
A Random Forest using a Multi-valued Decision
Diagram on an FPGA

Hiroki Nakahara, Tokyo Institute of Technology, Japan

Akira Jinguji, Tokyo Institute of Technology, Japan

Simpei Sato, Tokyo Institute of Technology, Japan

Tsutomu Sasao, Meiji University, Japan

Abstract—A random forest (RF) is a kind of an ensemble
machine learning algorithm used for a classification and a
regression. It consists of multiple decision trees that are built from
randomly sampled data. The RF has a simple, fast learning, and
identification capability compared with other machine learning
algorithms. It is widely used for various recognition systems. The
conventional RF consisted of binary decision trees (BDTs), while
in this paper, we used a multi-valued decision diagrams (MDDs).
In the MDD, each variable appears only once on a path, however,
in the BDT, some variable may appear multiple times. Since
the path length is short in the MDD, it can be evaluated at a
high speed. The disadvantage is that the number of nodes in
the MDD increases with O(2N), where N denotes the number
of input variables. Fortunately, random forests encourage to use
the small number of N for each tree in order to avoid over
fitting. Therefore, in several data sets used in the experimental,
the number of nodes did not increase even if the MDD was
used. To reduce the development time, the Altera SDK for
OpenCL (AOCL), a kind of a high-level synthesis tool, was used.
To accelerate the RF classification using the AOCL, we propose
the fully pipelined architecture to increase the memory bandwidth
using on-chip memories on the FPGA. Also, we apply optimal
precision fixed point representation instead of 32 bit floating point
one. We compared the performance with the CPU and the GPU
implementations. As for the LPS (lookups per second), the FPGA
realization was 10.7 times faster than the GPU one, and it was
14.0 times faster than the CPU one. As for the LPS per power
consumption, the FPGA realization was 61.3 times better than
the GPU one, and it was 12.1 times better than the CPU one.

I. INTRODUCTION

A. Acceleration of the Random Forest (RF)

A decision tree (DT) based method is a popular method
for various machine learning tasks. When a tree is grown very
deeply to learn highly irregular patterns, it overfits training
sets. In that case, it has low bias, while it has very high
variance. Since the DT partitions the data set with a single
feature variable, it often misclassifies out-lier labels. A ran-
dom forest (RF) based method [5] is an ensemble learning
method for a classification and a regression, and it consists
of multiple binary decision trees (BDTs). For learning, each
decision tree is built by different (randomized) samples from
the same training set, with the goal of reducing the variance,
in order to reduce the variance. Since the RF uses training
feature variables selected at randomly sampled, BDTs with
low correlation are built. As a result, it improves accuracy and
versatility compared with a single DT based classification.

The RF is widely used for a classification. For example,
they are used for a key point matching [19], a segmentation [3],

a pedestrian detection [13], [10], a human pose estimation [23],
a face direction estimation [11], and an IP address search for
the Internet [15]. These applications are demanded to be recog-
nized in real time. However, since the classification speed with
the CPU is too slow, the hardware acceleration is necessary.
Also, since it is often used in embedded systems, a low-power
consumption is desired. However, a single instruction multiple
data (SIMD) architecture, typified by GPU, is unsuitable for
the RF with three reasons:

1. Higher accuracy precision:
To evaluate BDTs in the RF, each node in the BDT
can be evaluated by an if-then-else statements. A
conditional expression in the if-then-else statement
compares an input value with a constant value, which
is represented by a floating point representation. Al-
though the GPU supports a double precision floating
point, such highly precision is not required for the RF
classification. Therefore, a high-precision arithmetic
circuit is inefficient both the amount of hardware and
power consumption.

2. Uniformly processing (CUDA) cores:
The GPU runs the SIMD operations, that is, having
a large amount of uniformly processing core. These
cores are specialized in data parallel computation.
However, the RF consists of BDTs with a different
size, that causes an unbalanced computation. Since a
warp divergent is frequently occur, computation time
would be bound by the BDT which has a longest
path.

