = y2; x5 = y3.

Thus, if the input values of (x2, x4, x6) are equal to the
output values of the second memory (x2, x4, x6), then the

input (x1, x2, . . . , x6) is a registered vector. Hence, the IGU
in Fig. 4.1 realizes the given function. In this case, the total
memory size in the IGU is 23 × 3 + 23 × 3 = 48 bits, which
is reduced to a quarter of the single LUT realization.

TABLE 4.2
FUNCTION g REALIZED BY MAIN MEMORY IN EXAMPLES 4.1 AND 4.2.

Inputs Outputs Index
y1 y2 y3 w1 w2 w3

1 0 0 0 0 1 1
0 1 1 0 1 0 2
0 1 0 0 1 1 3
1 1 1 1 0 0 4
0 0 1 1 0 1 5
0 0 0 1 1 0 6
1 0 1 0 0 0 −
1 1 0 0 0 0 −

TABLE 4.3
FUNCTION REALIZED BY AUX MEMORY IN EXAMPLE 4.1.

Inputs Outputs
w1 w2 w3 x2 x4 x6
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0

B. Circuit for MV Functions

Consider the 6-variables function shown in Table 4.4. It

TABLE 4.4
REGISTERED VECTOR TABLE FOR EXAMPLE 4.2.

Vector Index
x1 x2 x3 x4 x5 x6

1 0 0 0 0 0 1
0 1 1 1 1 0 1
0 0 1 0 0 1 2
1 0 1 1 1 1 2
0 1 0 0 1 0 3
0 1 0 0 0 0 3

is not an index generation function, but an MV function.
Unfortunately, an IGU in Fig. 4.1 cannot be used to implement
the MV function, since the same values are produced for two
different registered vectors. To implement an MV function, we
use the following:

Definition 4.2: The extended index generation unit
(EIGU) shown in Fig. 4.2 consists of a linear circuit, the
first memory (first memory), the second memory (second
memory), a comparator (CMP), and output AND gates.
The linear circuit produces m linear functions from n input
variables. It produces different outputs for different registered
vectors. The first memory has m inputs and produces the
temporary output with s = 
log2(k + 1)� bits. The second
memory has s inputs and produces (n−m) bits showing X2,
the part of the corresponding registered vector. In addition, it
also produces the corresponding output values for the function.
The comparator compares the outputs of the second memory
with X2. If they are the same, it produces 1. Otherwise,

52



Linear
Circuit

m
First 
Memory

X1
Second 
Memory

X2

n-m n-m

n-m
CMP

AND

2log ( 1)r q= +  2log ( 1)s k= +  

X2

m

Fig. 4.2. Extended Index Generation Unit (EIGU).

it produces 0. The AND gates produce the same values as
the second memory if the output of the comparator is 1.
If not, the AND gates produce zeros, which show that the
input vector does not match the registered vector. Since the
number of different outputs for the function is q, the number
of outputs from the second memory to the AND gates is
r = 
log2(q + 1)�. The additional +1 is needed to include
non registered vectors. Thus, the EIGU realizes a completely
specified function f : {0, 1}n → {0, 1, 2, . . . , q}.

The design algorithm for an MV function is similar to that
for an index generation function.

Example 4.2: Consider the MV function in Table 4.4.
Single LUT realization: A LUT requires 26 × 2 = 128 bits,
because to represent three different output values, two bits are
necessary.
Realization using an EIGU: Consider the partition of the
input variables. X1 = (x1, x3, x5), X2 = (x2, x4, x6). Let

y1 = x1; y2 = x2; y3 = x5.

