
An Exact Optimization Algorithm for Linear Decomposition of
Index Generation Functions

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper proposes an exact optimization algorithm
based on a branch and bound method for linear decomposi-
tion of index generation functions. The proposed algorithm
efficiently finds the optimum linear decomposition of an index
generation function by pruning non-optimum solutions using
effective branch and bound strategies. The branch strategy is
based on our previous heuristic [2] using a balanced decision
tree, and the bound is based on a lower bound on the number
of variables needed for linear decomposition. Experimental
results using a benchmark index generation function show
its optimum linear decompositions and effectiveness of the
strategies.

Index Terms—Index generation functions; linear decompo-
sition; incompletely specified functions; logic design; exact
optimization algorithm; branch and bound method.

1. Introduction

Pattern matching and text search are basic operations
used in many applications, such as detection of computer
viruses and packet classification. These operations can be
logically modeled as index generation functions [4], [5].
Since index generation functions are frequently updated
particularly in the above network applications, a memory-
based design of index generation functions is desired.

To design index generation functions using mem-
ory efficiently, a design method using linear decomposi-
tion [1], [3] of index generation functions has been pro-
posed [7]. This method realizes an index generation func-
tion f (x1,x2, . . . ,xn) using two blocks L and G, as shown
in Fig. 1. The first block L realizes linear functions yi

Linear functions General function

q
L G

x

f

1

x2

xn

y1

y2

yp

Figure 1. Linear decomposition of an index generation function.

(i = 1,2, . . . , p) with EXOR gates, registers, and multiplex-
ers, and the second one G realizes a general function with
a (2p×q)-bit memory [7], where p is the number of linear
functions, and q is the number of bits needed to represent
function values.

In this design method, minimization of p is important to
reduce size of the memory for G. Thus, various minimiza-
tion algorithms have been proposed [2], [6], [7], [9], [10],
[11], [12]. Most of them are heuristic methods to find a good
linear decomposition of large index generation functions
efficiently. However, devising an efficient exact optimiza-
tion algorithm is not only academically but also practically
significant. Although an exact optimization algorithm using
a SAT solver, in which the problem is reduced to a SAT
problem, has been proposed [11], [12], as far as we know,
few dedicated algorithms for linear decomposition of index
generation functions have been proposed.

Hence, in this paper, we propose an exact optimization
algorithm based on a branch and bound method dedicated to
linear decomposition of index generation functions. The pro-
posed algorithm efficiently finds the optimum linear decom-
position by pruning non-optimum solutions using effective
branch and bound strategies. The branch strategy is based
on an efficient heuristic using a balanced decision tree [2],
and the bound is based on a lower bound on the number of
variables for linear decomposition.

The rest of this paper is organized as follows: Section 2
defines index generation functions and linear decomposi-
tion. Section 3 formulates the minimization problem for the
number of linear functions, derives a lower bound on the
number of variables for linear decomposition, and shows our
exact optimization algorithm to solve the problem. Section 4
shows experimental results using some benchmark index
generation functions, and Section 5 concludes the paper.

2. Preliminaries

We briefly define index generation functions [4], [5] and
their linear decompositions [1], [3], [7].
Definition 1. An incompletely specified index genera-

tion function, or simply index generation function,
f (x1,x2, . . . ,xn) is a multi-valued function, where k as-
signments of values to binary variables x1,x2, . . ., and

2017 IEEE 47th International Symposium on Multiple-Valued Logic

2378-2226/17 $31.00 © 2017 IEEE

DOI 10.1109/ISMVL.2017.56

161

TABLE 1. EXAMPLE OF INDEX GENERATION FUNCTION.

Registered vectors indices
x1 x2 x3 x4 f
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 1 0 1 4

xn map to K = {1,2, . . . ,k}. That is, the variables of f
are binary-valued, while f is k-valued. Further, there is
a one-to-one relationship between the k assignments of
values to x1,x2, . . ., and xn and K. Other assignments are
left unspecified. The k assignments of values to x1,x2, . . .,
and xn are called a set of registered vectors. K is called
a set of indices. k = |K| is called weight of the index
generation function f .

Example 1. Table 1 shows a 4-variable index generation
function with weight four. Note that, in this function,
input values other than 0001, 0010, 0100, and 1101 are
NOT assigned to any function values. (End of Example)

Definition 2. Let K = {1,2, . . . ,k} be a set of indices of an
index generation function. If K = S1∪S2∪ . . .∪Su, each
Si �= /0, and Si∩S j = /0 (i �= j), then P = {S1,S2, . . . ,Su} is
a partition of the set of indices K. When all the subsets
Si are singletons (i.e., |Si|= 1), |P |= |K|= k.