3. Higher cost for the all-to-all communication:
The GPU can be performed at a relatively high speed
communication between near processing cores with
the same local memory, while its communication
penalty is large for the all-to-all communication.
Since a RF requires the whole of the majority detec-
tion after the evaluation of all the BDTs, the all-to-all
communication would always occur.

B. FPGA Realizations of the RF

Since the GPUs have above demerits, the FPGAs are
suitable to accelerate the RF. By using the FPGA, it is
possible to configure a dedicated all-to-all communication
circuit, heterogeneous cores for different size of a BDT, and
an appropriate variable bit length circuit. Becker et al. used
BDTs to accelerate object tracking. They focused on heavily
on parallelizing the classification, and converted the input data
into a dedicated representation in the FPGA [4]. Essen et

2017 IEEE 47th International Symposium on Multiple-Valued Logic

2378-2226/17 $31.00 © 2017 IEEE

DOI 10.1109/ISMVL.2017.40

266

al. showed a pipelined architecture and a single-instruction
multiple thread (SIMT) algorithm for the RF on FPGA. Also,
they compared the FPGA based implementation with the multi-
core CPU and the GPU [12]. Oberg et al. implemented the
RF on the FPGA with the Kinect depth-image sensor for
the Forest Fire pixel classification algorithm [17]. However,
the conventional realizations are designed by the RTL-level
description. Compared with the software-based design, it takes
an enormous amount of development time [1]. As for the
RF design, since its structure is completely different for each
dataset, it is not practical to tune the architecture by the RTL-
level description. We have proposed a fast random forest which
is suitable for the Altera SDK for OpenCL [20]. However,
more acceleration is necessary to keep up with the real time
recognition for an embedded system.

C. Contributions of the Paper

In the paper, we propose the multi-valued decision dia-
gram (MDD) based classification instead of the BDT based
one, which is a conventional data structure. Typically, in the
MDD based one, since its path includes a variable at a time, it
is faster than the BDT based one. Contributions of the paper
are as follows:

1 We proposed an MDD based RF, while the conven-
tional RF consisted of BDTs. In the MDD, each
variable appears only once on a path, however, in the
BDT, the same variable may appear several times.
Since the path length is short for the MDD, it can
be evaluated at a high speed. The disadvantage is
that the number of nodes in the MDD tends to
increase with O(2N), where N denotes the number
of variables. Fortunately, random forests encourage
to use the small N for each tree in order to avoid
over fitting. Therefore, in several data sets used in the
experimental, the number of nodes did not increase
even if the MDD was used.

2 We compared the performance with the software
based realization, such as the CPU and the GPU.
Compared with the GPU realization, as for the LPS,
the FPGA realization was 10.7 times faster than the
GPU one, and it was 14.0 times faster than the CPU
one. As for the LPS per power consumption, the
FPGA realization was 61.3 times better than the GPU
one, and it was 12.1 times better than the CPU one.

3 We opened the Python based code generation
flow (RF2AOC).

The rest of the paper is organized as follows: Chapter 2
introduces the Altera SDK for OpenCL, and compares with
the GPU based realization; Chapter 3 introduces the random
forest (RF); Chapter 4 introduces the multi-valued decision
diagram (MDD); Chapter 5 proposes an acceleration for the
RF using MDDs, and shows its tool flow; Chapter 6 shows the
experimental results; and Chapter 7 concludes the paper.

II. ALTERA SDK FOR OPENCL

The OpenCL is a framework for a parallel programming
intending to the CPUs and the GPUs. With the OpenCL, a
programmer can easily realize a parallel computation based
on task parallelism and data parallelism. In recent years, the

Global Memory

PE PE PE

Private

Memory

..

Work Item

Local Memory

PE PE PE

Private

Memory

..

Work Item

..

Work Group

PE PE PE

Private

Memory

..

Work Item

Local Memory

PE PE PE

Private

Memory

..

Work Item

..

Work Group

..

Host Program

PCI Express

Fig. 1. Memory model for the OpenCL.

