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Abstract—Incompletely specified index generation functions
can often be represented with fewer variables than original
functions by appropriately assigning values to don’t cares. The
number of variables can be further reduced by using a linear
transformation to the input variables. Minimization of variables
under such conditions was considered to be a very hard problem.
This paper surveys minimization methods for index generation
functions. Major topics include 1) An upper bound on the
number of variables to represent index generation functions; 2) A
heuristic minimization method using an ambiguity measure; 3) A
heuristic minimization method using remainders of a polynomial
on GF(2); 4) An exact minimization method using a SAT solver;
and 5) Comparison of minimization methods.

Keywords-Incompletely specified function, Index generation
function, Linear transformation, Variable minimization, SAT
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I. INTRODUCTION

One of the basic operations in information processing is

to search desired data from a large data set. For example,

consider a network router, where IP addresses are represented

by 128 bits. Assume that a network router stores 40,000 of

the 2128 possible combinations of the inputs, and checks if an

input pattern matches a stored pattern. A content addressable

memory (CAM) [17] is a device that performs this operation

directly. Unfortunately, CAMs dissipate high power and are

very expensive.

An index generation function [28] describes the operation

of a CAM. For example, an index generation function can be

represented by a registered vector table shown in Table 1.1.

An efficient method to implement an index generation

function is the IGU (Index Generation Unit) shown in Fig. 1.1

[20], [28]. Since an IGU uses ordinary memory and a small

amount of logic, cost and power dissipation are much lower

than with a typical CAM. In the IGU, the linear circuit
reduces the number of inputs n to p, and the main memory
produces a tentative index. The AUX memory stores other

inputs of the registered vector. The comparator checks if the

tentative index is correct or not. If it is correct, then the AND
gate produces the index. Otherwise the AND gate produces

zero, which shows that the input vector is not registered. In
TABLE 1.1

REGISTERED VECTOR TABLE

x1 x2 x3 x4 index
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 1 0 1 4
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Fig. 1.1. Index Generation Unit (IGU).

this case, the main memory can realize any value for the non-

registered inputs. In other words, in the design of the main

memory, we can consider an incompletely specified function
instead of a completely specified function. For such a function,

the number of inputs to the main memory p is likely to be

smaller than n, the original number of inputs. In this way, we

can reduce the cost of the IGU. Thus, the minimization of

variables for the main memory is the key issue of the design.

This paper surveys various minimization methods of variables

for the main memory.

The rest of the paper is organized as follows: Section II

introduces the index generation function; Section III shows a

method to minimize the number of variables for incompletely

specified index generation functions; Section IV introduces a

linear decomposition to reduce the number of input variables.

It also considers upper and lower bounds on the number

of variables to represent index generation functions; Section

V shows a heuristic method using imbalance measure and

ambiguity measure; Section VI introduces a polynomial-based

method to reduce the number of variables; Section VII shows

an exact minimization method of variables by using a SAT

solver; Section VIII compares various minimization methods

by experiments; Section IX surveys other works on index

generation functions; and Section X concludes the paper.

II. INDEX GENERATION FUNCTIONS

Definition 2.1: Consider a set of k distinct vectors of n
bits. These vectors are registered vectors. For each registered

vector, assign a unique integer from 1 to k. A registered
vector table shows the index for each registered vector. An

incompletely specified index generation function produces

the corresponding index when the input vector equals to

a registered vector. Otherwise, the value of the function
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Fig. 2.1. 4-variable index generation function.

is undefined (don’t care). An incompletely specified index

generation function shows a mapping M → {1, 2, . . . , k},
where M ⊂ Bn represent a set of registered vectors. k is

the weight of the function.

Example 2.1: Table 1.1 shows a registered vector table, that

represents an index generation function with weight k = 4.

An incompletely specified function f can often be converted

into a completely specified functions with fewer variables by

appropriate assignment of 0’s and 1’s into don’t care values.

This property is useful to realize the functions by look-up

tables (LUTs).

Theorem 2.1: Assume that an incompletely specified func-

tion f is represented by a decomposition chart [18]. If each

column of the decomposition chart has at most one care

element, then the function can be represented by only column

variables.

Example 2.2: Consider the decomposition chart in Fig. 2.1.

x1 and x2 specify columns, while x3 and x4 specify rows.

Also, blank cells denote don’t cares. In Fig. 2.1, each column

has at most one care element. Thus, this function can be

represented with only the column variables x1 and x2:

F = 1 · x1x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1x̄2 ∨ 4 · x1x2.

III. EXACT MINIMIZATION OF VARIABLES USING

DIFFERENCE MATRIX

Algorithms to minimize variables for incompletely specified

logic functions have been developed [5], [6], [19], [24]. In

this section, we introduce difference matrices to minimize

the number of variables for incompletely specified index

generation functions.

