
An Exact Method to Enumerate Decomposition
Charts for Index Generation Functions

Jon T. Butler
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943–5121 U.S.A.

Email: jon butler@msn.com

Tsutomu Sasao
Department of Computer Science and Electronics

Meiji University

Kawasaki-City, Kanagawa 214-8571 JAPAN

Email: sasao@cs.meiji.ac.jp

Abstract—In a previous paper, the balls-in-bins model was
shown to efficiently enumerate random functions as a means
to estimate the size of programmable architecture for the circuit
needed to realize an index generation function. Because there
are so many balls-in-bins instances, it is typically not possible
to enumerate all. So, a Monte Carlo simulation is performed
instead. In this paper, we show how to improve the balls-in-bins
estimates by using a weighted approach. Additionally, we solve
the the following - Problem: Derive an exact enumeration of all
decomposition charts for the same analysis as in the previous
paper. Our solution is based on the enumeration of integer
partitions.

Index Terms—index generation functions, decomposition chart,
logic design, exact enumeration, partitions of integers.

I. INTRODUCTION

Our goal is to understand the extent to which minimiza-

tion techniques are effective in producing minimal and near-

minimal circuits to realize index generation functions by

the function decomposition technique [5]. Index generation

functions are useful in access control lists, virus detection,

packet classification, and in general pattern matching appli-

cations. While software can be used in these applications,

hardware implementations of index generation functions are

better, because they can perform at much higher speeds.

Because memory is cheap, it can store much data - on the

order of millions of words. A naı̈ve use of typically many

comparators could implement these applications. However, a

memory-based system has been proposed by Sasao [4] that

uses few comparators and a minimum amount of memory. It is

fast and consumes relatively little power. Since it is memory-

based, it can be easily modified to adapt the stored data to

newly acquired data.

II. INDEX GENERATION FUNCTIONS

Table I shows an example index generation function. Here,

there are four variables, x1, x2, x3, and x4 and four indices, 1,

2, 3, and 4. If this represents a virus detection system, the four

assignments of values to x1, x2, x3, and x4 represent potential

viruses, and their corresponding indices represent addresses at

which those viruses are processed. The assignments shown are

called registered vectors. In general, there are k indices, and

these have values {1, 2, . . . , k}, one for each assignment. All

assignments that do not correspond to an index map to 0 and

TABLE I: Example of an index generation function

x1 x2 x3 x4 f
0 0 0 1 4
0 1 1 1 2
1 0 1 0 3
1 1 0 0 1

are omitted from Table I. The assignments of values to x1, x2,

x3, and x4, for these cases, are considered not to be viruses.

III. DECOMPOSITION

Functional decomposition [1], [2] is a process in which

a given function is divided into two (or more) subfunctions.

The goal is to realize the subfunctions as physical circuits; for

example, as LUTs in an FPGA. Fig. 1 shows the functional

decomposition of f(X), into two subfunctions h(X1) and

g(h,X2), where X = X1

⋃
X2. f , g, and h can be modeled

as multiple-valued functions, and can be represented in the

circuit by multiple binary-valued lines.

�

��

��
���

��� ��
��

��

�

��

Fig. 1: Decomposition of a logic function.

Since we can choose h as the identity function (where

the output of H is the same as its input), all functions have

such a decomposition. However, this decomposition is trivial.

An important tool in the design of circuits with nontrivial
decompositions is the decomposition chart.