D1 D2 D3 D4 D5

↓ ↓ ↓ ↓ ↓

PE PE PE PE PE

↓ ↓ ↓ ↓ ↓

Wide Band

DDR4/DDR5

Fig. 2. Architecture model for the
OpenCL on a GPU.

DDR3

PE D1 D2 D3 D4

PE D1 D2 D3 D4

PE D1 D2 D3 D4

PE D1 D2 D3 D4

Narrow

Band

Fig. 3. Architecture model on an
FPGA.

Altera Corp. has developed the Altera SDK for OpenCL for the
FPGA development environment. However, when we directly
applied the GPU programming model to the Altera SDK for
OpenCL, since the target architecture are different, it is hard
to accelerate the application.

Here, we explain the programming model for the Altera
SDK for OpenCL. Fig. 1 shows the memory model for the
standard OpenCL [18]. The global and constant memories
are accessible from all the work-items. The global memory
is possible to read and write, while the constant one is read-
only. The local memory is a shared one by a work-group, and
the private memory is occupied by each work-item. Fig. 2
shows an architecture model for the GPU, while Fig. 3 shows
that for the FPGA. For the GPUs for the OpenCL, it runs the
threads in the work-group to the data parallel model by using
a large number of CUDA cores and wide band data transfer
memory such as DDR5 off-chip memories. On the other hand,
for the FPGA, since data communication bandwidth, that is,
that for off-chip memories are narrow, it tends to configure the
pipeline model in the work-group. When the pipeline stall is
free, communications with the off-chip memory are only input
and output of the pipeline. Therefore, the FPGA can perform
a high-throughput operation even if it has a narrow band to
the off-chip memories. Fortunately, since the FPGA has more
on-chip memories than the GPU, data transfer between the
pipeline stages is often done on the FPGA. The Altera SDK for
OpenCL supplies a channel to make an on-chip communication
between pipeline stages. Furthermore, another advantage of the
FPGA has an ability to realize a customized pipeline stage (in
other words, it can realize a heterogeneous core) in parallel.
When the latency of each parallel operation is different, its
computation time for the GPU would be bound by the longest
one. On the other hand, since the hardware resources in the
FPGA are appropriately distributed, it is possible to realize a

267

1.00

0.53

0.29

0.00

0
.0

9

0
.6

3
0

.7
1

C1

C2 C1

C

1
C2 C1

X1

X2

X2<0.53?

X2<0.29? X2<0.09?

X1<0.63? X1<0.71?

Y N

N

NN

NY

Y

Y

Y

C1

C1C2 C1C2

C1

Fig. 4. Example of a binary decision tree (BDT).

Tree 1 Tree 2 Tree b

C1 C2

C1

Voter

C1

X (Input)

...

Fig. 5. Example of a random forest (RF).

heterogeneous parallel architecture with uniform latency.

Another feature of the Altera SDK for OpenCL is that it
supplies the board support package (BSP) for recommended
FPGA boards. The BSP prepares the IP cores for the PCI
express and external memories to bridge host program and
the kernel program. For the conventional FPGA design, since
the programmer designed them in the RTL-level description,
it could not respond to frequent changes in long term design.
By using the Altera SDK for OpenCL, it can generate the
configuration data that automatically connects with the user
program. Therefore, since it is possible to reduce design
time remarkably, the programmer can concentrate on tuning
architectures.

III. RANDOM FOREST (RF)

A BDT tree based method is a popular for various machine
learning tasks. When a tree is grown very deep to learn highly
irregular patterns, it overfits training sets. In that case, it has
low bias, while it has very high variance. Fig. 4 shows an
example of a BDT which classifies a data set. In Fig. 4, Xi

denotes a feature variable for the dataset, and Ci denotes a
label. Since the BDT partitions the data set using a single
feature variable, it often misclassifies out-lier labels.