Definition 3.1: [37], [52] Let M be the set of binary vectors

corresponding to the minterms of f . The difference matrix
Df of M is the set of vectors �a ⊕ �b, where �a,�b ∈ M , and

�a �= �b.

Note that Df consists of at most
(
k
2

)
= k(k−1)

2 binary

vectors, where k is the number of vectors in M .

Example 3.1: Consider the function shown in Fig. 2.1.

Table 1.1 is the registered vector table, and shows the set M
that corresponds to the minterms of the function. Table 3.1 is

the corresponding difference matrix Df . The last column of

Table 3.1 represents tags showing pairs of vectors in M . For

example, the tag of the first vector in Df is (1, 2). This tag

TABLE 3.1
DIFFERENCE MATRIX Df

x1 x2 x3 x4 Tag
1 1 0 0 (1, 2)
1 0 1 0 (1, 3)
0 1 0 1 (1, 4)
0 1 1 0 (2, 3)
1 0 0 1 (2, 4)
1 1 1 1 (3, 4)

shows that the first and the second vectors in M were used to

generate the vector:

(1, 0, 0, 0)⊕ (0, 1, 0, 0) = (1, 1, 0, 0).

This vector shows that, to distinguish the first and the second

vectors in M , either x1 or x2 is necessary.

The difference matrix shows the condition to distinguish all

the vectors in M , and is similar to the covering table [18] used

in the minimization of sum-of-products expressions. Thus, we

have the following algorithm to minimize the variables for an

incompletely specified index generation function [41].

Algorithm 3.1: (Exact minimization of primitive variables)

1) Let M be the set of registered vectors for the given

incompletely specified index generation function.

2) Generate the difference matrix Df from M . The j-th

column of Df corresponds to the variable xj . The j-th

element of the i-th vector in Df is 1 if and only if the

value of the (i, j)-th element of the covering table is 1.

3) Derive the minimum set of columns that covers all the

rows of Df .

Example 3.2: Consider the index generation function

shown in Fig. 2.1. Table 1.1 is the registered vector table.

Table 3.1 is the difference matrix, where the number of

columns is n = 4, while the number of rows is
(
k
2

)
=

k(k−1)
2 = 4×3

2 = 6. To obtain a minimum cover, we use

the covering function. In the difference matrix shown in

Table 3.1, to satisfy the condition in the first row (with the

tag (1,2)), we need either x1 or x2. To satisfy the condition

of the second row, we need either x1 or x3. To satisfy the

condition of the third row, we need either x2 or x4. To satisfy

the condition of the fourth row, we need either x2 or x3. To

satisfy the condition of the fifth row, we need either x1 or x4.

To satisfy the condition of the sixth row, we need either x1 or

x2 or x3 or x4.

From these, we have the following covering function:

P = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)(x2 ∨ x3)

(x1 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x4).

By applying the distributive law and the absorption law, we

have

P = (x1 ∨ x2x3)(x2 ∨ x3x4)(x1 ∨ x4)

= (x1 ∨ x2x3x4)(x2 ∨ x3x4)

= x1x2 ∨ x2x3x4 ∨ x1x3x4.

From this, we have three minimal sets of variables that cover

all the rows: {x1, x2}, {x1, x3, x4}, and {x2, x3, x4}.

198



X L G
n p

Cost: np Cost: 2p

q

Linear 
Function

General 
Function

Fig. 4.1. Linear Decomposition

Algorithm 3.1 shows just the idea of minimization. In a

practical implementation [24], various techniques are used to

reduce computation time and memory requirement.

IV. LINEAR DECOMPOSITION

A linear decomposition [7], [10], [53], [54] can often fur-

ther reduce the number of variables to represent incompletely

specified index generation functions. In the linear decompo-

sition shown in Fig. 4.1, L realizes linear functions, while G
realizes indices. The cost for L is O(np), while the cost for

G is O(q2p), where q ≤ p ≤ n and q = 	log2(k + 1)
. We

assume that L is implemented by EXOR gates, multiplexers

and registers [28], while G is implemented by a memory.

Definition 4.1: A compound variables has a form y =
c1x1⊕ c2x2⊕ · · · ⊕ cnxn, where ci ∈ {0, 1}. The compound
degree of the variable y is

∑n
i=1 ci, where

∑
denotes an

integer addition. A primitive variable is a variable with

compound degree one.

Definition 4.2: For an incompletely specified index gener-

ation function f , the linear transformation that minimizes the

number of variables to represent f is an optimum transfor-
mation.

The number of variables to represent a given function

strongly influences the cost of the hardware. As for a lower

bound on the number of variables, we have:

Theorem 4.1: [32] To represent an index generation func-

tion f with weight k, at least LB = 	log2(k+1)
 compound

variables are necessary.

In the above theorem, we assume that zero-output is used to

denote non-registered vector. If an index generation function

with weight k can be represented with q = 	log2(k + 1)

compound variables, then the transformation is an optimum

by Theorem 4.1.