Definition 3.1. Let f(X) be a function, and let (X1, X2) be a
partition of the variables X . Let X1 = (x1, x2, . . . , xn1

) and
X2 = (xn1+1, xn1+2, . . . , xn). A decomposition chart for f
is an array with 2n1 columns and 2n2 rows, where columns

138

2018 IEEE 48th International Symposium on Multiple-Valued Logic

2378-2226/18/$31.00 ©2018 IEEE
DOI 10.1109/ISMVL.2018.00032

are labeled by the 2n1 assignments of values to X1 and rows
are labeled by the 2n2 assignments of values to X2. Each entry
is the value of the index generation function, 1, 2, . . . , k, or
0. Here, 0 is a special value that represents an assignment
that is not stored. X1 is the set of column variables, while
X2 is the set of the row variables. The number of column
variables is n1 = |X1|, and the number of row variables is
n2 = |X2|, for n1+n2 = n, the total number of variables. The
column multiplicity μ is the number of distinct columns; it
can range from 1 to 2n1 . The number r of rails is the number
of binary wires between circuits H and G needed to encode
the μ columns. Specifically, r = �log2 μ�.

IV. THE BALLS-IN-BINS MODEL

In [6], the “balls-in-bins” model was proposed as an ap-

proximation for the distribution of column multiplicities to

decomposition charts of index generation functions. In this

model, the bins are the columns (of which, there are 2n1), and

the balls are the indices (of which, there are k). An element

of this distribution of balls-in-bins is a choice with repetition

of a column number for all of the balls. If two balls are

assigned the same column number b, then those two balls are

viewed as occupying the same bin b. For each distribution, we

compute the number of bins with at least one ball. We seek the

plot of the number of distributions of balls-in-bins with some

specified number of columns with at least one nonzero value,

which is a measure of μ, the column multiplicity. Although we

prefer to enumerate all distributions of balls-in-bins, there are

too many for the values of k and n1 in which we are interested.

Thus, we apply a Monte Carlo simulation, in which we choose

randomly each distribution of balls-in-bins.

We note that this is an approximation to the distribution

across decomposition charts. This is because two distributions

of balls-in-bins do not, in general, represent the same number

of distributions to decomposition charts. Fig. 2 shows an

example of two balls-in-bins distributions and, for each, one

of their corresponding decomposition charts. Here, n1 = 2
and k = 4.

In Fig. 2a), all balls fall into the same bin (leftmost bin), and

μ = 2. This distribution corresponds to 4! = 24 decomposition

charts, one of which is shown. In Fig. 2b), all balls fall into

different bins, and μ = 4. This corresponds to 44 = 256
decomposition charts, one of which is shown. When μ is

smaller, balls tend to fall into the same bins, and there tend

to be fewer distributions. Thus, in the balls-in-bins model,

distributions with smaller μ are overemphasized compared to

distributions with larger μ.

V. A WEIGHTED BALLS-IN-BINS MODEL

However, we can correct this by weighting each balls-in-

bins distribution with a value that is the number of decompo-

sition charts to which it corresponds. In the example, the balls-

in-bins distribution shown in Fig. 2a) would be weighted with

24, and the distribution shown in Fig. 2b) would be weighted

with 256. By tallying the weights as each balls-in-bins distri-

bution is generated, we compute a total weight, which can be

�

�

�

�

�

�

�

�

�

�� � �

��

��

��

�

��������� ��� ��� ���

���

��

���

��
������

��

��

��

��

��� ��
� �

��� ��� ��� ���

���

���

���

��

������

������

���� �����	
��
��
�
����
���
���

���� ��
���	
��
��
�
����
���
���

Fig. 2: Comparing two distributions of balls-in-bins with their

decomposition chart counterparts. Blank entries are 0.

used to normalize the final values. The normalization occurs

as follows. Let the distribution of balls-in-bins be specified as

(b0, b1, . . . , bn−1), where bi is the number of balls that fall

into the i-th bin. For example, the distributions in Fig. 2a)

and 2b) correspond to (4, 0, 0, 0) and (1, 1, 1, 1), respectively.

Because there are k balls,

k =
n−1∑
i=0

bi.