An arbitrary n-variable index generation function with
weight k can be realized by a (2n× q)-bit memory, where
q = �log2(k + 1)�. To reduce the memory size, linear de-
composition is effective [7].
Definition 3. Linear decomposition of an index generation

function f (x1,x2, . . . ,xn) is a representation of f using a
general function g(y1,y2, . . . ,yp) and linear functions yi:

yi(x1,x2, . . . ,xn) = ai1x1⊕ai2x2⊕ . . .⊕ainxn

(i = 1,2, . . . , p),

where ai j ∈ {0,1} (j = 1,2, . . . ,n), and, for all registered
vectors of the index generation function, the following
holds:

f (x1,x2, . . . ,xn) = g(y1,y2, . . . ,yp).

Each yi is called a compound variable. For each yi,
∑n

j=1 ai j is called a compound degree of yi, denoted by
deg(yi), where ai j is viewed as an integer, and ∑ is an
integer sum.

Definition 4. An inverse function of a general function
z = g(y1,y2, . . . ,yp) in a linear decomposition is a map-
ping from K = {1,2, . . . ,k} to a set of p-bit vectors Bp,
denoted by g−1(z). In this inverse function g−1(z), a
mapping obtained by focusing only on the i-th bit of the
p-bit vectors: K →{0,1} is called an inverse function
to a compound variable yi, denoted by (g−1)i(z).

Definition 5. Let ON(yi) = {z | z∈K,(g−1)i(z) = 1}, where
K = {1,2, . . . ,k} and (g−1)i(z) is an inverse function of
g(y1,y2, . . . ,yn) to yi. |ON(yi)| is called the cardinality
of yi or informally the number of 1s included in yi.

TABLE 2. GENERAL FUNCTIONS g1 AND g2 IN LINEAR

DECOMPOSITION OF f .

y1 y2 g1 g2

0 0 1 2
0 1 2 1
1 0 3 3
1 1 4 4

y1

y2

1, 2, 3, 4
Set of function values

y2

3, 4

3 4

1, 2

y = 11y = 01

2 1

y = 02y = 02 y = 12 y = 12

Figure 2. Point of view as a binary decision tree.

Example 2. The index generation function f in Example 1
can be represented by y1 = x2, y2 = x1⊕x3, and g1(y1,y2)
shown in Table 2. In this case, deg(y1) = 1 and deg(y2)=
2, respectively. f can be also represented by y1 = x2,
y2 = x4, and g2(y1,y2) in the same table. In this case,
both deg(y1) and deg(y2) are 1. In either case, f can be
realized by the architecture in Fig. 1 with a (22×3)-bit
memory.
For g2(y1,y2) in Table 2, its inverse functions to y1

and y2 are (g−1
2)1(z) and (g−1

2)2(z), respectively. We
have (g−1

2)1(2) = 0, (g−1
2)1(1) = 0, (g−1

2)1(3) = 1, and
(g−1

2)1(4) = 1. Similarly, (g−1
2)2(2) = 0, (g−1

2)2(1) = 1,
(g−1

2)2(3) = 0, and (g−1
2)2(4) = 1. The cardinalities of

both y1 and y2 are 2. (End of Example)

In this way, by using linear decomposition, memory
size needed to realize an index generation function can be
reduced significantly. But, to realize a compound variable
with compound degree d, (d− 1) 2-input EXOR gates are
required. Thus, a lower compound degree is desirable when
the memory size is equal.

3. Minimization of Number of Linear Func-
tions

This section formulates the minimization problem of the
number of linear functions, and presents an exact minimiza-
tion algorithm to solve the problem.

3.1. Formulation of Minimization Problem

Since the architecture in Fig. 1 realizes an index genera-
tion function with EXOR gates, registers, multiplexers, and
a (2p×q)-bit memory, to obtain an optimum realization of
an index generation function, we have to solve the following
problem:

162

Algorithm 1. Overview of the proposed algorithm
Input: an index generation function with weight k and
an upper bound t on compound degrees
Output: a set of compound variables and its size hmin

Let P = {K},h = 0, and iterate the following recursively.
min search(P ,h) {

if (|P |= k) { update solution(h); return; }
if (bound condition(P ,h) is satisfied) return;
branch(P , t, h);

}

Problem 1. Given an index generation function f and an
integer t, find a linear decomposition of f such that
the number of linear functions p is the minimum, and
compound degrees are at most t.