Again, the registered vectors in Table 4.4 can be distinguished
with only three variables: (y1, y2, y3) = (x1, x3, x5). Consider
the realization of Table 4.4 with an extended index generation
unit (EIGU) shown in Fig. 4.3, where n = 6, m = 3, k = 6,
s = 3, n−m = 3, X1 = (x1, x3, x5), and X2 = (x2, x4, x6).
The first memory realizes the function in Table 4.2. The
second memory realizes the function in Table 4.5. It realizes
(x2, x4, x6), the corresponding values of (x2, x4, x6) for the
input (w1, w2, w3), and the output values of the function
(z2, z1). Note that with the values for (y1, y2, y3), the values
for X1 = (x1, x3, x5) can be obtained as follows:

x1 = y1; x3 = y2; x5 = y3.

Thus, if the input values of (x2, x4, x6) are equal to the
output values of the second memory (x2, x4, x6), then the
input (x1, x2, . . . , x6) is a registered vector. Hence, the EIGU
in Fig. 4.3 realizes the given function. In this case, the total
memory size in the EIGU is 23 × 3+23 × 5 = 64 bits, which
is reduced to a half of the single LUT realization2.

V. EXPECTED NUMBER OF VARIABLES TO REPRESENT
RANDOM SPARSE MV FUNCTIONS

In this part, we derive the expected number of variables to
represent random sparse MV functions.

2In this case, the first memory and the second memory can be merged.
Thus, the size of the memory can be reduced to 23 × 5 = 40 bits.

Linear 
Circuit

First 
Memory

x1

Second 
Memory

CMP

AND

x6

x2

x2 x4 x6

x2 x4 x6

z1

z2

z1

z2

y1

y2

y3

w1

w2

w3

Fig. 4.3. EIGU for Example 4.2.

TABLE 4.5
SECOND MEMORY IN EXAMPLE 4.2.

Vector Outputs
w1 w2 w3 x2 x4 x6 z2 z1
0 0 1 0 0 0 0 1
0 1 0 1 1 0 0 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 0
1 0 1 1 0 0 1 1
1 1 0 1 0 0 1 1

Assumption 5.1: A random sparse MV function f :
Pn → {d, 1, 2, . . . q}, where P = {0, 1, 2, . . . , p − 1}, and
d denotes a don’t care, satisfies the following: For any input
combination �a ∈ Pn, the probability such that f(�a) = i is
αi = α for any i ∈ Q = {1, 2, . . . , q}. We assume that α � 1.

Thus, the expected number of input combinations such that
f(�a) = i is u = pnα. Also, the expected total number of care
elements is qu.

Lemma 5.1: [5] Let f : D → Q, where D ⊂ Pn, P =
{0, 1, . . . , p− 1}, and Q = {1, 2, . . . , q}, be a random sparse
MV function. Then, the probability that a certain variable xi1

is redundant in f is given by

δ1(n, p, q, u) � γM
1 ,

where γ1 = q(α + β)p − (q − 1)βp, α = u
pn , β = 1 −

qα, M = pn−1, and u denotes the expected number of input
combinations such that f(�a) = i for i ∈ Q.

Lemma 5.2: [5] Let f : D → Q, where D ⊂ Pn, P =
{0, 1, . . . , p − 1} and Q = {1, 2, . . . , q}, be a random sparse
MV function. Then, the probability that f has a certain set of
r redundant variables {xi1 , xi2 , . . . , xir} is

δr(n, p, q, u) � γM
r ,

where γr = q(α + β)p
r − (q − 1)βpr

, α = u
pn , β = 1 −

qα, M = pn−r, and u denotes the expected number of input
combinations such that f(�a) = i for i ∈ Q.

Lemma 5.3: For an n variable random sparse MV function
f , let δr be the probability that a set of r variables is redundant.
Then, the probability that any group of r variables are not
redundant in f is

λr(n, p, q, u) � (1− δr)
(nr),

where u denotes the expected number of input combinations
such that f(�a) = i for i ∈ Q.

53



(Proof) The probability that {xi1 , xi2 , . . . , xir} is not re-
dundant is 1 − δr. The probability that all the groups of r

variables are not redundant in f is (1− δr)
(nr). �

From the above lemmas, we can derive the expected number
of variables necessary to represent random sparse MV func-
tions.

