
An Exact Optimization Method Using ZDDs for
Linear Decomposition of

Index Generation Functions
Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper proposes an exact optimization method
using zero-suppressed binary decision diagrams (ZDDs) for
linear decomposition of index generation functions. The proposed
method searches for an exact optimum solution by recursively
dividing an index set of an index generation function. Since
ZDDs can represent sets compactly and uniquely, they can also
represent partitions of an index set compactly and uniquely. Thus,
the proposed method can reuse partial solutions (partitions of an
index set) efficiently by using ZDDs, and avoid redundant solution
search. Experimental results using benchmark index generation
functions show the effectiveness of ZDDs.

Index Terms—Index generation functions; linear decomposi-
tion; zero-suppressed binary decision diagrams; logic design;
exact optimization method.

I. INTRODUCTION

Index generation functions [6], [7] are logical models of
index searches. Since index searches are widely used as a
basic operation in many applications, such as detection of
computer viruses and packet classification, fast hardware for
index generation functions has been required. In addition
to processing speed, an ability for quick updating of index
generation functions is also important particularly in these
network applications, because virus patterns and rules for
classification are frequently updated. Thus, there is merit to
a memory-based hardware design.

An efficient memory-based hardware design method for in-
dex generation functions, one using linear decomposition [1],
[5] has been proposed [9]. In this design method, an index
generation function f (x1,x2, . . . ,xn) is decomposed into two
parts: L and G, as shown in Fig. 1. The first part L realizes

Linear functions General function

q
L G

x

f

1

x2

xn

y1

y2

yp

Fig. 1. Linear decomposition of an index generation function [9].

linear functions yi (i = 1,2, . . . , p) in a linear decomposition
of f . L is realized by a programmable architecture [9] with
EXOR gates, registers, and multiplexers. The second one G
realizes a remaining function (general function) in a linear
decomposition of f . G is realized by a (2p×q)-bit memory,
where p is the number of linear functions, and q is the number
of bits needed to represent function values of f .

Since memory size of this hardware strongly depends on
the number of linear functions, p, minimization of p is indis-
pensable to obtain a practical implementation. Thus, various
minimization methods have been proposed [3], [4], [8], [9],
[11], [12], [13], [14]. Most of them are heuristic methods,
and as far as we know, only a few exact minimization meth-
ods [4], [13], [14] have been proposed. However, devising an
efficient exact minimization method is not only academically
but also practically significant, because it becomes a basis for
evaluating the quality of heuristic methods.

The exact minimization methods proposed in [13], [14] are
based on a SAT solver, and solve the linear decomposition
problem by reducing it to a SAT problem. Thus, they have
little room for improvement unless a SAT solver is improved.
On the other hand, the method proposed in [4] is an emerging
dedicated method for the linear decomposition problem, and
thus, it still has enough room for improvement. Hence, in this
paper, we focus on improvement of the dedicated method, and
propose an exact optimization method for linear decomposi-
tion of index generation functions.

The proposed method uses zero-suppressed binary decision
diagrams (ZDDs) to represent partial solutions of the problem
compactly and uniquely. By using ZDDs, the proposed method
can reuse partial solutions efficiently to avoid redundant solu-
tion search that the existing method [4] does not avoid.

The rest of this paper is organized as follows: Section II
defines index generation functions and linear decomposition.
Section III formulates the minimization problem for the num-
ber of linear functions, provides a brief overview of the
existing exact minimization method [4], and proposes an
exact minimization method using ZDDs. Section IV shows
experimental results using some benchmark index generation
functions, and Section V concludes the paper.

144

2018 IEEE 48th International Symposium on Multiple-Valued Logic

2378-2226/18/$31.00 ©2018 IEEE
DOI 10.1109/ISMVL.2018.00033

TABLE I
EXAMPLE OF INDEX GENERATION FUNCTION [4].

Registered vectors indices
x1 x2 x3 x4 f
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 1 0 1 4

II. PRELIMINARIES

We briefly define index generation functions [6], [7] and
their linear decompositions [1], [5], [9].

Definition 1: An incompletely specified index gen-
eration function, or simply index generation function,
f (x1,x2, . . . ,xn) is a multi-valued function, where k assign-
ments of values to binary variables x1,x2, . . . ,xn map to
K = {1,2, . . . ,k}. That is, the variables of f are binary-valued,
while f is k-valued. Further, there is a one-to-one relationship
between the k assignments of values to x1,x2, . . . ,xn and K.
Other assignments are left unspecified. The k assignments of
values to x1,x2, . . . ,xn are called the set of registered vectors.
K is called the set of indices. k = |K| is called the weight of
the index generation function f .