A random forest (RF) based method is an ensemble
learning method for a classification and a regression, and it
consists of multiple BDTs. At learning, each BDT is built
by different (randomized) sub-sampling data from the same
training set in order to reduce the variance. Fig. 5 shows an
example of the RF, which consists of b BDTs and a voter.
First, BDTs branch corresponding to given feature variables.
Then, they output the matched label. Next, the voter performs a
majority decision of the labels from BDTs. Finally, it detects

the most frequent label as a classification result. Since the
RF uses training feature variables selected at random sampled,
BDTs with low correlation are built. As a result, it improves
accuracy and versatility.

Followings are an algorithm to built the RF from a given
dataset.

1. Randomly selects b sub-samples from given
dataset (boot strap sampling)

2. Learns b BDTs from b sub-samples
3. Creates a node to reach the specified number of nodes

Nmin

3.1. Selects r samples at a random
3.2. Computes a constant values for if-then-else state-

ments in a node, which classifies sub sampling data
4. Terminate

The advantages of the RF are shown as follows [5]:

1. Classification accuracy is high, and it operates cor-
rectly even if the feature variables are from several
hundreds to thousands

2. It is possible to estimate the importance of the feature
variables for each label variable

3. It effectively works with dataset even if it lacks
several feature variables

4. The number of individual error are maintained even
in unbalanced dataset

On the other hand, the disadvantages are follows:

1. Too deep BDTs fall into over fitting
2. Classification accuracy is low with a small number

of learning data

In addition, classification accuracy is greatly affected by
hyper parameters. By using a grid search algorithm and
encourage parameters 1, the RF can be built with a relatively
appropriate hyper parameters.

IV. MULTI-VALUED DECISION DIAGRAM

A binary decision diagram (BDD) [6], [16] is obtained by
applying Shannon expansions repeatedly to a logic function
f . Each non-terminal node labeled with a variable xi has two
outgoing edges which indicate nodes representing cofactors of
f with respect to xi. A multi-terminal BDD (MTBDD) [7]
is an extension of a BDD and represents an integer-valued
function. In the MTBDD, the terminal nodes are labeled by
integers.

Let X = (X1, X2, . . . , Xu) be a partition of the input
variables, and |Xi| be the number of binary variables in Xi.
Xi is called a super variable. When the Shannon expansions
are performed with respect to super variables Xi, where
|Xi| = k, all the non-terminal nodes have 2k edges. In
this case, we have a multi-valued multi-terminal decision
diagram (MTMDD(k)) [14]. Note that, an MTMDD(1) cor-
responds to an MTBDD. In the paper, we simply call the
MDD (k) as the MTMDD (k). The width of the MDD (k)
at the height i is the number of edges crossing the section

1For example, when the number of BDTs is N , its depth is encouraged to√
N [5].

268

X2<0.53?

X2<0.29? X1<0.09?

Y N

NNY Y

X1<0.63? X1<0.71?

NNY Y

C1C2 C1C2

C1C1

X2

X1 X1

<0.29

<0.53

<1.00

<1.00

<0.71
<0.71

<1.00

<0.63

C1 C2

Fig. 6. Comparison the BDT with the MDD.

float X1, X2;

(set inputs)

result = tree(X1, X2);

__kernel int tree(

__global const float X1,

__global float X2){

(fetch inputs)

if(X2 < 0.53){

if(X2 < 0.29){

return C1;

} else {

if(X1 < 0.63){

return C2;

} else {

return C1;

}

}

...

int X;

(set inputs)

result = tree(X & 0x3FFF,

(X >> 16) & 0x3FFF);

__kernel int tree(

__global const int X1,

__global int X2){

(fetch inputs)

if(X2 < 4341){ // 0.53*213

if(X2 < 2375){ // 0.29*213

return C1;

} else {

if(X1 < 5160){ // 0.63*213

return C2;

} else {

return C1;

}

}

..

Host

Program

Kernel

Program

32bit floa�ng point 14bit fixed point

Fig. 7. Example of a fixed point representation.

of the MDD (k) between super variables Xi+1 and Xi, and
denoted by μi, where the edges incident to the same node are
counted as one.

Definition 4.1: In the MDD, a sequence of edges and non-
terminal nodes leading from the root node to a terminal node
is a path.