The constraint on compound degrees t is given not only
for reduction of solution space, but also for reduction of
delay and area of the circuit L to realize linear functions.

Example 3. For linear decompositions of f in Example 2,
the decomposition with y1 = x2, y2 = x4, and g2(y1,y2)
is optimum when t = 1. (End of Example)

3.2. Exact Minimization Algorithm Based on
Branch and Bound Method

Problem 1 can be considered as the problem of mini-
mizing the height of a binary decision tree constructed by
compound variables [2].

Example 4. Fig. 2 shows a binary decision tree of the small-
est height that divides the set of indices into singletons
by compound variables y1 and y2. This corresponds to
g2 in Table 2. (End of Example)

Thus, this subsection proposes an algorithm to find a
binary decision tree with the smallest height. The proposed
algorithm constructs binary decision trees in a top-down
manner by selecting a compound variable one by one, and
finds the best one by comparing their heights. As shown in
Algorithm 1, it is based on a branch and bound method, and
prunes clearly non-optimum solutions.

Algorithm 1 searches for a solution recursively while
constructing a binary decision tree with height h. When
|P |= k (i.e., the set of indices is partitioned into singletons),
a solution (a set of h compound variables) is obtained. The
procedure update solution() compares the obtained solution
with the current solution, and updates the current solution
if the obtained one is better.

The procedure branch() explores the solution space
by selecting a compound variable, and the procedure
bound condition() detects ineffective solution search and
prunes it. Performance of branch and bound methods
strongly depends on strategies for branch and bound. In the
following subsections, we explain our strategies for branch
and bound.

Algorithm 2. Overview of the branch process
Input: an index generation function, a partition of in-
dices P , an upper bound t on compound degrees, and a
tree height h
Process: Search for solutions recursively by selecting a
compound variable
branch(P , t, h) {

// y is an already selected compound variable.
for (each of x1,x2, . . . , and xn)

Compute cost1(P ,y⊕ xi) and cost2(P ,y⊕ xi);
Sort xi in their ascending order;
for (each xi in the order) {

y = y⊕ xi;
if (t > 1) branch(P , t−1, h);
Divide each S ∈ P with y;
min search(P ,h + 1);
Combine each S ∈ P divided by y;
y = y⊕ xi; // xi is taken out of y.

}
}

3.2.1. Branch Strategy. To prune non-optimal solutions
efficiently, finding a good solution in an earlier stage is
important. Thus, we select a good compound variable using
the following cost function that has been proposed for our
previous heuristic [2]:

cost1(P ,yi) =

√
∑
S∈P

(|S|
2
−|S∩ON(yi)|

)2

,

where P is a partition of a set of indices with already
selected compound variables. In addition, when the cost
functions of partitions by yi are equal, the following cost
function is used:

cost2(P ,yi) = max
S∈P

{max{|S∩ON(yi)|, |S\ON(yi)|}}

to select a compound variable that divides the largest subset
into smaller subsets.

As mentioned before, Problem 1 can be considered as
a minimization problem of the height of a binary decision
tree, and thus, we have proposed the heuristic to produce
a balanced tree using the cost functions. A compound vari-
able yi minimizing the cost functions tends to divide each
subset into halves and be included in the optimum solution.
Thus, the proposed exact minimization algorithm can find
a good solution quickly by selecting compound variables in
ascending order of values of the cost functions.

Algorithm 2 shows an overview of the branch process.
It compounds original variables xi recursively without over-
lapping a variable, and branches for solution search while
dividing sets of indices with a compound variable y. After
the branch is backtracked, sets divided by y are combined,
and xi is taken out of the compound variable y for the
next search. In this branch strategy, compound variables
with larger compound degree are searched prior to those
with smaller compound degree. This is because compound

163

y1

y2

y = 11y = 01

2

1
y = 02 y = 12

y3

3

y = 03 y = 13

4

Figure 3. Imbalanced decision tree with height 3.

Algorithm 3. Upper bound on the number of 1s in a variable
Input: an index generation function with weight k and
an upper bound t on compound degrees
Output: the upper bound cupper

Sort xi in descending order of |ON(xi)|;
cupper = 0;
for (each of top-t xi’s in the order)

cupper = cupper + |ON(xi)|;
cupper = min(cupper ,

k
2);

variables with larger compound degree tend to have smaller
values of the cost functions [2].