Example 1: Table I shows a 4-variable index generation
function with weight four. Note that, in this function, input
values other than 0001, 0010, 0100, and 1101 are NOT
assigned to any function values.

Definition 2: Let K = {1,2, . . . ,k} be a set of indices of an
index generation function. If K = S1∪S2∪ . . .∪Su, each Si �= /0,
and Si∩S j = /0 (i �= j), then P = {S1,S2, . . . ,Su} is a partition
of the set of indices K. When all the subsets Si are singletons
(i.e., |Si|= 1), |P |= |K|= k.

An arbitrary n-variable index generation function with
weight k can be realized by a (2n× q)-bit memory, where
q = �log2(k + 1)�. To reduce the memory size, linear decom-
position is effective [9].

Definition 3: Linear decomposition of an index generation
function f (x1,x2, . . . ,xn) is a representation of f using a
general function g(y1,y2, . . . ,yp) and linear functions yi:

yi(x1,x2, . . . ,xn) = ai1x1⊕ai2x2⊕ . . .⊕ainxn

(i = 1,2, . . . , p),

where ai j ∈ {0,1} (j = 1,2, . . . ,n), and, for all registered
vectors of the index generation function, the following holds:

f (x1,x2, . . . ,xn) = g(y1,y2, . . . ,yp).

Each yi is called a compound variable. For each yi, ∑n
j=1 ai j

is called a compound degree of yi, denoted by deg(yi), where
ai j is viewed as an integer, and ∑ as an integer sum.

Definition 4: An inverse function of a general function z =
g(y1,y2, . . . ,yp) in a linear decomposition is a mapping from
K = {1,2, . . . ,k} to a set of p-bit vectors {0,1}p, denoted by
g−1(z). In this inverse function g−1(z), a mapping obtained by
focusing only on the i-th bit of the p-bit vectors: K → {0,1}

TABLE II
GENERAL FUNCTIONS g1 AND g2 IN LINEAR DECOMPOSITION OF f [4].

y1 y2 g1 g2
0 0 1 2
0 1 2 1
1 0 3 3
1 1 4 4

is called an inverse function to a compound variable yi,
denoted by (g−1)i(z).

Definition 5: Let ON(yi) = {z | z ∈ K,(g−1)i(z) = 1},
where K = {1,2, . . . ,k} and (g−1)i(z) is an inverse function
of g(y1,y2, . . . ,yn) to yi. |ON(yi)| is called the cardinality of
yi or informally the number of 1s included in yi.

Example 2: The index generation function f in Example 1
can be represented by y1 = x2, y2 = x1 ⊕ x3, and g1(y1,y2)
shown in Table II. In this case, deg(y1) = 1 and deg(y2) = 2,
respectively. f can be also represented by y1 = x2, y2 = x4,
and g2(y1,y2) in the same table. In this case, both deg(y1)
and deg(y2) are 1. In either case, f can be realized by the
architecture in Fig. 1 with a (22×3)-bit memory.

For g2(y1,y2) in Table II, its inverse functions to y1

and y2 are (g−1
2)1(z) and (g−1

2)2(z), respectively. We have
(g−1

2)1(2) = 0, (g−1
2)1(1) = 0, (g−1

2)1(3) = 1, and (g−1
2)1(4) =

1. Similarly, (g−1
2)2(2) = 0, (g−1

2)2(1) = 1, (g−1
2)2(3) = 0, and

(g−1
2)2(4) = 1. The cardinalities of both y1 and y2 are 2.
In this way, by using linear decomposition, memory size

needed to realize an index generation function can be reduced
significantly. But, to realize a compound variable with com-
pound degree d, (d − 1) 2-input EXOR gates are required.
Thus, a lower compound degree is desirable when the memory
size is equal.

III. OPTIMIZATION OF LINEAR DECOMPOSITION

This section formulates the minimization problem of the
number of linear functions, and shows exact minimization
methods to solve the problem.

A. Formulation of Minimization Problem

Since the architecture in Fig. 1 realizes an index generation
function with EXOR gates, registers, multiplexers, and a (2p×
q)-bit memory, to obtain an optimum realization of an index
generation function, we have to solve the following problem:

Problem 1: Given an index generation function f and an
integer t, find a linear decomposition of f such that the number
of linear functions p is minimum, and compound degrees are
at most t.