Theorem 5.1: In an n-variable random sparse MV function
f : D → Q, where D ⊂ Pn, P = {0, 1, . . . , p − 1}, and
Q = {1, 2, . . . , q}. Let δr(n, p, q, u) be the probability that a
set of r variables are redundant in a random sparse n variable
MV function f , where u denotes the expected number of
input combinations such that f(x) = i for i ∈ Q. Then,
Epc(n, p, q, u), the expected number of variables to represent
a random sparse n-variable MV function, is

Epc(n, p, q, u) �
n∑

r=1

(1− δr)
(nr),

where δr = γM
r , γr = q(α + β)p

r − (q − 1)βpr

, α = u
pn ,

β = 1− qα, and M = pn−r.
(Proof) Consider groups of at least one variable. Let λr be

the probability that any group of r variables are not redundant
in f . Then, the probability that there exists a representation
of f using a group of n − r variables is μr = 1 − λr. The
probability that f has a representation using exactly n − r
variables is μr − μr+1. Let λ0 = 0. Then

Epc(n, p, q, u)

�
n∑

i=0

(n− i)(μi − μi+1) =

n∑

i=0

(n− i)(λi+1 − λi)

=

n∑

i=0

(n− i)λi+1 −
n∑

i=0

(n− i)λi

=

n+1∑

j=1

(n− j + 1)λj −
n∑

i=0

(n− i)λi =

n∑

i=1

λi

By Lemma 5.3, we have the theorem. �

In this section, we used probability to estimate the number
of variables to represent random sparse functions. In the proofs
of the theorem and lemmas, we assumed independence of
certain events, which does not hold for functions with a few
variables, or for functions with small weights. In the next
section, we show that these approximations are reasonably
accurate for functions with a moderate number of variables.

VI. EXPERIMENTAL RESULTS

We used a computer program to find minimum sets of
variables for MV functions [5], [6].

To see the validity of Theorem 5.1, for each set of parame-
ters (n, p, q, u), we randomly generated 1000 sample functions
and obtained the minimum sets of variables to represent the
functions, where u denotes the exact number of elements in
each subset Ti. Table 6.1 shows the experimental results. In the
table, the first column shows n, the number of input variables;
the second column shows p; the third column shows q; the
fourth column shows u, the number of elements in each subset

TABLE 6.1
NUMBERS OF VARIABLES TO REPRESENT RANDOM SPARSE

MULTI-VALUED FUNCTIONS.

n p q u k = qu Theorem 5.1 Experiment
20 2 2 32 64 6.44 6.994
20 2 2 64 128 8.72 8.990
20 2 2 128 256 10.88 10.972
20 2 2 256 512 12.96 12.991
20 2 2 512 1024 14.99 15.143
20 2 20 4 80 8.00 8.836
20 2 20 8 160 10.02 10.588
20 2 20 16 320 12.20 12.606
20 2 20 32 640 14.65 14.792
20 2 20 64 1280 16.92 17.065
14 3 3 16 48 4.47 4.963
14 3 3 32 96 5.94 5.996
14 3 3 64 192 7.00 7.008
14 3 3 128 384 8.12 8.345
14 3 3 256 768 9.89 9.923
14 3 20 4 80 5.94 5.999
14 3 20 8 160 7.00 7.010
14 3 20 16 320 8.10 8.345
14 3 20 32 640 9.88 9.922
14 3 20 64 1280 11.00 11.078
14 3 20 128 2560 12.61 12.683
14 4 4 64 256 6.00 6.246
14 4 4 128 512 7.00 7.271
14 4 4 256 1024 8.00 8.419
14 4 4 512 2048 9.01 9.630
14 4 4 1024 4096 10.08 10.835
14 4 20 1 20 3.00 3.015
14 4 20 2 40 3.93 4.000
14 4 20 4 80 4.95 5.000
14 4 20 8 160 5.96 5.999
14 4 20 16 320 6.96 6.997
14 4 20 32 640 7.97 7.996
14 4 20 64 1280 8.98 9.008
14 4 20 128 2560 9.98 10.068

n: Number of the input variables
k: Weight of the function
Theorem 5.1: Expected number of variables Epc(n, p, q, u)
Experiment: Average of 1000 randomly generated functions.