In this part, we use m-out-of-n code to binary converters

for benchmark functions.

Definition 4.3: The m-out-of-n code consists of k =
(
n
m

)

binary codes with m 1’s and (n−m) 0’s. The m-out-of-n code
to binary converter realizes an index generation function with

weight k =
(
n
m

)
, and has n inputs and 	log2

(
n
m

)
+1
 outputs.

When the number of 1’s in the input is not m, the circuit

generates the code with all 0’s.

Example 4.1: Consider the 1-out-of-7 code to binary con-

verter shown in Table 4.1. We can reduce the number of

TABLE 4.1
1-OUT-OF-7 CODE TO BINARY CONVERTER.

1-out-of-7 code Index Transformed
Code

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3
1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 2 0 0 0
0 0 1 0 0 0 0 3 0 1 1
0 0 0 1 0 0 0 4 0 1 0
0 0 0 0 1 0 0 5 0 0 1
0 0 0 0 0 1 0 6 1 0 0
0 0 0 0 0 0 1 7 1 1 0

variables by using the following linear transformation:

y1 = x1 ⊕ x6 ⊕ x7,

y2 = x3 ⊕ x4 ⊕ x7,

y3 = x1 ⊕ x3 ⊕ x5.

The right three columns in Table 4.1 show the values of the

compound variables yi. In these columns, all the bit patterns

are distinct. Thus, (y3, y2, y1) represents the index generation

function. Also, by Theorem 4.1, this function requires at least

three compound variables. Thus, this is an optimum linear

transformation.

As for an upper bound on the number of variables, we have

Conjecture 4.1: [28] When the number of the variables

n is sufficiently large, most incompletely specified index

generation functions with weight k (≥ 7) can be represented

by

UBsasao = 2	log2(k + 1)
 − 3

(primitive) variables.

The above result was obtained by experiments using many

randomly generated functions, and statistical analysis for ran-

domly generated functions. Unfortunately, it does not cover

all the functions.

Recently, Jaakko Astola’s group obtained an upper bound on

the number of compound variables for all the index generation

functions.

Theorem 4.2: [1] To represent an n-variable index genera-

tion function f with weight k,

UBastola = 2	log2(k + 1)
 − 1 + 	log2(n− 1)

compound variables are sufficient.

To derive the upper bound, a novel method was developed

to reduce the number of compound variables [1]. This will be

shown in Section VI.

V. AMBIGUITY-BASED METHOD

As shown in Example 4.1, with a linear transformation,

we can often reduce the number of variables to represent

the function. To distinguish 7 vectors, in the original domain,

7 variables are used, while in the transformed domain, only

three variables are used. Note that, in the original domain, for

each variable, 0’s appear 6 times, while 1’s appear just once.

However, in the transformed domain, for each variable, 0’s

appear four times, while 1’s appear three times. This suggests

that variables with a balanced number of 0’s and 1’s tend to

require fewer variables to distinguish vectors. Thus, we have

the following [32]:
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Definition 5.1: In the registered vector table, let ν(xi, 0)
be the number of vectors with xi = 0, and let ν(xi, 1) be the

number of vectors with xi = 1. The imbalance measure of

the function with respect to xi is defined as

ω(xi) = ν(xi, 0)
2 + ν(xi, 1)

2.

When the numbers of occurrences of 0’s and 1’s are the

same in xi, ω(xi) is minimum. The larger the difference of the

occurrences of 0’s and 1’s, the larger the imbalance measure.

Example 5.1: In Table 4.1, in the original domain, since for

all xi, ν(xi, 0) = 6 and ν(xi, 1) = 1, we have

ω(xi) = ν(xi, 0)
2 + ν(xi, 1)

2 = 62 + 12 = 37.

However, in the transformed domain, since ν(yi, 0) = 4 and

ν(yi, 1) = 3, we have

ω(xi) = ν(xi, 0)
2 + ν(xi, 1)

2 = 42 + 32 = 25.

In other words, the linear transformation in Example 4.1

reduces the imbalance measure.

Variables with smaller imbalance measures tend to require

fewer variables to distinguish the vectors. Thus, our strategy

is to reduce the imbalance measure by a linear transformation.

To find a minimal set of compound variables to represent the

function, we use the following:

Definition 5.2: Let f(x1, x2, . . . , xn) be an incompletely

specified index generation function with weight k. Let �x =
(xi1 , xi2 , . . . , xit) be a vector consisting of a subset of the

variables {x1, x2, . . . , xn}. Let N(f, �x,�a) be the number of

registered vectors of f that such that �x = �a = (a1, a2, . . . , at),
ai ∈ {0, 1}. The ambiguity measure of f with respect to �x
is defined as

AMB(�x) = −k +
∑

�a∈Bt

N(f, �x,�a)2.

Theorem 5.1: AMB(�x) = 0 iff �x can represent f .