In general, the weight W associated with balls-in-bins instance

(b0, b1, . . . , bn−1) is

W =
n−1∏
i=0

(
2n2

bi

)
bi! ,

where n2 is the number of row variables (and 2n2 is the

number of rows). That is, W is the number of decom-

position charts that corresponds to balls-in-bins distribution

(b0, b1, . . . , bn−1). Table 4.2 of [6] shows a distribution of

instances of balls-in-bins to column multiplicity μ for the

139

TABLE II: Comparing the accuracy of the balls-in-bins model

with the weighted balls-in-bins model and the exact model

(n1 = 8, k = 20)

Rails Col. Balls-in- Wgted Balls Exact # of
r Mult. μ Bins [6] -in-Bins Decomp. Ch.

4 12+1 0 0.6 0.0
4 13+1 1 0.0 0.4
4 14+1 16 7.7 11.1
4 15+1 265 194.0 208.0

5 16+1 3231 2660.7 2657.7
5 17+1 25670 22543.1 22567.7
5 18+1 130523 120832.2 121049.3
5 19+1 374304 369297.2 369000.7
5 20+1 465990 484464.4 484505.1

Total 1000000 999999.9 1000000.0

case of k = 20 and n1 = 8 (8-bit numbers or 256 bins).

For the weighted balls-in-bins model, we must specify how

many rows are in the decomposition chart. We chose it to

be the same as k or 20. In this case, the maximum μ is 21

(20 columns with nonzero indices plus 1 for the column with

all 0’s). Table II shows this data. That is, it shows, in the

third column, data from a Monte Carlo simulation identical to

the one used in Table 4.2 of [6]. The fourth column shows

the distribution resulting from applying the weighted method

described above. Each entry in this column should be viewed

as an exact percentage of the total. For example, the entry

465,990, corresponds to exactly 46.599% of the decomposition
charts, there being a total of 1,000,000 samples. In comparing

the two columns, one can see that the weighted balls-in-bins

method has similar values compared to the balls-in-bins model,

but there is a noticeable difference between the two. This

is the basis for our statement that the balls-in-bins method

gives an approximation to the distribution of functions to

column multiplicities in the decomposition chart approach to

the design of index generation functions.

This data shows that there is an overemphasis of decompo-

sition charts by the balls-in-bins model with smaller μ. Indeed,

the balls-in-bins model function counts (third or middle col-

umn) are all larger than the weighted balls-in-bins function

counts (fourth column) for all μ values except for the smallest

and the largest μ value (12+1, 20+1). Both columns are derived

from a Monte Carlo simulation, and, thus are approximate.

However, we were able to derive exact function counts for

various μ values, and these are shown in the rightmost column.

The exact function counts show that the weighted balls-in-

bins model is a closer approximation to exact function counts

(rightmost column) than the original balls-in-bins model. We

will explain the exact method (rightmost column) in the next

section.

VI. AN EXACT INTEGER PARTITION MODEL

In this section, we propose a model based on integer partitions

as a way to tractably compute exact values for the distribution

of decomposition charts to the number of columns with at

least one nonzero value. Because there are many instances

of the balls-in-bins problem, we are not able to enumerate

them all. This is why we did a Monte Carlo simulation.

However, we can compute the number of decomposition

charts corresponding to a given integer partition in a way

similar to that shown in the previous section. This allows an

exhaustive enumeration that produces an exact value, unlike

the approximation derived from a Monte Carlo simulation of

the balls-in-bins model or the weighted balls-in-bins model.

An approximation to the number of partitions [3] p(n) is

p(n) ∼ 1

4n
√
3
eπ
√

2n
3 . (1)

The exact number is 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77,

101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575,

1958, 2436, 3010, 3718, 4565, 5604 for n = 1, 2, 3, ..., 30.

This relatively gradual increase suggests that an exhaustive

enumeration is possible for many sizes of decomposition

charts using the integer partition model. Indeed, there are

ways to generate integer partitions randomly with uniform

probability [3]. In this way, for really large values of n in

(1), such that exhaustive enumeration is not possible, one can

resort to Monte Carlo simulations.