3.2.2. Bound Strategy. To determine whether the current
solution search can be pruned or not, we need a good lower
bound on the number of compound variables. The lower
bound �log2(m)� shown in [5] is a good estimate of the
number of compound variables needed to divide a set with
m indices into m singletons when the number of 1s in
compound variables is m

2 . However, when the number of
1s in compound variables is much smaller, a better (larger)
lower bound is possible.
Example 5. Since both y1 and y2 in Example 2 have two

1s that are a half number of indices 4, a balanced tree
with height log2(4) = 2 shown in Fig. 2 is obtained. On
the other hand, when each compound variable has only
one 1, an imbalanced tree with height 3 like Fig. 3 is
obtained. (End of Example)

To better estimate the number of compound variables,
in such a case, we use the following lower bound:
Theorem 1. Let m be the number of indices in a set, and

c be the number of 1s in compound variables. When
c < m

2 , at least

lower(m,c) =
⌊m

c

⌋
+ �log2(c)�−1

compound variables are needed to divide the set into m
singletons.

(Proof) See Appendix-A.
To estimate the number of compound variables using

this lower bound, a good estimate for the number of 1s
in compound variables is needed as well. But, when the
estimate for the number of 1s is smaller than the actual

Algorithm 4. Overview of the bound process
Input: a partition of indices P , a current tree height h,
the minimum tree height so far hmin

Output: the bound condition is satisfied or not
bound condition(P , h) {

m = max
S∈P
{|S|};

if (2× cupper < m) {
if (hmin ≤ h + max(lower(m,cupper),�log2(m)�))

return satisfied;
}
else {

if (hmin ≤ h + �log2(m)�)
return satisfied;

}
return unsatisfied;

}

number of 1s, the lower bound in Theorem 1 does not hold
even if the estimate is close to the actual number. In that
case, the optimum solution can be missed. Thus, an upper
bound on the number of 1s in compound variables is needed.

Since a compound variable is produced by applying the
EXOR operation to some original variables xi, the number
of 1s in a compound variable does not exceed the sum of
the number of 1s in xi’s. When t original variables are
compounded, the upper bound on the number of 1s in a
compound variable is obtained by summing the 1s in t
original variables in descending order of |ON(xi)|, as shown
in Algorithm 3. If the sum of |ON(xi)| exceeds k

2 , the upper
bound is held down to k

2 . This is because k
2 is the best

number to divide the set of indices into halves, and the
smallest number of compound variables �log2(k)� can be
achieved in that case. We run Algorithm 3 only once just
after registered vectors of an index generation function are
read in.

Algorithm 4 shows an overview of the bound process
based on the lower bound in Theorem 1. As search in
the branch and bound method proceeds, m in Algorithm 4
gets smaller, and thus, �log2(m)� tends to be applied as a
lower bound. However, at earlier stages of solution search,
the larger lower bound lower(m,cupper) is applied. Thus,
unpromising solutions are pruned at earlier stages by using
this strategy, resulting in significant reduction of the search
space. When both m and c are small (e.g., m = 5 and c = 2),
�log2(m)� can be larger than lower(m,c). Even in such a
case, we prune the search space efficiently by choosing the
larger bound.

4. Experimental Results

The proposed exact minimization algorithm is imple-
mented in the C language, and run on the following com-
puter environment: CPU: Intel Core2 Quad Q6600 2.4GHz,
memory: 4GB, OS: CentOS 5.7, and C-compiler: gcc -O2
(version 4.1.2).

164

TABLE 3. COMPARISON OF B&B METHODS IN TERMS OF SEARCH

SPACE.

Compound degrees
t = 1 t = 2 t = 3 t = 4 t = 5

Solutions hmin 9 6 5 4 4
method 1) 293,909 2,101,815 153,081 91 19
method 2) 262,303 1,975,994 151,773 4 4
method 3) 9 2,101,173 153,081 91 19
method 4) 9 1,975,364 151,773 4 4

4.1. On Effectiveness of Branch and Bound Strate-
gies

To evaluate the effectiveness of the proposed branch and
bound strategies, we compare search space in the following
four combinations of strategies:

1) Branch: natural order of original variables (i.e.,
x1,x2, . . . ,xn).
Bound: only �log2(m)�.