Example 5.2: Consider the index generation function f
shown in Table 1.1. In this case, k = 4. Let �x = (x1, x2).
Then,

N(f, �x, (0, 0)) = 1,

N(f, �x, (0, 1)) = 1,

N(f, �x, (1, 0)) = 1,

N(f, �x, (1, 1)) = 1.

Thus, the ambiguity measure with respect to (x1, x2) is

AMB(x1, x2) = −4 + (12 + 12 + 12 + 12) = 0.

This shows that (x1, x2) can represent f .

Next, let �x = (x3, x4). In this case,

N(f, �x, (0, 0)) = 2,

N(f, �x, (0, 1)) = 1,

N(f, �x, (1, 0)) = 1,

N(f, �x, (1, 1)) = 0.

Thus, the ambiguity measure with respect to (x3, x4) is

AMB(x3, x4) = −4 + (22 + 12 + 12 + 02) = 2.

This shows that (x3, x4) cannot represent f .

The ambiguity-based method is a heuristic method using

imbalance measure and ambiguity measure:

Algorithm 5.1: [32] (Heuristic minimization using imbal-

ance and ambiguity measures.)

1) Let the input variables be x1, x2, . . . , xn. Let t ≥ 2 be

the maximal compound degree.

2) Generate the compound variables yi whose compound

degrees are t or less than t. The number of such

compound variables is
∑t

i=1

(
n
i

)
. Let T be the set of

compound variables.

3) Let y1 be the variable with the smallest imbalance

measure. Let �Y ← (y1), T ← T − y1.

4) While AMB(�Y ) > 0, find the variable yj in T that

minimizes the value of AMB(�Y , yj). Let �Y ← (�Y , yj),
T ← T − yj .

5) Stop.

The memory requirement of Algorithm 5.1 is O(ntk). So,

it works only when t is small. The current version of the

program can accommodate t ≤ 6.

VI. POLYNOMIAL-BASED METHOD

Jaakko Astola et al. [1] developed polynomial-based
method to reduce the number of compound variables.

For each registered vector (x1, x2, . . . , xn), assign a poly-

nomial on GF (2):

X(s) = x1 + x2s+ x3s
2 + . . .+ xns

n−1.

Let

g(s) = g1 + g2s+ g3s
2 . . .+ gps

p−1 + sp

be a polynomial with degree p, where gi ∈ {0, 1}, (i =
1, 2, . . . , p). For all X(s) that correspond to the registered

vectors, if all the remainders

R(s) = X(s) mod g(s)

are distinct, then the mapping

Φ : X(s)→ R(s)

is injective (one-to-one). Since, Φ is linear, we have a desired

linear decomposition.

Lemma 6.1: [1] Given an n-variable index generation func-

tion with weight k, there exists a polynomial g(s) with the

degree up to

p < 2 log2 k + log2(n− 1)− 1,

such that all the remainders R(s) are distinct for the registered

vectors.

From this, we have Theorem 4.2 and

Algorithm 6.1: (Polynomial-based method to reduce the

number of compound variables)

1) Let p← 	log2(k + 1)
.
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2) For all possible polynomial g(s) with degree p, do steps

3) and 4).

3) For every X(s) that corresponds to a registered vector,

compute the remainder

R(s) = X(s) mod g(s).

If there is no such polynomial g(s), then increment p,

and repeat step 2).

4) If all the remainders are different, then stop. [The given

function is represented with p compound variables.]

The polynomial-based method is simple and fast. The time

complexity of Algorithm 6.1 is O(kn2p). The performance of

the algorithm will be shown in Section VIII.

Example 6.1: Consider the 7-variable index generation

function shown in Table 6.1, which is the same function as

Example 4.1. First, check if the polynomial-based method

can represent this function with three variables. The column

headed by X(s) denotes the polynomial representations of

the registered vectors. For each polynomial g(s) of degree

three, compute the remainders of registered vectors. When

g(s) = s3+ s+1, all the remainders are distinct. The column

headed by R(s) denotes the remainders. This produces vectors

shown in the right columns of Table 6.2. Since all the vector

are distinct, three compound variables (y1, y2, y3) represent

this function. The linear transformation is

y1 = x3 ⊕ x5 ⊕ x6 ⊕ x7,

y2 = x2 ⊕ x4 ⊕ x5 ⊕ x6,

y3 = x1 ⊕ x4 ⊕ x6 ⊕ x7.

Since, q = 	log2(k + 1)
 = 3, this is an optimal transfor-

mation. However, compared with Example 4.1, the compound

degrees are larger.

TABLE 6.1
REGISTERED VECTOR, ITS POLYNOMIAL X(s), AND ITS RESIDUE R(s).