To illustrate how to use integer partitions to compute the

distribution of decomposition charts, consider, for example, the

partition 4 + 2 + 2 + 1 = 9 across decomposition charts with

12 columns and 20 rows. Here, 4 represents the occurrence

of one column with four nonzero values, 2 + 2 represents

the occurrence of two columns each with two nonzero values,

and 1 represents one column with one nonzero value. Since

4 + 2 + 2 + 1 = 9, k = 9.

There are 12 ways to choose the column corresponding to

the 4 (i.e. 4 nonzero values occur in one of 12 columns in 12

ways). There are
(
20
4

)
ways to choose the 4 rows in which the

nonzero values occur. Then, there are 9 × 8 × 7 × 6 ways in

which 4 nonzero values are chosen. Thus, for the 4 part, there

are 12× (
20
4

)× 9× 8× 7× 6 choices.

Now, consider the two 2 parts. There are
(
11
2

)
ways to

choose the columns in which the two 2’s occur (i.e. after

processing the 4 part, there are 11 columns in which to place

the two 2 parts). For both columns, there are
(
20
2

)
ways

to choose where the nonzero values occur. Then, there are

5 × 4 × 3 × 2 ways to choose the nonzero values over the

pair of 2’s. Thus, for the pair of 2’s, the number of choices is(
11
2

)× (
20
2

)2 × 5× 4× 3× 2.

Finally, the 1 part of the partition can be placed in one of(
9
1

)
columns, and then in one of

(
20
1

)
rows. The total number

of ways to choose for the 1 part is
(
9
1

) × (
20
1

)
ways. Thus,

the total number of decomposition charts associated with the

partition 4 + 2 + 2 + 1 is

140

(
12×

(
20

4

)
× 9× 8× 7× 6

)
×((

11

2

)
×

(
20

2

)2

× 5× 4× 3× 2

)
×

((
9

1

)
×

(
20

1

))
.

This equation can be rewritten as

(
12

1

)(
11

2

)(
9

1

)(
20

4

)(
20

2

)2(
20

1

)
9!

= 7, 540, 158, 181, 248, 000, 000 . (2)

Note that this partition and all of its associated decomposi-

tion charts have μ = 5 (there are 4 parts and at least one all-0

column). In the case of n = 30, there are only 5,604 partitions.

We could easily enumerate such a number. However, the sum

will be very large, as suggested by the very large number of

decomposition charts indicated at (2).

The fifth or rightmost column in Table II shows an exact

enumeration based on the integer partition method just de-

scribed1. This data was calculated by a MATLAB program

running on a 64-bit Intel Core�i5-4200U CPU with a 1.6GHz

clock and 8 GB of RAM. In the exact method, we must choose

the number of rows in the decomposition chart. We chose 20.

The fourth column shows the values obtained by a Monte

Carlo method using 1,000,000 samples, which were weighted

values from the balls-in-bins method. These are close to the

values produced by the exact integer partition method. The

third column shows the values obtained by the balls-in-bins

model using Monte Carlo simulation with 1,000,000 samples

[6]. These values were noticeably larger for smaller values of

μ. This coincides with our observation earlier that the balls-

in-bins model overemphasizes the number of functions with

smaller values of μ. It should be noted that the exact enumer-

ation values were exact only within the precision achieved in

our MATLAB program. We received warning messages stating

that computation of certain combinatorial functions
(
n
r

)
may

not be accurate. Since the messages were warning messages

(and not error messages), and the results were consistent, we

ignored them.

In order to assess this last issue of inaccuracy, we repeated

the experiments in Table II for the case of n1 = 6 (reducing

the number of columns from 256 down to 64). We chose the

number of rows to be 20, as in Table II. For this case, the

exact computation of the number of decomposition charts by

MATLAB yielded no warning messages of inaccurate compu-

tations. We repeated the Monte Carlo simulation computations,

also. The results are shown in Table III. As in the case of Table

II, the decomposition charts in the case of the exact solution

was chosen to be 20.