The constraint on compound degrees t is given to constrain
not only solution space, but also delay and area of the circuit
L realizing the linear functions.

Example 3: For linear decompositions of f in Example 2,
the decomposition with y1 = x2, y2 = x4, and g2(y1,y2) is
optimum when t = 1.

145

y1

y2

1, 2, 3, 4
Set of indices

y2

3, 4

3 4

1, 2

y = 11y = 01

2 1

y = 02y = 02 y = 12 y = 12

Fig. 2. Binary decision tree for g2 of Table II.

Algorithm 1: Overview of the existing method [4]
Input: an index generation function with weight k and
an upper bound t on compound degrees
Output: a set of compound variables and its size hmin

Let P = {K},h = 0, and iterate the following recursively.
min search(P ,h) {

if (|P |= k) { update solution(h); return; }
if (bound condition(P ,h) is satisfied) return;
branch(P , t, h);

}

B. Existing Method Based on Partition of Indices

To provide a basis of comparison between the proposed
method and the existing one [4], we give a brief review below.

Problem 1 can be considered as a problem of minimizing
the height of a binary decision tree constructed by compound
variables [3].

Example 4: Fig. 2 shows a binary decision tree of the
smallest height that divides the set of indices into singletons
by compound variables y1 and y2. This corresponds to g2 in
Table II.

The existing method finds a binary decision tree with the
smallest height by a branch and bound algorithm. It constructs
binary decision trees in a top-down manner while dividing
a given set of indices recursively by selecting a compound
variable one by one, and finds the best one by comparing
heights of the trees. Algorithm 1 shows the overview of the
existing method.

Algorithm 1 searches for a solution recursively while con-
structing a binary decision tree with height h. When |P | = k
(i.e., the set of indices is divided into singletons), a solution
(a set of h compound variables) is obtained. The procedure
update solution() compares the obtained solution with the
current solution, and updates the current solution if the ob-
tained one is better. The procedure branch() explores the
solution space by selecting a compound variable using two

cost functions proposed for the heuristic method [3]:

cost1(P ,yi) =

√√√√ ∑
S∈P

(|S|
2
−|S∩ON(yi)|

)2

and

cost2(P ,yi) = max
S∈P

{max{|S∩ON(yi)|, |S\ON(yi)|}} ,

where P is a partition of a set of indices with already selected
compound variables. The procedure bound condition() detects
an ineffective solution using the lower bound discussed below
in Theorem 1, and prunes it.

Theorem 1: [4] Let m be the number of indices in a set, and
c be the number of 1s in compound variables. When c < m

2 ,
at least

lower(m,c) =
⌊m

c

⌋
+ �log2(c)�− 1

compound variables are needed to divide the set into m
singletons.

C. Proposed Improvement Method

Although the existing method [4] is promising, it can be
improved further. To search for the optimum solution more
efficiently, we propose two improvements described in the
following subsections.

1) Improvement Using ZDDs: Before describing an im-
provement using ZDDs, we briefly define ZDDs.

Definition 6: A zero-suppressed binary decision diagram
(ZDD) [2] is a rooted directed acyclic graph (DAG) repre-
senting a logic function. It consists of two terminal nodes
representing function values 0 and 1, and nonterminal nodes
representing input variables. Each nonterminal node has two
outgoing edges, 0-edge and 1-edge, that correspond to the
values of the input variables. Neither terminal node has
outgoing edges.

A ZDD is obtained by repeatedly applying the Shannon
expansion f = xi f0∨xi f1 to a logic function, where f0 = f (0→
xi), and f1 = f (1 → xi), and by applying the following two
reduction rules:

1) Coalesce equivalent sub-graphs.
2) Delete nonterminal nodes whose 1-edge points to the

terminal node representing 0, and redirect edges that
point to the deleted node, to the node, to which the
0-edge of the deleted node has pointed.

As is well known, ZDDs can represent sets of combinations
compactly and uniquely [2]. A partition of an index set
P = {S1,S2, . . . ,Su} can be also represented compactly and
uniquely using a ZDD, as shown in the example below.

Example 5: Let an index set be K = {1,2,3,4,5,6}, and
a partition of K be P = {{1,3,6},{2,5},{4}}. Fig. 3 shows
a ZDD for P . In Fig. 3, dashed lines and solid lines denote
0-edges and 1-edges, respectively. The number of nonterminal
nodes is 6.

Theorem 2: Let an index set be K = {1,2, . . . ,k}. For any
partition P of K, the number of nonterminal nodes in a ZDD
for P is k, regardless of the variable order.