Original vectors Index X(s) R(s)
x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 2 s s
0 0 1 0 0 0 0 3 s2 s2

0 0 0 1 0 0 0 4 s3 s+ 1
0 0 0 0 1 0 0 5 s4 s2 + s
0 0 0 0 0 1 0 6 s5 s2 + s+ 1
0 0 0 0 0 0 1 7 s6 s2 + 1

TABLE 6.2
REGISTERED VECTOR TABLE OF 7 VARIABLES, AND THEIR LINEAR

TRANSFORMATION.

Original vectors Index Transformed
x1 x2 x3 x4 x5 x6 x7 y1 y2 y3
1 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 2 0 1 0
0 0 1 0 0 0 0 3 1 0 0
0 0 0 1 0 0 0 4 0 1 1
0 0 0 0 1 0 0 5 1 1 0
0 0 0 0 0 1 0 6 1 1 1
0 0 0 0 0 0 1 7 1 0 1

Example 6.2: Consider the 6-variable index generation

function shown in Table 6.3. First, check if the polynomial-

based method can represent this function with four variables.

For any polynomial g(s) = g0 + g1s + g2s
2 + g3s

3 + s4

with degree four, there exist a pair of vectors that produce the

same remainders. Thus, in the polynomial-based method, four

variables are not sufficient, and five variables are necessary.

On the other hand, the exact method [24] (Algorithm

3.1) produced a solution with four primitive variables:

x1, x3, x5, x6. As shown in the right columns of Table 6.3,

all the 4-bit vectors are distinct. This illustrates the limitation

of the polynomial-based method.

TABLE 6.3
REGISTERED VECTOR TABLE OF 6 VARIABLES.

x1 x2 x3 x4 x5 x6 Index x1 x3 x5 x6

0 0 1 0 0 0 1 0 1 0 0
1 0 1 1 0 0 2 1 1 0 0
0 0 0 0 1 1 3 0 0 1 1
1 0 1 1 1 0 4 1 1 1 0
0 1 1 1 1 1 5 0 1 1 1
1 1 0 0 1 1 6 1 0 1 1
0 0 0 1 0 1 7 0 0 0 1
1 0 1 1 1 1 8 1 1 1 1
1 1 0 1 0 0 9 1 0 0 0
1 0 1 1 0 1 10 1 1 0 1

VII. SAT-BASED METHOD

The previous sections showed two reduction methods for

compound variables. These method produce linear transfor-

mations quickly, but their optimality are not guaranteed.

In this part, we show an exact method to obtain an optimal

linear transformation [44]. Since the method is very time and

memory consuming, it is applicable only to small problems.

This method is based on:

Theorem 7.1: An incompletely specified index generation

function is represented by p compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,nxn,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,nxn,

. . .

yp = ap,1x1 ⊕ ap,2x2 ⊕ · · · ⊕ ap,nxn.

if and only if the values of (y1, y2, . . . , yp) are all distinct for

all registered vectors.

The SAT-based method uses the following approach: First

obtain a good solution by a heuristic method [32], and then

prove its minimality by a SAT solver [4].

Algorithm 7.1: (SAT-based method to minimize the number

of compound variables)

1) Use a heuristic minimization algorithm to obtain a near

minimum solution S(p) with p compound variables.

2) Decrement p.

3) Use Theorem 7.1 to check if there is solution for the

equations. If there is no solution, then stop. [UNSAT:

S(p+ 1) is the minimum solution.]

Otherwise, Go to step 2). [SAT: A better solution S(p)

is found].

Example 7.1: Consider the 4-variable index generation

function shown in Table 7.1. This function requires at least

four variables even if any linear transformation is used. To
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TABLE 7.1
REGISTERED VECTOR TABLE

x1 x2 x3 x4 index
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
1 0 0 1 5
0 1 1 0 6

prove this, assume that this function could be represented with

only three compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ a1,3x3 ⊕ a1,4x4,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ a2,3x3 ⊕ a2,4x4,

y3 = a3,1x1 ⊕ a3,2x2 ⊕ a3,3x3 ⊕ a3,4x4,

where ai,j ∈ {0, 1}. No combination of ai,j makes (y1, y2, y3)
distinct for all the registered vectors. To prove this we use the

following: The values of (y1, y2, y3) for registered vectors are

1) (a1,1, a2,1, a3,1)
2) (a1,2, a2,2, a3,2)
3) (a1,3, a2,3, a3,3)
4) (a1,4, a2,4, a3,4)
5) (a1,1 ⊕ a1,4, a2,1 ⊕ a2,4, a3,1 ⊕ a3,4)
6) (a1,2 ⊕ a1,3, a2,2 ⊕ a2,3, a3,2 ⊕ a3,3)

Next, we need to check if there exist an assignment for ai,j that

makes the values of these vectors all distinct. The condition

that two vectors (a1, a2, a3) and (b1, b2, b3) are different is

represented by the constraint:

(a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3) = 1.

There are k = 6 registered vectors. So the number of

constraints is
(
6
2

)
= 15. The number of unknown coefficients

is np = 12. By enumerating all 212 = 4096 assignments of

values to ai,j , we can show that no assignment satisfies these

conditions at the same time. Thus, we can prove that at least

four variables are necessary to represent the function.