Ti; the fifth column shows k, the weight of the function;
the sixth column shows Epc(n, p, q, u), the values derived
from Theorem 5.1; and the last column denotes experimental
results. For example, when (n, p, q, u) = (20, 2, 2, 32), an
estimate using Theorem 5.1 shows that Epc(n, p, q, u) = 6.44.
On the other hand, randomly generated functions required
6.994 variables, on the average. In this experiment, only the
reduction of original variables are considered.

Table 6.2 shows the results for binary input index generation
functions (i.e., p = 2 and u = 1) for different values of k = q.
When k is small, the discrepancy between estimated results
and experimental results are large3. However, when k is large,
Epc(n, p, q, u) estimates the experimental results fairly well.

Table 6.3 shows the results for binary input index generation
functions (i.e., p = 2 and u = 1) with weight k = 255
for different values of n. The necessary numbers of variables
decrease as n increases. This result is consistent with the
observation in [12].

3In Theorem 5.1, u denotes the expected number of input combinations
such that f(x) = i, while in the experiments, u denotes the exact number.

54



TABLE 6.2
NUMBERS OF VARIABLES TO REPRESENT RANDOM SPARSE INDEX

GENERATION FUNCTIONS.

n p q u k = qu Theorem 5.1 Experiment [7]
20 2 15 1 15 3.059 4.947
20 2 31 1 31 5.162 6.115
20 2 63 1 63 7.492 8.007
20 2 127 1 127 9.784 10.000
20 2 255 1 255 11.926 11.996
20 2 511 1 511 13.980 14.019
20 2 1023 1 1023 16.049 16.293
20 2 2047 1 2047 18.670 18.758
20 2 4095 1 4095 19.993 19.992

n: Number of the input variables
k: Weight of the function
Theorem 5.1: Expected number of variables Epc(n, p, q, u)
Experiment: Average of 1000 randomly generated functions. This data is taken
from Table 11.6 of [7].

TABLE 6.3
NUMBERS OF VARIABLES TO REPRESENT RANDOM SPARSE INDEX

GENERATION FUNCTIONS.

n p q u k = qu Theorem 5.1 Experiment
14 2 255 1 255 12.884 12.967
16 2 255 1 255 12.238 12.607
18 2 255 1 255 11.984 12.113
20 2 255 1 255 11.926 11.995
22 2 255 1 255 11.727 11.945
24 2 255 1 255 11.325 11.842
26 2 255 1 255 11.031 11.633
28 2 255 1 255 11.000 11.286
30 2 255 1 255 11.000 11.071

n: Number of the input variables
k: Weight of the function
Theorem 5.1: Expected number of variables Epc(n, p, q, u)
Experiment: Average of 1000 randomly generated functions.

VII. RELATED WORKS

In [2], Halatsis-Gaitanis, and in [3], Kambayashi considered
the reduction of variables in incompletely specified two-valued
logic functions. They presented algorithms to minimize the
number of variables.

In [5], Sasao showed a minimization problem for MV
functions. He obtained the expected number of variables to
represent sparse MV functions by both statistical analysis
and computer simulation. In [8], Sasao presented an index
generation unit (IGU) that can efficiently implement an index
generation function. A property of an incompletely specified
function is used to reduce the number of inputs to the main
memory. Also, he conjectured that to represent an index gener-
ation function with weight k, at most m = 2
log2(k+1)�−3
variables are sufficient for most functions. In [9], Sasao
presented an algorithm to find a good linear transformation
to reduce the number of variables. He also presented the
experimental results for random functions, IP address tables,
and list of English words.