146

0

P

1

1

2

3

4

5

6

Fig. 3. ZDD for P = {{1,3,6},{2,5},{4}}.

Proof: Let a 1-path in a ZDD be a sequence of edges
and nodes leading from the root node to the terminal node
representing 1. A 1-path in a ZDD for P represents a subset
Si in P , and a pair of a 1-edge and its nonterminal node on the
1-path represents an index in the subset Si. Thus, the number of
1-paths is exactly |P |, and the number of pairs of a 1-edge and
its nonterminal node is exactly |Si|. Since from Definition 2,
Si ∩ S j = /0 (∀Si,S j ∈ P), more than one 1-path do not share
a pair of a 1-edge and its nonterminal node. Thus, the total
number of pairs of a 1-edge and its nonterminal node on all
1-paths is exactly k, regardless of the order of the pairs.

If the number of pairs of a 1-edge and its nonterminal node
in a ZDD were larger than k, the ZDD would represent a subset
of indices that does not exist in P . That is, when all 1-paths
are removed from a ZDD for P , remaining edges are only
0-edges due to the zero-suppressed reduction rule for ZDDs.
Therefore, the number of nonterminal nodes in a ZDD for P
is k, regardless of its variable order.

As described in Section III-B, the method based on a
partition of indices searches for the optimum solution while
dividing a given index set repeatedly. Thus, the same partition
of indices tends to repeatedly appear during solution search.
However, once the minimum number of compound variables
needed to divide a partition of indices into singletons is
found, we do not need to search for the minimum number
of compound variables for the same partition again, and
the obtained subsolution can be reused to prune the search
space. The question is how to represent partitions of indices
compactly and uniquely. To answer this question, we use
ZDDs to represent partitions of indices.

Algorithm 2 shows the overview of the improved method
using ZDDs. A ZDD is constructed for each partition using
Change and Union operations that are basic operations in a
ZDD package [2]. Then, the ZDD is checked to determine
whether the current subsolution has already been obtained.

Algorithm 2: Overview of the improved method using ZDDs
Input: an index generation function with weight k and
an upper bound t on compound degrees
Output: a set of compound variables and its size hmin

Let P = {K},h = 0, and iterate the following recursively.
min search(P ,h) {

if (|P |= k) { update solution(h); return; }
Construct a ZDD for P ;
Search for ZDD subsolution in ZDD History();
if ((ZDD subsolution is found) and

(its min lower + h≥ hmin)) return;
if (bound condition(P ,h) is satisfied) return;
min lower = branch(P , t, h);
Add the ZDD and min lower to ZDD History;

}

This checking is made by searching for the equivalent one in
the history of ZDDs. Such a search (equivalence checking)
is what ZDDs can do best; it is done in O(1) time. If the
subsolution has already been obtained, and it does not improve
the current solution, then the solution search is pruned. On the
other hand, when any subsolution has not been obtained yet,
the solution search is performed, and after that, the ZDD is
stored to the history with the obtained subsolution. In this way,
redundant solution search is efficiently pruned using ZDDs.

2) Improvement by Commutative Law of EXOR: The pro-
cedure branch() in the existing method selects the same
compound variable repeatedly since the commutative law of
EXOR operations is not considered when a compound variable
is produced. From Definition 3, compound variables

y(x1,x2, . . . ,xn) = a1x1⊕a2x2⊕ . . .⊕anxn

ai ∈ {0,1} (i = 1,2, . . . ,n)

depend not on permutations of xi but on combinations of xi

due to the commutative law of EXOR operations. To produce
compound variables by combinations of xi, we use a table
indicating whether xi has been already compounded for each
compound variable (i.e. in each branch).

The size of each table is n, and at most n compound
variables are produced in a search. Thus, additional memory
size for this improvement is O(n2). Since this is almost the
same memory size needed to store registered vectors, this
improvement is scalable. It reduces search space significantly,
as will be shown in experimental results.

IV. EXPERIMENTAL RESULTS

The proposed exact minimization methods are implemented
in the C language, and run on the following computer environ-
ment: CPU: Intel Core2 Quad Q6600 2.4GHz, memory: 4GB,
OS: CentOS 5.7 Linux, and C-compiler: gcc -O2 (version
4.1.2).

A. On Reduction of Search Space

To evaluate the effectiveness of the proposed improvement
methods, we compare search space size for the following three
methods:

147

TABLE III
COMPARISON OF METHODS IN TERMS OF SEARCH SPACE.