To check the existence of the solutions by using Theo-

rem 7.1, we have to search 2np space. Especially, when the

result is UNSAT (i.e., there is no assignment that satisfies

the constraints), the computation time would be very long. In

such a case, we have to abort the computation. This method

sometimes finds better solutions than heuristic algorithms,

without showing the minimality.

Example 7.2: Consider the 2-out-of-8 code to binary con-

verter. A ambiguity-based method [32] obtained a solution

with 6 compound variables. The weight of this function is

k =
(
8
2

)
= 28. Theorem 4.1 shows that to represent this

function, at least five variables are necessary. Thus, if we can

show that there is no solution with five compound variables,

then the solution obtained by the ambiguity-based method [32]

is optimum. Assume that this function could be represented

with five compound variables (y1, y2, y3, y4, y5). In this case,

we have n = 8, p = 5, and the number of unknown coefficients

is np = 40. The condition that the values for (y1, y2, y3, y4, y5)
are all distinct for all registered vectors, produces

(
28
2

)
= 378

constraints. The SAT solver shows that there is no solution

(UNSAT). Thus, a 6-variable solution is an optimal.

Example 7.3: Consider the design of the 2-out-of-20 code

to binary converter. The weight of this function is k =
(
20
2

)
=

190. The ambiguity-based method [32] obtained a solution

with 9 compound variables. Theorem 4.1 shows that this

function requires at least 8 variables to represent it. If there

is no assignment that satisfies the constraints of Theorem 7.1,

then the solution obtained by [32] is optimum.

Assume that this function could be represented with 8

compound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,19x19 ⊕ a1,20x20

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,19x19 ⊕ a2,20x20

· · · · · ·
y8 = a8,1x1 ⊕ a8,2x2 ⊕ · · · ⊕ a8,19x19 ⊕ a8,20x20.

The values of vectors (y1, y2, . . . , y8) for the registered vectors

are

1) (a1,1 ⊕ a1,2, a2,1 ⊕ a2,2, . . . , a7,1 ⊕ a7,2, a8,1 ⊕ a8,2)
2) (a1,1 ⊕ a1,3, a2,1 ⊕ a2,3, . . . , a7,1 ⊕ a7,3, a8,1 ⊕ a8,3)

. . .
190) (a1,19⊕a1,20, a2,19⊕a2,20, . . . , a7,19⊕a7,20, a8,19⊕a8,20)

We need to check if there is an assignment for ai,j that

makes the values of these vectors distinct. Since the number of

registered vectors is k =
(
20
2

)
= 190, the number of constraint

is
(
190
2

)
= 17955. The total number of unknown coefficient is

np = 20×8 = 160, and the computation time is very long. To

show that there is no solutions(UNSAT), it took nearly one full

day. Thus, the 2-out-of-20 code to binary converter requires 9

variables.

Various methods can be used to reduce the search space.

For example, if we restrict the maximal compound degree t,
then the search space can be greatly reduced. Such a constraint

can be written as

t ≥
n∑

j=1

ai,j ,

for some appropriate choice for t. Also, the columns of the

coefficient matrix
[
ai,j

]
must be linearly independent. Such

restrictions can be represented by a set of equations.

VIII. COMPARISON OF MINIMIZATION METHODS

This part compares four different minimization methods.

1) Algorithm 3.1: The exact minimization method [24] to

reduce primitive variables (t = 1). In many cases, this

method finds a near minimum solution quickly, but takes

a considerable time to prove its minimality. We abort

the minimal cover in a time proportional to the time to

construct the covering table.

2) Algorithm 5.1: The ambiguity-based method [32] to

reduce compound variables with degree 2 ≤ t ≤ 6.

3) Algorithm 6.1: The polynomial-based method [1] im-

plemented by Sasao: It works only for two-valued input

variables, but is much faster than the Astola’s code.

4) Algorithm 7.1: The SAT-based method [44] that can

reduce the number of compound variables and prove
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TABLE 8.1
NUMBER OF VARIABLES TO REPRESENT RANDOMLY GENERATED

FUNCTIONS.

n k Exact Polyno
t = 1 p t

20 20 5.53 6.15 7.78
20 40 7.30 7.86 7.17
20 60 8.09 8.90 6.85
20 80 9.01 9.46 6.71
20 100 9.45 10.01 7.39
40 20 5.08 6.11 16.11
40 40 6.99 7.89 14.81
40 60 7.98 8.85 15.66
40 80 8.88 9.52 15.83
40 100 9.36 9.99 17.11
60 20 5.01 6.16 23.89
60 40 6.95 7.86 24.29
60 60 7.96 8.87 24.79
60 80 8.49 9.49 26.05
60 100 9.03 10.00 26.38

the minimality of the solutions. It works only for small

problems.

