
A Realization of Index Generation Functions
Using Multiple IGUs

Tsutomu Sasao

Meiji University, Kawasaki 214-8571, Japan

Abstract—This paper presents a method to realize index gen-
eration functions using multiple Index Generation Units (IGUs).
The architecture implements index generation functions more
efficiently than a single IGU when the number of registered vec-
tors is very large. This paper also proves that independent linear
transformations are necessary in IGUs for efficient realization.
Experimental results confirm this statement.

Index Terms—Random function, CAM, content-addressable
memory, linear decomposition, linear transformation, statistical
analysis

I. INTRODUCTION

One of the important tasks in information processing is

to find desired data from a large data set. For example,

consider a network router, where IP addresses are represented

by 32 bits. Assume that a network router stores 40,000 of

the 232 possible combinations of the inputs, and checks if an

input pattern matches a stored pattern. A content addressable

memory (CAM) [4] is a device that performs this operation

directly. CAMs are also used for virus scanning and spam-mail

filters.

An index generation function [10] describes the operation

of a CAM. For example, an index generation function can

be represented by a registered vector table such as shown

in Table 2.1. It can also be implemented by an FPGA [7]

, or a combination of memories and logic. Index generation

functions are used in address tables in the Internet, terminal

access controllers for local area networks, databases, memory

patch circuits, dictionaries, password lists, etc.[10].

An efficient method to implement an index generation

function is presented in [10]. It uses a module called IGU
(Index Generation Unit). Since an IGU uses ordinary memory

and a small amount of logic, the cost and the power dissipation

are much lower than typical CAM-based implementations.

In this paper, we show an efficient method to store many

patterns using multiple IGUs. Statistical analysis is used to

estimate the size of of the IGUs. The rest of the paper is

organized as follows: Section II defines the index generation

function; Section III shows a method to reduce the number

of variables of the incompletely specified index generation

functions; Section IV introduces an IGU, the hardware to

implement index generation functions; Section V shows a

method to estimate the number of vectors realized by an IGU;

Section VI shows a method to implement index generation

function using four IGUs, which is more efficient than a single

IGU realization; Section VII shows that independent linear

transformations are essential for an efficient implementation

TABLE 2.1
REGISTERED VECTOR TABLE.

Vector Index
x1 x2 x3 x4

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 1 0 1 4

of the functions; Section VIII shows the experimental results;

and Section IX concludes the paper.

II. INDEX GENERATION FUNCTION

In this part, we introduce index generation functions [10],

[11], [13].

Definition 2.1: Consider a set of k different binary vectors

of n bits. These vectors are registered vectors. For each regis-

tered vector, assign a unique integer from 1 to k. A registered
vector table shows the index of each registered vector. An

incompletely specified index generation function is a one-

to-one mapping D → {1, 2, . . . , k}, where D ⊆ {0, 1}n, and

|D| = k. Since the indices are non-binary, an index generation

function is multiple-valued. It produces the corresponding

index if the input matches a registered vector. k, the weight
of the index generation function, is usually much smaller than

2n, the total number of possible input combinations.

Example 2.1: Table 2.1 shows a registered vector table for

a 4-variable index generation function with weight k = 4.

III. NUMBER OF VARIABLES TO REPRESENT AN

INCOMPLETELY SPECIFIED INDEX GENERATION FUNCTION

An incompletely specified index generation function F can

often be represented with fewer variables than the original

function, when don’t care values are properly replaced by 0

or some index [1], [2], [6], [8].

Theorem 3.1: Assume that an incompletely specified func-

tion F is represented by a decomposition chart [5]. If each

column of the decomposition chart has at most one care

element, then the function can be represented by only column

variables.

Example 3.1: Consider the decomposition chart in Fig. 3.1.

x1 and x2 specify columns, while x3 and x4 specify rows.