2) Branch: ascending order of cost1 and cost2.
Bound: only �log2(m)�.

3) Branch: natural order of original variables.
Bound: Theorem 1 and �log2(m)�.

4) Branch: ascending order of cost1 and cost2.
Bound: Theorem 1 and �log2(m)�.

The first one uses naive strategies for both branch and
bound, the second one uses only the proposed strategy for
branch, the third one uses only the proposed strategy for
bound, and the fourth one uses the proposed strategies for
both branch and bound. Table 3 shows the number of times
that the procedure branch() is invoked in each branch and
bound method for a benchmark “1-out-of-10 code” with
weight k = 10 shown in [7].

As shown in Table 3, the proposed branch strategy works
effectively when t is large. On the other hand, the proposed
bound strategy works effectively when t is small. And, by
taking advantages of both the strategies, we can get a bigger
effect. In the table, the number of times that branch() is
invoked in the proposed algorithm (method 4) is equal to
the optimum solution hmin when t = 1,4, and 5. This means
that the optimum solution is found by the first search, and all
other searches are pruned. This also means that our balanced
tree based heuristic [2] finds the optimum solutions in those
cases since the branch strategy is based on the heuristic.

In fact, the heuristic [2] finds the optimum solutions for
this function when t = 1 to 5 except for t = 2. When t = 2, it
produces 7 compound variables while the smallest number
of compound variables is 6. From these results, we can see
that for t = 2, it is hard to find the optimum solution, and
the heuristic still has room for improvement.

4.2. On Computation Time

Although the proposed strategies reduce search space
significantly as shown in Table 3, its benefit can be canceled
out if computational overheads of the strategies are large. To
show that the overheads are small and reduction of search

TABLE 4. COMPUTATION TIME IN SECONDS OF B&B METHODS FOR

1-OUT-OF-10.

Compound degrees
t = 1 t = 2 t = 3 t = 4 t = 5

method 1) 2.09 209.24 113.13 0.55 0.58
method 2) 2.18 231.37 130.38 0.02 0.14
method 3) <0.01* 213.63 109.65 0.55 0.60
method 4) <0.01* 216.62 127.32 0.02 0.14
*They were shorter than 1 msec., but could not be obtained
precisely due to precision of the timer.

space leads to shortening of computation time, we compare
computation time of the four methods shown in the previous
subsection. Table 4 shows computation time, in seconds,
of the four methods for the same benchmark “1-out-of-10
code”.

When t = 1,4, and 5, the method 4) finds the optimum
solution in the shortest computation time among the four
methods because the proposed strategies significantly reduce
search space. As shown in Table 3, the method 4) reduces
search space of the method 1) by about 96% and 79%,
respectively when t = 4 and 5. Similarly, computation time
is also reduced by about 96% and 75%, respectively when
t = 4 and 5. This means that computational overheads of
the strategies are small. However, when t = 2 and 3, the
method 4) requires longer computation time because of the
overheads of the strategies. This is not because the overheads
are large, but because the method 4) reduces search space
of the method 1) by only about 6% and 1%, respectively
when t = 2 and 3.

Table 5 shows computation time, in seconds, of the
proposed method for other benchmarks. Since the time com-
plexity of the proposed method is an exponential function
of the number of original variables n, we could not obtain
optimum solutions in many cases when n is larger than 10.
However, when the proposed strategies work effectively and
reduce search space significantly, the proposed method can
find optimum solutions quickly even for such larger n.

5. Conclusion and Comments

This paper proposes a branch and bound method to
exactly minimize the number of compound variables for lin-
ear decomposition of index generation functions. By taking
advantages of techniques used in the balanced tree based
heuristic, the proposed method efficiently reduces search
space of solutions with small overheads, and finds the
optimum solution quickly. Experimental results show that
the proposed method has potential to find optimum solutions
with reasonable computation time.