To compare the performance of the algorithms, we used

existing benchmark index generation functions [32].

A. Random Index Generation Functions

For different values of n and k, we generated 100 sample

functions, and minimized the variables. Table 8.1 shows the

results. n denotes the number of variables, and k denotes

weight of the function. Since the sample functions are different

from [1], the results are different. However, the differences are

small. The column headed by Exact was obtained by the exact

algorithm [24] using only primitive variables (i.e., t = 1).

The columns headed by Polyno denotes the results obtained

by the polynomial-based method. The column headed by

p denotes the average number of compound variables to

represent the functions, while the column headed by t denotes

the average compound degrees of the linear transformations.

The polynomial-based method required more variables with

larger compound degrees than the exact method using only

primitive variables. This is somewhat disappointing result. For

this class of functions, the exact method [24] is more suitable

than the polynomial-based method.

B. Constant-Weight Code to Binary Converters

The number of variables to represent an m-out-of-20 code

to binary number converter is investigated for different values

of compound degrees t, and for different values of m. The

number of registered vectors is k =
(
20
m

)
, and by Theorem 4.1,

the function requires at least q = 	log2(k + 1)
 variables.

Table 8.2 compares the results. When the compound degree

is one (t = 1), all the converters required 19 variables. In this

case, an exact method [24] was used to obtain the solutions.

For the columns with t ≥ 2, solutions were obtained by the

ambiguity-based method [32]. For m = 1, m = 2 and m = 3,

with the increase of the compound degree t, the necessary

number of variables decreased. The entries with * marks

denote optimum solutions proved by Theorem 4.1. The last

two columns show results obtained by the polynomial-based

method. The column headed by p shows the number of com-

pound variables obtained by the polynomial-based method. For

these functions, the polynomial-based method obtained very

TABLE 8.2
NUMBER OF VARIABLES TO REPRESENT m-OUT-OF-20 CODE TO BINARY

CONVERTER: AMBIGUITY AND POLYNOMIAL-BASED METHODS.

Exact Ambiguity − based[32] Polyno
m k t = 1 2 3 4 5 6 p t
1 20 19 14 10 8 7 6 ∗5 10
2 190 19 15 12 10 9 9 9 8
3 1140 19 17 14 12 ∗11 ∗11 ∗11 7
4 4845 19 17 16 16 16 16 15 4

* denotes optimal solution proved by Theorem 4.1.
TABLE 8.3

NUMBER OF VARIABLES TO REPRESENT m-OUT-OF-20 CODE TO BINARY

CONVERTER: SAT-BASED METHOD.

Function Exact SAT − based[44]
m k t = 1 2 3 4 5 6 7 8
1 20 #19 #13 #10 #8 #7 #6 #6 ∗5
2 190 #19 #14 #12 #10 #9 #9
3 1140 #19 #16 13 12 12 ∗11
4 4845 #19 #16 15 15 15 15

* denotes optimal solution proved by Theorem 4.1.
# denotes optimal solution proved by the SAT-based method.

good solutions quickly. The last column headed by t shows

the compound degrees for the solutions. The polynomial-based

method obtained solutions with larger compound degrees than

necessary.

Table 8.3 shows the result obtained by SAT-based method

[44]. Entries in boldface denote solutions improved by the

SAT-based method. Entries with # marks denote optimum

solutions proved by the SAT-based method.

C. IP Address Tables

Distinct IP addresses of computers that accessed our web

site over a period of a month were used. We considered four

lists with different values of k. Table 8.4 shows the results. The

original number of variables is n = 32. The first column shows

the number of registered vectors: k. The second column shows

the number of variables to represent the function, when only

the primitive variables are used (i.e., t = 1). For this column,

an exact method [24] was used to obtain solutions. The third

column (t = 2) shows the number of variables to represent

the function, when the variables with compound degrees up

to two are used. Other columns show the numbers of variables

for different values of t. The last two columns show the results

obtained by the polynomial-based method. As for the quality

of solutions, the polynomial-based method obtained solutions

comparable to t = 2 or t = 3 of the ambiguity-based method

[32]. However, the compound degrees are larger, which is a

disadvantage of the polynomial-based method.

D. Lists of English Words

We used three lists of English words: List A, List B, and List
C. The maximum number of characters in the word lists is 13,

but we only consider the first 8 characters. For English words

consisting of fewer than 8 letters, we append blanks to make
TABLE 8.4

NUMBER OF VARIABLES TO REPRESENT IP ADDRESS TABLE.