Example 4.1: Fig. 6 shows an example of the MDD cor-
responding to the BDT shown in Fig. 4.

In this paper, we propose the dedicated hardware to eval-
uate multiple MDDs on the FPGA. Since it realizes by the
fully pipeline circuit, if the evaluation time for all the MDD
nodes are the same, then it is proportional to the longest path
length (LPL). We will show that the LPL for the MDD based
one is shorter than that for the BDT based one.

V. ACCELERATION TECHNIQUES USING ALTERA SDK
FOR OPENCL

A. Fixed Point Representation

As shown in Figs. 2 and 3, bandwidth between the off-chip
memory and the kernel on the FPGA becomes a bottleneck.
Each node in the BDT can be expressed by if-then-else
statements. For many of random forest software libraries, a
conditional expression in the if statement is a comparison of a
feature variable with a constant value which is represented by a
32-bit floating point representation. In this paper, we use an n-
bit signed fixed point representation instead of 32-bit floating
point one. Fig. 7 shows the pseudo codes for the BDT using
a floating point and 14-bit signed fixed point representation.
Note that, in the right side pseudo code, the most signification

X1

X2

c1 c2

c3

X2

c4 X3

c5 c6

Tree1 Tree2

X1

X2

X2

X3

c3

c1 c2

c4

c5 c6

Tree1 Tree2

Fig. 8. Example of a multiplexer tree realization.

X1

X2

X2

*

c1 c4

Voter

*

X3

c2 c4

c3 c5 c3 c6

__kernel int RF(

__global float X1, X2, X3){

(fetch inputs)

for(int i = 0; i < 2; i++){

if(i == 0) class = tree1(X1,X2,X3);

else class = tree2(X1,X2,X3);

vo�ng[class]++; // voter

}

}

..

Fig. 9. Sequential realization. X1 X2 X3

c3

c1 c2

c4

c5 c6

Voter

Voter

Register

__kernel int RF(

__global float X1,X2,X3){

(fetch inputs)

#pragma unroll 2

for(int i = 0; i < 2; i++){

if(i == 0) class = tree1(X1,X2,X3);

else class = tree2(X1,X2,X3);

vo�ng[class]++; // voter

}

}

..

Fig. 10. Fully pipeline
realization.

bit (MSB) represents a sign, while latter bits represent a
number. For the OpenCL standard, although it supports only
8, 16, 32, and 64 bit integers, the Altera SDK for OpenCL
supports a variable bit integers by using an appropriate mask.
Depending on the bit width, a fixed point representation lacks
accuracy compared with a floating point one. Thus, a fixed-
point representation may cause misclassification. However,
since it compresses the bandwidth of the off-chip memory
to n

32 , it can accelerate the classification. Furthermore, since
multiplexer trees for a fixed point are simplified, they are faster
and smaller than floating point based multiplexers.

269

Off-line learning by scikit-learn (so�ware)

Training

Dataset

scikit-learn

Hyper

Parameter

(by Grid-

search)

Random

Forest

Host

Code

Kernel

Code aocx

Binary

Host

PC

FPGA

Board

aoc

gcc

RF2AOC

Fig. 11. Proposed tool flow.

TABLE I. DATASET USED IN THE EXPERIMENT.

Dataset Hyper Parameters

Name #Rules #feat. #Class #Trees Depth Max#feat.

Dermatology 366 33 6 30 5 7
Contraceptive Method 1473 9 3 25 5 5
Glass Identification 214 10 7 30 7 2
Hayes-Roth 160 5 3 15 7 4
Hepatitis 155 19 2 30 5 3
Ionosphere 351 34 2 25 15 10
Iris 150 4 3 50 20 2