Benchmark Compound hmin Existing Comm. ZDD
functions degrees [4] law

1-out-of-10 t = 1 9 9 9 9
t = 2 6 1,975,364 135,224 5,310
t = 3 5 151,773 4,368 2,268
t = 4 4 4 4 4
t = 5 4 4 4 4

1-out-of-12 t = 1 11 11 11 11
t = 4 5 † 35,149 6,274

1-out-of-16 t = 1 15 15 15 15
t = 5 5 5 5 5

2-out-of-16 t = 4 8 8 8 8
t = 5 8 9 9 9

3-out-of-16 t = 4 10 10 10 10
† Computation was terminated when it exceeded one hour.

TABLE IV
TOTAL NUMBER OF NONTERMINAL NODES IN ZDDS.

Benchmark Compound k No. of No. of
functions degrees ZDDs nodes

1-out-of-10 t = 1 10 9 59
t = 2 10 5,310 11,564
t = 3 10 2,268 4,765
t = 4 10 4 36
t = 5 10 4 38

1-out-of-12 t = 1 12 11 84
t = 4 12 6,274 13,451

1-out-of-16 t = 1 16 15 144
t = 5 16 5 67

2-out-of-16 t = 4 120 8 939
t = 5 120 8 1,069

3-out-of-16 t = 4 560 10 5,595

1) Existing [4]: the existing method [4].
2) Comm. law: the method to which only the improvement

proposed in Section III-C2 is applied.
3) ZDD: the method to which both of the improvements

proposed in Section III-C1 and Section III-C2 are ap-
plied.

Table III shows the number of times that the procedure
branch() is invoked in each method for some benchmark index
generation functions shown in [9]. The bold values in Table III
show where the method “ZDD” significantly outperforms the
other two methods.

As shown in Table III, the search space size of the methods
using the commutative law of EXOR and ZDDs is a few orders
of magnitude smaller than the search space of the existing
one. In particular, for “1-out-of-12” with t = 4, the Existing
method could not obtain the optimum solution in a reasonable
computation time because the search space was too large.
However, the proposed improvement methods can obtain the
optimum solution in a short computation time by avoiding
redundant solution searching. From these results, we can see
that the proposed improvement methods have a significant
effect on reduction of the redundant solution searching.

TABLE V
COMPUTATION TIME OF METHODS (IN SECONDS).

Benchmark Compound Existing Comm. ZDD
functions degrees [4] law

1-out-of-10 t = 1 *<0.01 *<0.01 *<0.01
t = 2 216.62 8.56 0.84
t = 3 127.23 0.78 1.12
t = 4 0.02 *<0.01 *<0.01
t = 5 0.14 *<0.01 *<0.01

1-out-of-12 t = 1 *<0.01 *<0.01 *<0.01
t = 4 † 30.38 18.34

1-out-of-16 t = 1 *<0.01 *<0.01 *<0.01
t = 5 3.68 0.04 0.18

2-out-of-16 t = 4 2.76 0.14 5.24
t = 5 36.32 0.45 14.13

3-out-of-16 t = 4 16.17 0.86 207.65
* Time is less than 0.01 sec..
† Computation was terminated when it exceeded one hour.

B. On Number of Nonterminal Nodes

Table IV shows the total number of nonterminal nodes
in ZDDs needed to represent all partitions of an index set
that appeared during a search for solutions. These results
correspond to space (memory size) complexity of the proposed
method. Note that this number does not include unused nodes
after ZDD operations (that is, Table IV shows the number of
nodes after garbage collection is applied).

Since a ZDD is constructed every time branch() is invoked,
the number of ZDDs is equal to the search space shown in
Table III. As shown in Theorem 2, the number of nonterminal
nodes in each ZDD is equal to the number of indices k, and
thus, the number of nonterminal nodes is

(the number of ZDDs)× k, (1)

unless nonterminal nodes are shared among ZDDs. However,
nonterminal nodes are typically shared among ZDDs. Thus,
the actual number of nonterminal nodes is much smaller than
(1). This means that not only one partition but also a number
of partitions are represented efficiently using ZDDs.

C. On Computation Time

Although the proposed improvements reduce search space
significantly, as shown in Table III, computational overhead
can negate such improvements. To show that the overhead
is small enough and reduction of search space leads to
shortening of computation time, we compare computation time
of the three methods shown in Section IV-A. Table V shows
computation time, in seconds, of the three methods for the
same benchmark functions.