Exact Ambiguity − based[32] Polyno
k t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 p t

1670 18 17 16 16 15 15 17 12
3288 20 19 18 17 17 17 19 10
4591 21 20 19 18 18 18 20 8
7903 23 21 20 20 20 20 22 7
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TABLE 8.5
NUMBER OF VARIABLES TO REPRESENT LIST OF ENGLISH WORDS

Exact Ambiguity − based[32] Polyno
Name k t = 1 t = 2 t = 3 t = 4 t = 5 p t
ListA 1730 31 19 17 16 15 18 12
ListB 3366 31 21 19 17 17 19 15
ListC 4705 37 24 20 19 18 20 16

the length of words 8. We represent each alphabetic character

by 5 bits. So, in the lists, all the words are represented by

n = 40 bits. The number of words in the lists are 1730,

3366, and 4705, respectively. Within each word list, each

English word has a unique index, an integer from 1 to k,

where k = 1730 or 3360 or 4705. The numbers of bits for

the indices are 11, 12, and 13, respectively. Table 8.5 shows

the number of variables to represent the lists. For these data,

we could reduce many variables by using compound variables

with large t. The last two columns show the results with

the polynomial-based method. In this case, the polynomial-

based method obtained solutions comparable to t = 3 of the

ambiguity-based method [32]. Again, the compound degrees

obtained by the polynomial-based method are very large.

E. Computation Time

The ambiguity-based method [32] took 14.9 seconds to

derive a 16-variable solution1 for the minimization of the 4-

out-of-20 code to binary converter with t = 4.

As for the polynomial-based method, the author developed

a code that works only for two-valued input functions. To

minimize the variables for the 4-out-of-20 code to binary

converter by the polynomial-based method, this code took

249 milliseconds, while Astola’s original code [1] took 167

seconds. Thus, for this function, this code is about 670 times

faster than Astola’s code.

One of the most time-consuming problems among the

benchmark functions was the IP address table with k = 7903.

The exact method to minimize primitive variables [24] took

13.5 seconds to derive a 23-variable solution; the polynomial-

based method (this code) took 546 seconds to derive a 22-

variable solution; and the ambiguity-based method [32] took

2.7, 26.6, 199, 1153, and 10939 seconds, for t = 2, t = 3,

t = 4, t = 5 and t = 6, respectively. For the SAT-based

method, to prove that 2-out-of-8 code to binary converter

requires at least 6 variables (i.e., to show UNSAT) took 4004

seconds.

For the first three methods, we used a PC with INTEL Core

i5 (2.6 GHz), and 8GB RAM, on Windows 10 Professional

64-bit Operating System. For the SAT-based method [44], we

used a workstation with CPU:E5-2698 v3 (2.3GHz 16 cores)

×2, 256 GB memory, 1TB HDD, with CentOS 6.5 operating

system.

IX. OTHER WORKS

This part lists other works on index generation functions.

1We rewrote the code used in [32] to make it faster. So, the results here
are different from the results in [32].

A. Minimization of variables

Logic function (pioneering works) [5], [6], [19].

Heuristic method [25], [41].

Iterative improvement [30], [42].

Fast algorithm [11].

Using autocorrelations [37], [49].

Using entropy functions [51].

Using non-linear transformations [2].

Using adder [33], [36].

Extension to multi-valued inputs [34]. [35].

B. Realization with multiple IGUs

Architecture [26], [45], [50].

Optimization using graph theory [8], [9].

C. Functional decomposition

Fast algorithms [46] [47], [48].

D. Analysis

[3], [19], [27], [39], [40], [43], [52].

E. Architecture

[12], [21], [22], [23], [50].

F. Applications

Virus scanning engine [13], [15].

IP look up [14], [16].

G. Survey

[20], [28], [29], [31], [38].

X. CONCLUSION AND COMMENTS

In this paper, we surveyed minimization methods for the

number of variables in incompletely specified index generation

functions.

For the minimization of primitive variables only, the exact

minimization method [24] is fast. Its memory requirement

is O(nk2) for an n variable index generation function with

weight k.

For the minimization of compound variables with degrees

up to t, where 2 ≤ t ≤ 6, the ambiguity-based method [32] is

practical. Its memory requirement is O(ntk), where t denotes

the degree of compound variables. When the compound degree

t is at most two or three, the computation time and memory

requirement are moderate, and the cost for the linear circuit

is also small.

The polynomial-based method [1] is quite different from

existing methods. It quickly obtains a solution with a small

number of variables, but the compound degrees tend to be very

large. Its memory requirement is O(nk). For m-out-of-n code

to binary converters, the polynomial-based method obtains

very good solutions. When k is large, it also obtains solutions

with fewer variables than the ambiguity-based method2[32].

The SAT-based method [44] is quite time and memory

consuming to reduce compound variables, and can solve only

2Due to the space limitation, experimental results are omitted.
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small problems. First, we used the ambiguity-based method

to obtain a near minimum solution. Proving its minimality by

a SAT solver (i.e., to show UNSAT) takes much longer time

than finding solutions (i.e., to show SAT). In many cases, we

have to abort the computation after a fixed CPU time. In such

a case, we cannot guarantee the minimality of the solutions.

The SAT-based method can be used to evaluate the quality of

heuristic minimization programs.
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