B. Pipeline Stages by a Loop Unrolling

For the GPU, as shown in Fig. 2, its performance is
degraded when all-to-all communications occur. Therefore, in
our implementation, we connect BDTs in series to form a
deep pipeline with on-chip memory. Also, we realize the voter
by the pipeline circuit. Fig. 8 shows an example of BDTs,
and their hardware realization by a multiplexer tree. When
the BDTs is written by a for statement, as shown in Fig. 9,
the Altera SDK for OpenCL sequentially traces BDTs by a
shred multiplexer circuit. On the other hand, we can increase
the throughput by using an #pragma unroll which expands a
sequential circuit to a pipelined one. Fig. 10 shows a pipeline
circuit with an #pragma unroll. In the pipeline circuit, registers
and voters are inserted between the multiplexer trees. In that
case, the number of registers and the memories tend to be
increased, and they are realized by the on-chip memories.
Since communication with the off-chip memory does not
occur, it can accelerate throughput.

C. Proposed Tool Flow

Fig. 11 shows the proposed tool flow. First, we use the
scikit-learn software [22] to learn the RF from given dataset.
Note that, we find the optimum hyper parameter set by a grid-
search algorithm. Then, we generate the host code and the
kernel code for the Altera SDK for OpenCL by using the
RF2AOC which is written by Python script. The generated
codes are converted into the bit stream (aocx) file by using
the Altera SDK for OpenCL. Since the proposed tool flow
automatically generates the bit stream from given dataset, we
can concentrate the parameter tuning to accelerate the RF.

VI. EXPERIMENTAL RESULTS

A. Implementation Environment

We implemented the MDD based random forest for the
UC Irvine machine learning repository [24] to the Teraisc Inc.
DE5-NET FPGA board, which has an Altera Corp. Stratix
V A7 FPGA, two DDR3 SO-DIMMs, and the PCI express

TABLE II. COMPARISON THE MDD BASED WITH THE BDT BASED.

BDT MDD Ratio

Name Path Len. #Nodes Max. Path Path Len. #Nodes Path Nodes

Dermatology 720 676 15 322 118336 2.2 175.1
Contraceptive Method 600 1055 9 198 7360 3.0 7.0
Glass Identification 952 1260 10 268 17204 3.6 13.7
Hayes-Roth 480 577 5 73 448 6.6 0.8
Hepatitis 720 1040 15 357 145664 2.0 140.1
Ionosphere 1196 1077 20 381 671744 3.1 623.7
Iris 1056 777 4 199 517 5.3 0.7

TABLE III. COMPARISON WITH THE CPU AND THE GPU.

GPU@86W CPU@13W FPGA@15W
GeForce Titan Xeon (R) E5607 Stratix V A7

Name LPS LPS/W LPS LPS/W LPS LPS/W

Dermatology 336.2 3.9 211.6 16.3 3221.2 214.7
Contraceptive Method 521.9 6.1 286.4 22.0 10924.3 728.3
Glass Identification 726.7 8.5 587.5 45.2 6442.3 429.5
Hayes-Roth 1512.9 17.6 1165.5 89.7 12884.6 859.0
Hepatitis 739.1 8.6 662.7 51.0 8209.9 547.3
Ionosphere 821.0 9.5 595.9 45.8 9663.5 644.2
Iris 446.6 5.2 436.7 33.6 4831.7 322.1

Gen3. For the host PC, we used the Intel’s Xeon (R) E5607
Processor (2.26 GHz, 4 cores) with 32 GB DDR3 off-chip
memory, and CentOS 6.4 (64 bit version) operating system.
Table I shows the used dataset and parameters for them. Note
that, to find the optimum parameter set, we used a grid search
algorithm which is available in scikit-learn.

B. Misclassification Rate for Fixed Point Representation

We changed the number of bits n for an n-bit fixed
point representation in the conditional constant of if-then-else
statements of the MDD. Then, we obtained misclassification
rate compared with a 32-bit floating point representation.
Fig. 12 compares of misclassification rate for n-bit fixed point
representation. As shown in Fig. 12, as for the small number
of n, misclassification rate tends to be large. Thus, for the
implementation, we choose appropriate bits for a fixed point
representation.