As shown in Table 3, search space is not reduced signifi-
cantly by the proposed method when t = 2 and t = 3. In these
cases, the proposed strategies could not be very efficient.
We will analyze these cases in more detail, and improve
the bound and branch strategies as our future work. In
addition, we will study on optimum scheduling of compound
degrees. In the current method, compound variables with
the largest compound degree are searched first. However,

165

TABLE 5. COMPUTATION TIME IN SECONDS OF THE PROPOSED METHOD FOR OTHER BENCHMARKS.

t = 1 t = 2 t = 3 t = 4 t = 5
Benchmarks hmin (space) Time hmin (space) Time hmin (space) Time hmin (space) Time hmin (space) Time
1-out-of-10 9 (9) <0.01* 6 (1,975,364) 216.62 5 (151,773) 127.32 4 (4) 0.02 4 (4) 0.14
1-out-of-12 11 (11) <0.01* – – – – – – 4 (4) 0.46
1-out-of-16 15 (15) <0.01* – – – – – – 5 (5) 3.68
2-out-of-16 – – – – – – 8 (8) 2.76 8 (9) 36.32
3-out-of-16 – – – – – – 10 (10) 16.17 – –
*They were shorter than 1 msec., but could not be obtained precisely due to precision of the timer.
–: We quit the computation because it took more than 3,600 seconds.

this way is not always optimum. By changing the search
order of compound degrees, more efficient branch can be
expected.

Acknowledgments

This research is partly supported by the JSPS KAKENHI
Grant (C), No.16K00079. The reviewers’ comments were
helpful in improving the paper.

References

[1] R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, Chapter V, pp. 121–228, 1971.

[2] S. Nagayama, T. Sasao, and J. T. Butler, “An efficient heuristic for lin-
ear decomposition of index generation functions,” 46th International
Symposium on Multiple-Valued Logic, pp. 96–101, May, 2016.

[3] E. I. Nechiporuk, “On the synthesis of networks using linear transfor-
mations of variables,” Dokl, AN SSSR, Vol. 123, No. 4, pp. 610–612,
Dec., 1958.

[4] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[5] T. Sasao, “Index generation functions: recent developments (invited
paper),” 41st International Symposium on Multiple-Valued Logic,
pp. 1–9, May 2011.

[6] T. Sasao, “Linear transformations for variable reduction,” Reed-
Muller Workshop 2011, May 2011.

[7] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference, pp. 781–788,
Jan. 2012.

[8] T. Sasao, Y. Urano, and Y. Iguchi, “A lower bound on the number
of variables to represent incompletely specified index generation
functions,” 44th International Symposium on Multiple-Valued Logic,
pp. 7–12, May 2014.

[9] T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear decom-
positions for incompletely specified index generation functions using
difference matrix,” IEICE Transactions on Fundamentals, Vol. E97-
A, No. 12, pp. 2427–2433, Dec. 2014.

[10] T. Sasao, “A reduction method for the number of variables to rep-
resent index generation functions: s-min method,” 45th International
Symposium on Multiple-Valued Logic, pp. 164–169, May 2015.

[11] T. Sasao, I. Fumishi, and Y. Iguchi, “A method to minimize variables
for incompletely specified index generation functions using a SAT
solver,” International Workshop on Logic and Synthesis, pp. 161–167,
June 2015.

[12] T. Sasao, I. Fumishi, and Y. Iguchi, “On an exact minimization of
variables for incompletely specified index generation functions using
SAT,” Note on Multiple-Valued Logic in Japan, Vol.38, No.3, pp. 1–8,
Sept. 2015.

y1

y2

y = 11y = 01

y = 02 y = 12

1, 2, ...,
Set of indices

m

1, 2, ..., c

mc+1, c+2, ...,

2cc+1, c+2, ...,

smaller set

larger set

yi -1
y = 1i -1y = 0i -1

smaller set

m2c+1, 2c+2, ...,

larger set

i =
m
c

(i - 1) c(i - 2) c+1, (i - 2) c+2, ...,

smaller set

m(i - 1)c+1, (i - 1)c+2, ...,

larger set
(elements)m’

Figure A.1. Unbalanced divisions of a set of indices.

Appendix

1. Proof for Theorem 1

When o < m
2 , a set of indices is divided into unbalanced

subsets, as shown in Fig. A.1. This unbalanced division is
iterated until the size of larger subset is smaller than 2×o.
In this iteration, at least ⌊m

c

⌋
−1 (A.1)

compound variables are required. This is an ideal case where
only a larger subset in each division is divided by separating
c indices from the subset. However, smaller subsets have to
be also divided to finally obtain singletons of indices. Thus,
more compound variables are actually required.

After the unbalanced divisions, the larger subset has m′
indices, where m′ is an integer satisfying the following:

c≤ m′ < 2× c.

Thus, we have the following relation:

�log2(c)� ≤ �log2(m
′)�. (A.2)

By summing (A.1) and the left side of (A.2), we have the
lower bound ⌊m

c

⌋
+ �log2(c)�−1

166