1To make the comparison easier, we have prorated the exact values to
coincide with a distribution over 1000000 samples; e.g. 50% is 500000.

TABLE III: Comparing the accuracy of the balls-in-bins model

with the weighted balls-in-bins model and the exact model

(n1 = 6, k = 20)

Rails Col. Balls-in Wgted Balls Exact #
r Mult. μ -Bins -in-Bins Decomp. Ch.

4 9+1 0 0.0 0.0
4 10+1 4 0.5 1.3
4 11+1 35 19.6 25.2
4 12+1 503 297.1 322.0
4 13+1 3709 2738.8 2740.0
4 14+1 19759 15806.2 15720.8
4 15+1 71001 60862.8 60973.4

5 16+1 171579 158742.2 158435.3
5 17+1 273449 269983.3 269064.7
5 18+1 272387 283483.5 283813.1
5 19+1 151509 166728.2 167216.2
5 20+1 36065 41337.8 41688.2

Total 1000000 1000000.0 1000000.2

Table III shows the same overemphasis on the number of

decomposition charts with small μ that occurred in the balls-

in-bins model (middle column) as shown by Table II. Further,

the approximate number of decomposition charts as computed

by the Monte Carlo method over 1,000,000 samples closely

matches the exact number computed by the methods described

above (rightmost column). Another interesting observation is

that reducing the number of columns (from 256 to 64) skews

the distribution of decomposition charts so that there are fewer

decomposition charts with larger μ. This is expected since,

in the case of fewer columns, there is a greater tendency

for columns to have more nonzero values than when there

are many columns. Thus, we expect fewer decomposition

charts with higher μ values; i.e. the distributions are ”skewed”

downward, so that there are fewer decomposition charts with

larger μ values.

Table IV shows the exact values for the distributions of

decomposition charts for n1 = 5, 6, 7, 8, and 9 (number of

columns is 32, 64, 128, 256, and 512, respectively), where

the number of rows is 256. This shows that, as the number

of columns increases, the fraction of decomposition charts

shifts toward larger μ. This shows that, for fixed k, when the

number of columns increases, the number of distinct columns

increases, as shown by the increase in μ. This is an expected

result, since, with more columns, the index values spread out

across the columns, resulting in more distinct columns with

larger k.

Table V shows the exact values for the distribution of

decomposition charts with 32 columns, 8 rows, and k = 8,

16, 24, and 32 indices together with the values computed

using the balls-in-bins model. Each entry in this table has the

form A/B, where A is the value obtained from the balls-

in-bins model, and B is the value obtained from the integer

partition model, which yields exact values. As with previous

analyses, the balls-in-bins model overemphasizes lower values

of μ. That is, for each of the four values of k, the percentage

141

TABLE V: Distribution of decomposition charts with 32 columns versus μ using the exact model

Rails μ Col. Number of Indices = k = Number of Columns
r Mult. 8 16 24 32

1 1+1 0.0/0.00 0.00 0.00 0.00

2 2+1 0.0/0.00 0.00 0.00 0.00
2 3+1 0.0/0.00 0.00 0.00 0.00

3 4+1 0.0/0.07 0.0/0.00 0.0/0.00 0.0/0.00
3 5+1 2.3/1.55 0.0/0.00 0.0/0.00 0.0/0.00
3 6+1 15.8/13.09 0.0/0.00 0.0/0.00 0.0/0.00
3 7+1 43.2/42.21 0.0/0.00 0.0/0.00 0.0/0.00

4 8+1 38.6/43.08 0.1/0.04 0.0/0.00 0.0/0.00
4 9+1 0.0/0.00 0.7/0.46 0.0/0.00 0.0/0.00
4 10+1 0.0/0.00 3.8/2.85 0.0/0.00 0.0/0.00
4 11+1 0.0/0.00 12.3/10.48 0.0/0.01 0.0/0.00
4 12+1 0.0/0.00 24.7/23.14 0.2/0.13 0.0/0.00
4 13+1 0.0/0.00 29.6/30.33 1.1/0.81 0.0/0.00
4 14+1 0.0/0.00 20.4/22.65 4.2/3.33 0.0/0.02
4 15+1 0.0/0.00 7.3/8.72 10.9/9.39 0.2/0.14