C. Comparison of the MDD based with the BDT based

Table II compares the BDT with the MDD. In the MDD,
since each variable appears only once in a path, the path length
is from 2.0 to 6.6 times shorter than that of BDTs. Since the
number of nodes of the BDT is O (N), the number of nodes
for the MDD (k) increases with O(kN). Thus, a data set with
a longer path length (Dermatology, Hepatitis, and Ionosphere)
has increased the number of nodes by 140 to 623 times. On
the other hand, the number of nodes decreased in the data
set (Iris, and Hayes Roth) with shorter path length. From these
results, to generate a random forest using the MDD, we should
generate many MDDs with shorter path lengths.

D. Comparison with Other Platforms

As for the lookups per second (LPS) and the power
consumption efficiency (LPS/W), we compared the FPGA with
the CPU and the GPU. Fig. 13 shows the execution flow used
in the experiment. As for the CPU platform, we used the
Intel’s Xeon (R) E5607 Processor (2.26GHz, 4 cores) with
32GB DDR3 off-chip memory, and Ubuntu 14.04 LTS (64 bit
version) operating system. To generate the executable code,

270

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

6 7 8 9 10 11 12 13 14

M
is

cl
a

ss
ifi

ca
�

o
n

 R
a

te
 [

%
]

n-bit Fixd Point Precision

Dermatology

Arrhythmia

Contracep�ve Method Choice

Glass Iden�fica�on

Hayes-Roth

Hepa��s

Ionosphere

Iris

Fig. 12. Misclassification rate for n-bit fixed point representation.

Pre-learned

Random

Forest

C-

Code

CUDA

Code

Binary

Binary CPU

GPU

Cython gcc

CUDAT nvcc
Binary Host

PC

Fig. 13. Execution flow for the CPU and the GPU.

first, we generated the RF by the scikit-learn with the same pa-
rameters. Then, we converted the RF to C-codes by Cython [8],
and compiled to executable code by gcc compiler. As for the
GPU platform, we used the nVidia Geforce Titan (876 MHz,
2,496 CUDA cores, and 6GB DDR5 off-chip memory) with
the same processor and the main memory running on the
Ubuntu 14.04 LTS. To generate the executable code, first, we
generated the RF by the scikit-learn, then, we used the CUDA
Tree (CUDAT) [9] to generate the executable code. To measure
the LPS, we used 10,000 random test vectors, while to measure
the power consumption excluding the idle power, we inserted
the power measurement instrument between the host PC and
the power source. As for the FPGA realization, from above
experiments, we set appropriate number of bits and unrolls.

Table III compares the performance with the CPU and the
GPU realizations. Compared with the GPU realization, as for
the LPS, the FPGA realization was 10.7 times faster than the
GPU one, and it was 14.0 times faster than the CPU one.
As for the LPS per power consumption, the FPGA realization
was 61.3 times better than the GPU one, and it was 12.1 times
better than the CPU one.

VII. CONCLUSION

To reduce the development time and to archive the high-
speed classification, we used MDD based random forest with
the Altera SDK for OpenCL. To accelerate the RF classifica-
tion, we used the fully pipelined architecture to increase the
memory bandwidth through on-chip memories on the FPGA.
Also, we applied optimized bit fixed point representation
instead of 32 bit floating point one. In the MDD, since each
variable appears only once in a path, the path length was from
2.0 to 6.6 times shorter than the BDTs. To generate a random

forest using the MDD, we should generate many MDDs with
shorter path length. We compared the performance with the
CPU and the GPU implementations, As for the LPS (lookups
per second), the FPGA realization was 10.7 times faster than
the GPU one, and it was 14.0 times faster than the CPU one.
As for the LPS per power consumption, the FPGA realization
was 61.3 times better than the GPU one, and it was 12.1 times
better than the CPU one.

VIII. ACKNOWLEDGMENTS

This research is supported in part by the Grants in Aid
for Scientific Research of JSPS, an Accelerated Innovation
Research Initiative Turning Top Science and Ideas into High-
Impact Values program (ACCEL) of JST, and Altera Corp.
University Program.