In [13], Simovici et al. showed a method to find a linear
transformation using a difference matrix.

In [10], Sasao presented an algorithm to reduce the number
of variables for multiple-valued index generation functions by
a linear transformation. In [12], Sasao et al. showed a lower
bound on the number of variables to represent incompletely
specified random index generation functions.

In [1], Astola et al. showed that an upper bound on the num-

ber of variables to represent index generation function with
weight k is m = 
2 logp k� for p = 2, and m = 2
logp k�+1
for p ≥ 3, when linear transformations of input variables are
used.

VIII. CONCLUSION

In this paper, the author 1) Defined sparse MV functions,
and showed their efficient realizations using an EIGU: 2)De-
rived a formula for the expected number of variables to rep-
resent sparse MV functions with given parameters (n, p, q, u):
and 3) Generated many random MV functions, and compared
experimental results with the estimated values.

ACKNOWLEDGMENTS

This research is partly supported by the Japan Society for
the Promotion of Science (JSPS) Grant in Aid for Scientific
Research. Comments of reviewers and discussion with Prof.
Jon T. Butler improved the presentation.

REFERENCES

[1] J. Astola, P. Astola, R. Stankovic and I. Tabus, “An algebraic
approach to reducing the number of variables of incompletely
defined discrete functions,” International Symposium on Multiple-
Valued Logic, (ISMVL-2016), Sapporo, Japan, May 17-19, 2016,
pp. 107-112.

[2] C. Halatsis and N. Gaitanis, “Irredundant normal forms and
minimal dependence sets of a Boolean functions,” IEEE Trans.
on Computers, vol. C-27, no. 11, Nov. 1978, pp. 1064-1068.

[3] Y. Kambayashi, “Logic design of programmable logic arrays,”
IEEE Trans. on Computers, vol. C-28, no. 9, Sept. l979, pp. 609-
617.

[4] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[5] T. Sasao, “On the number of dependent variables for incom-
pletely specified multiple-valued functions,” International Sym-
posium on Multiple-Valued Logic (ISMVL-2000), Portland, OR,
USA, pp. 91-97, May, 2000.

[6] T. Sasao, “On the numbers of variables to represent sparse logic
functions,”International Conference on Computer Aided Design
(ICCAD-2008), pp. 45-51, November, 2008.

[7] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[8] T. Sasao,“Index generation functions: Recent developments,” (in-

vited paper) International Symposium on Multiple-Valued Logic
(ISMVL-2011), Tuusula, Finland, May 23-25, 2011.

[9] T. Sasao, “Linear decomposition of index generation func-
tions,” 17th Asia and South Pacific Design Automation Confer-
ence (ASPDAC-2012), Jan. 30–Feb. 2, 2012, Sydney, Australia,
pp. 781-788.

[10] T. Sasao, “Multiple-valued index generation functions: Reduc-
tion of variables by linear transformation,” Journal of Multiple-
Valued Logic and Soft Computing, Vol. 21, No. 5-6, pp. 541-559,
2013.

[11] T. Sasao, “Index generation functions: Tutorial,” Journal of
Multiple-Valued Logic and Soft Computing, Vol. 23, No. 3-4,
pp. 235-263, 2014.

[12] T. Sasao, Y. Urano and Y. Iguchi, “A lower bound on the number
of variables to represent incompletely specified index generation
functions,”International Symposium on Multiple-Valued Logic
(ISMVL-2014), Bremen, Germany, May 19-22, 2014, pp. 7-12.

[13] D. A. Simovici, M. Zimand, and D. Pletea, “Several remarks
on index generation functions,” International Symposium on
Multiple-Valued Logic, (ISMVL-2012), Victoria, Canada, May
2012, pp. 179-184.

55