5 16+1 0.0/0.00 1.0/1.32 20.0/18.19 1.0/0.76
5 17+1 0.0/0.00 0.0/0.00 24.4/24.32 3.6/2.83
5 18+1 0.0/0.00 0.0/0.00 21.0/22.33 8.9/7.63
5 19+1 0.0/0.00 0.0/0.00 12.3/13.92 16.3/14.93
5 20+1 0.0/0.00 0.0/0.00 4.8/5.76 21.8/21.29
5 21+1 0.0/0.00 0.0/0.00 1.2/1.53 21.3/22.10
5 22+1 0.0/0.00 0.0/0.00 0.2/0.24 15.3/16.65
5 23+1 0.0/0.00 0.0/0.00 0.0/0.02 7.8/9.03
5 24+1 0.0/0.00 0.0/0.00 0.0/0.00 2.9/3.48
5 25+1 0.0/0.00 0.0/0.00 0.0/0.00 0.7/0.94
5 26+1 0.0/0.00 0.0/0.00 0.0/0.00 0.1/0.17
5 27+1 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.02
5 28+1 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00
5 29+1 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00
5 30+1 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00
5 31+1 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00

Total % 100.0/100.00 100.0/100.00 100.0/100.00 100.0/100.00

No. of Partitions 22 231 1575 8349

TABLE IV: Distribution of decomposition charts with 256

rows and k = 20 versus μ using the exact model.

Railsμ Col. Number of Columns 2n1

r Mult. 32 64 128 256 512

3 7+1 0.0 0.0 0.0 0.0 0.0

4 8+1 0.1 0.1 0.0 0.0 0.0
4 9+1 4.8 0.0 0.0 0.0 0.0
4 10+1 92.0 0.1 0.0 0.0 0.0
4 11+1 1053.3 2.3 0.0 0.0 0.0
4 12+1 7513.6 40.8 3.2 0.0 0.0
4 13+1 34398.1 471.6 56.1 0.6 0.0
4 14+1 102960.6 3670.5 670.0 15.2 0.3
4 15+1 203207.2 19445.0 5513.9 265.5 10.2

5 16+1 264057.9 70188.5 30952.7 3178.1 252.6
5 17+1 223003.0 170853.7 115540.7 25421.1 4175.4
5 18+1 118918.5 273328.2 272424.3 129056.4 43902.6
5 19+1 37890.4 272879.1 364760.9 373874.8 263989.5
5 20+1 6456.9 152791.0 210078.2 468188.5 687669.5

of decomposition charts realizing the μ values shown is

artificially high compared to the exact integer partition values.

As before, MATLAB was used to compute the number of

decomposition charts. In this case, we show the percentage of

the total number of decomposition charts for each value of μ,

the column multiplicity. In the case of Table V, all four values

(k = 8, 16, 24, and 32) produced no accuracy warnings. It is

interesting that for k = 32, 24, and 16, the vast majority of

decomposition charts fall squarely within the r values of 5, 4,

and 3, respectively, where r is the number of rails. This means

that, for most decomposition charts in these ranges, there is

little benefit to seeking one that will reduce the number of

rails. In the case of k = 8, the situation is different. In this

case, 43% of the decomposition charts have r = 4, while 57%

have r = 3. Therefore, if one has a decomposition chart with

r = 4, there is a good chance that one with r = 3 can be

found. In this way, the number of rails is reduced by 1, as is

the circuit complexity.