REFERENCES

[1] M. S. Abdelfattah, A. Hagiescu and D. Singh, “Gzip on a chip: high
performance lossless data compression on FPGAs using OpenCL,” Int’l
Workshop on OpenCL 2013 and 2014 (IWOCL), No. 4, 2014.

[2] Altera Corp., “Altera SDK for OpenCL,” http://www.altera.com/
[3] Y. Amit and D. Geman, “Shape quantization and recognition with

randomized trees,” Neural Computation, Vol. 9, 1996, pp. 1545-1588.
[4] T. Becker, Q. Liu, W. Luk, G. Nebehay and R. Pflugfelder, “Hardware-

accelerated object racking,” Computer Vision on Low-Power Reconfig-
urable Architectures Workshop, 2011.

[5] L. Breiman, “Random forests,” Machine learning, Vol. 45, No. 1, 2001,
pp. 5-32.

[6] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. on Comput., Vol. C-35, No. 8, pp. 677-691, 1986.

[7] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large Boolean functions with applications to
technology mapping,” Design Automation Conference (DAC), pp. 54-
60, 1993.

[8] “Cython: C-Extensions for Python,” http://cython.org/
[9] W. T. Lo, Y. S. Chang, R. K. Sheu, C. C. Chiu and S. M. Yuan, “CUDT:

A CUDA based decision tree algorithm,” The Scientific World Journal,
Vol. 2014, No. 745640, 2014, pp. 1-12.

[10] T. Danhang, Y. Liu and T. K. Kim, “Fast pedestrian detection by
cascaded random forest with dominant orientation templates,” BMVC,
2012, pp. 58.1-58.11.

[11] M. Dantone, J. Gall, G. Fanelli and L. V. Gool, “Real-time facial feature
detection using conditional regression forests,” IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2012, pp. 2578-2585.

[12] B. V. Essen, C. Macaraeg, M. Gokhale and R. Prenger, “Accelerating
a Random Forest Classifier: Multi-Core, GP-GPU, or FPGA?,” it
IEEE Annual Int’l Symp. on Field-Programmable Custom Computing
Machines (FCCM), 2012, pp. 232-239.

[13] S. Hinterstoisser, V. Lepetit, S llic, P. Fua and N. Navab, “Dominant
orientation templates for real-time detection of texture-less objects,”
CVPR, 2010.

[14] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Multi-valued decision diagrams: Theory and applications,” Multiple-
Valued Logic: An International Journal, Vol. 4, No. 1-2, pp. 9-62, 1998.

[15] H. Le, W. Jiang and V. K. Prasanna, “A SRAM-based architecture for
Trie-based IP lookup using FPGA,” FCCM, 2008, pp. 33-42.

[16] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD Foundations and Applications, Springer, 1998.

[17] J. Oberg, K. Eguro, R. Bittner and A. Forin, “Random decision
tree body part recognition using FPGAs,” The Int’l Conf. on Field
Programmable Logic and Applications (FPL), 2012, pp. 330-337.

[18] “The OpenCL specification, version 1.2,”
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[19] M. Ozuysal, M. Calonder, V. Lepetit and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 32, No. 3, 2010, pp. 448-461.

[20] H. Nakahara, A. Jinguji, T. Fujii, and S. Sato, “An Acceleration
of a Random Forest Classification using Altera SDK for OpenCL,”
Int’l Conf. on Field-Programmable Technology (FPT), (accepted for
publication).

[21] R. Narayanan, D. Honbo, G. Memik, Al Choudhary and J. Zambreno,
“An FPGA implementation of decision tree classification,” Design
Automation and Test Europe Conference (DATE), 2007, pp.1-6.

[22] “Scikit-leran: Machine Learning in Python,” http://scikit-
learn.org/stable/

[23] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman and A. Blake, “Reali-time human pose recognition in parts
from single depth images,” CVPR, Vol. 2, 2011, pp. 1297-1304.

[24] “UCI Machine Leraning Repository,”
http://archive.ics.uci.edu/ml/datasets.html

271