Overheads of ZDD operations are larger than the improved
overheads achieved using the commutative law. Thus, for “1-
out-of-10” with t = 3, the method using ZDDs is slower than
the method using only the commutative law. This is because,
for this function, search space is not much reduced using
ZDDs. When search space is not reduced at all, such as “2-
out-of-16” with t = 4 and “3-out-of-16” with t = 4, the method
using ZDDs is slower than the Existing one. For “3-out-of-16”
with t = 4, the method using ZDDs is much slower than the

148

Existing one because, for this function, many unused nodes
occur after ZDD operations, such as Change and Union, and
garbage collection is applied repeatedly.

However, overheads of ZDD operations are not so large that
the benefit of reduction in search space is canceled out, due to
various techniques for ZDD operations, such as unique table
and computed table. Thus, when search space size is reduced
sufficiently, the method using ZDDs is the fastest. In particular,
for “1-out-of-12” with t = 4, the method using ZDDs quickly
finds the optimum solution. The Existing method was not able
to find the optimum solution for this function because the
search space was too large. Therefore, the proposed method
using ZDDs is promising for the problem of finding optimum
solutions of large index generation functions.

V. CONCLUSION AND COMMENTS

This paper proposes a method using ZDDs to exactly
minimize the number of compound variables for linear decom-
position of index generation functions. Since ZDDs represent
partial solutions of the problem compactly and uniquely,
the proposed method can avoid redundant solution search
efficiently by reusing partial solutions. In addition, by taking
advantage of techniques for ZDD operations, the proposed
method can reduce the search space size of solutions sig-
nificantly with small overhead, and find optimum solutions
quickly. Experimental results show that the proposed method
can find the optimum solution for a benchmark function that
the existing method could not find.

The proposed method uses ZDDs to prune a redundant
search space based on a branch and bound method. However,
we think it is possible to devise a dynamic programming based
method, since the number of constructed ZDDs during solution
search is not large as shown in Table IV. We will study such
a method as our future work.

ACKNOWLEDGMENTS

This research is partly supported by the JSPS KAKENHI
Grant (C), No.16K00079, and Hiroshima City University
Grant for Academic Research (General Studies), 2018. The
reviewers’ comments were helpful in improving the paper.

REFERENCES

[1] R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, Chapter V, pp. 121–228, 1971.

[2] S. Minato, “Zero-suppressed BDDs for set manipulation in combinato-
rial problems,” Proc. 30th Design Automation Conference, pp. 272–277,
1993.

[3] S. Nagayama, T. Sasao, and J. T. Butler, “An efficient heuristic for
linear decomposition of index generation functions,” 46th International
Symposium on Multiple-Valued Logic, pp. 96–101, May, 2016.

[4] S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
algorithm for linear decomposition of index generation functions,” 47th
International Symposium on Multiple-Valued Logic, pp. 161–166, May,
2017.

[5] E. I. Nechiporuk, “On the synthesis of networks using linear transfor-
mations of variables,” Dokl, AN SSSR, Vol. 123, No. 4, pp. 610–612,
Dec., 1958 (in Russian).

[6] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[7] T. Sasao, “Index generation functions: recent developments (invited
paper),” 41st International Symposium on Multiple-Valued Logic, pp. 1–
9, May 2011.

[8] T. Sasao, “Linear transformations for variable reduction,” Reed-Muller
Workshop 2011, May 2011.

[9] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference, pp. 781–788,
Jan. 2012.

[10] T. Sasao, Y. Urano, and Y. Iguchi, “A lower bound on the number of
variables to represent incompletely specified index generation functions,”
44th International Symposium on Multiple-Valued Logic, pp. 7–12, May
2014.

[11] T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear decom-
positions for incompletely specified index generation functions using
difference matrix,” IEICE Transactions on Fundamentals, Vol. E97-A,
No. 12, pp. 2427–2433, Dec. 2014.

[12] T. Sasao, “A reduction method for the number of variables to represent
index generation functions: s-min method,” 45th International Sympo-
sium on Multiple-Valued Logic, pp. 164–169, May 2015.

[13] T. Sasao, I. Fumishi, and Y. Iguchi, “A method to minimize variables for
incompletely specified index generation functions using a SAT solver,”
International Workshop on Logic and Synthesis, pp. 161–167, June 2015.

[14] T. Sasao, I. Fumishi, and Y. Iguchi, “On an exact minimization of
variables for incompletely specified index generation functions using
SAT,” Note on Multiple-Valued Logic in Japan, Vol.38, No.3, pp. 1–8,
Sept. 2015 (in Japanese).

149