142

1 2 3 4 5
0

20

40

60

80

Number of Columns w/Nonzero Entries

%
 o

f D
ec

om
po

si
tio

n
C

ha
rts

Fig. 3: 4× 4 Decomposition Charts With k = 4

0 5 10
0

10

20

30

40

Number of Columns w/Nonzero Entries

%
 o

f D
ec

om
po

si
tio

n
C

ha
rts

Fig. 4: 8× 8 Decomposition Charts With k = 8

0 5 10 15 20
0

10

20

30

Number of Columns w/Nonzero Entries

%
 o

f D
ec

om
po

si
tio

n
C

ha
rts

Fig. 5: 16× 16 Decomposition Charts With k = 16

0 10 20 30 40
0

5

10

15

20

25

Number of Columns w/Nonzero Entries

%
 o

f D
ec

om
po

si
tio

n
C

ha
rts

Fig. 6: 32× 32 Decomposition Charts With k = 32

VII. INTEGER PARTITION MODEL RESULTS

Fig. 3 shows data from the exact integer partition model for

the case where there are four rows, four columns, and k = 4.

The solid blue line corresponds to all partitions. The dashed

red line corresponds to partitions in which the smallest part is

2. This line is well below the solid blue line, showing there

are many fewer decomposition charts in this case. That is, in

this case, all decomposition charts have the property that there

are at least two indices in every column containing an index.

Ideally, there should be one or no index in each column, as we

show in Table I. Note also that the dashed red line showing

decomposition charts in which the smallest part is 2 tend to

contain fewer columns with indices. This is an expected result,

since, with at least two indices per column, there will indeed

be fewer columns.

Fig 4 shows the data from the integer partition model for

the case where there are eight rows, eight columns, and k = 8.

In this case, there are many fewer decomposition charts with

two or more indices in columns that have indices (dashed red

line) compared to the case of all decomposition charts. Figs. 5

and 6 show the cases of 16 rows, 16 columns, k = 16 and 32

rows, 32 columns, k = 32, respectively. These curves suggest

a peak that occurs at a point that is doubled for each doubling

of the values of n1, n2, and k.

VIII. CONCLUDING REMARKS

Our goal is to estimate the size of the programmable ar-

chitecture needed to realize index generation functions, which

are useful in virus detection and routing. In [6], the balls-

in-bins model was used to efficiently estimate the size. In

this paper, we use the integer partition model instead. It

has two advantages. First, it is an exact enumeration, and

second, it is efficient. As a result, for functions of small

size, exhaustive enumeration is possible, versus Monte Carlo

simulation, as in the balls-in-bins model. The integer partition

model yields exact sizes, especially for smaller functions,

versus an approximation, as in the balls-in-bins model.

ACKNOWLEDGMENT

This research is partly supported by the Japan Society for

the Promotion of Science (JSPS) Grant in Aid for Scientific

Research. Referees’ comments helped to improve the paper.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” Inter.
Symp. on the Theory of Switching, vol. 108, Issue 3, pp. 75–116, April
1957.

[2] H. A. Curtis, A New Approach to the Design of Switching Circuits, D.
Van Nostrand Co. Princeton, NJ, 1962.

[3] E. M. Reingold, J. Nievergelt, and M. Deo, Combinatorial Algorithms:
Theory and Practice, Prentice-Hall, Inc., Engelwood Cliffs, NJ, 07632,
1977, pp. 193–196.

[4] T. Sasao, Memory-Based Logic Synthesis, Springer, New York, Dor-
drecht, Heidelberg, London. 2011. pp. 92–118.

[5] T. Sasao, K. Matsuura, and Y. Iguchi, “A heuristic decomposition of
index generation functions with many variables,” The 12th Workshop on
Synthesis And System Integration of Mixed Information Technologies
(SASIMI-2004), pp. 23-28.

[6] T. Sasao and J. T. Butler, “Decomposition of index generation functions
using a Monte Carlo method,” Advanced Logic Synthesis, Springer,
André Reis, ed., 2017.

143