Also, blank cells denote don’t cares. In Fig. 3.1, each col-

umn has at most one care element. Thus, this function can

be represented with only the column variables x1 and x2:

F = 1 · x1x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1x̄2 ∨ 4 · x1x2.
As for an upper bound on the number of variables, we have

the following:

2016 IEEE 46th International Symposium on Multiple-Valued Logic

0195-623X/16 $31.00 © 2016 IEEE

DOI 10.1109/ISMVL.2016.17

113

1x

4x

2x

3x

2

3

4

1

Fig. 3.1. 4-variable index generation function.

Correct
Index

�

Main
Memory

AUX
Memory

Temporary Index

Registered
Vector equal

Comparator

AND

Linear

Circuit

n-p

p

q

n-p

q

p

n-p

X1

X2

X2

Fig. 4.1. Index generation unit (IGU).

Conjecture 3.1: [10], [11], [13] When the number of the

variables n is sufficiently large, most incompletely specified

index generation functions with weight k (≥ 7) can be

represented by p = 2�log2(k + 1)� − 3 variables.
For an incompletely specified function F , we realize a

circuit such that F (x1, x2, . . . , xn) = 0 if (x1, x2, . . . , xn)
is a non-registered vector.

IV. INDEX GENERATION UNIT (IGU)

In this section, we show an efficient method to implement

an index generation function. With this method, the number

of variables to the memory can be reduced. Fig. 4.1 shows

the Index Generation Unit (IGU). The linear circuit has n
inputs and p outputs, where p < n. It is used to reduce the

number of inputs to the main memory. The set of inputs to

the linear circuit is partitioned into X = (X1, X2), and the

output is Y1 = (y1, y2, . . . , yp).

n

nn
22 ixy �

11 ixy �

n
ipp xy �

Fig. 4.2. Single-input linear circuit.

n

n

+

n

n

+

n

n

+

111 ji xxy ��

222 ji xxy ��

tjtip xxy ��

Fig. 4.3. Double-input linear circuit.

We consider two types of linear circuits. The first type is

the single-input linear circuit shown in Fig. 4.2. It produces

a function yj = xπ(j), where π denotes a permutation on n
elements. It consists of p multiplexers and p registers, and

selects p variables from n input variables. The multiplexers’

data inputs are x1, x2, . . . , xn. Registers specify which vari-

ables are selected by the multiplexer.

The second type of the circuits is the double-input linear
circuit shown in Fig. 4.3. It performs a linear transformation
yi = xi ⊕ xj or yi = xπ(i), where xi ∈ X1 and xj ∈ X2.

It uses a pair of multiplexers for each variable yi. The upper

multiplexers have the inputs x1, x2, . . . , xn. The register with

�log2 n� bits specifies the variable to select by the multiplexer.

The lower multiplexers have the inputs x1, x2, . . . , xn, except

for xi. For the i-th input, the constant input 0 is connected

instead of xi. By setting yi = xi ⊕ 0, we can implement

yi = xi. Note that both types of linear circuits produce a

special class of linear functions. The main memory has p
inputs and q = �log2(k + 1)� outputs. The main memory

produces correct indices for registered vectors. However, it

may produce incorrect indices for non-registered vectors,

because the number of input variables is reduced to p. In an

IGU, if the input vector is non-registered, then it produces

0 outputs. To check whether the main memory produces the

correct index or not, we use the AUX memory. The AUX

memory has q inputs and (n − p) outputs: It stores the X2

part of the registered vectors for each index. The comparator
checks if the inputs are the same as the registered vector or not.

If they are the same, the main memory produces the correct

index. Otherwise, the main memory produces a wrong index,

and the input vector is non-registered. Thus, the output AND
gates produce 00 . . . 0, showing that the input vector is non-

registered. Note that the main memory produces the correct

indices only for the registered vectors.

Theorem 4.1: Consider the IGU in Fig. 4.1. Assume that

it realizes the index generation function F (X1, X2), where

X1 = (x1, x2, . . . , xp) and X2 = (xp+1, xp+2, . . . , xn). Also,

assume that Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ xj for

j ∈ {p+1, p+2, . . . , n}, or yi = xi, are applied to the input

to the main memory. Then, F can be realized by the circuit

where the AUX memory stores only the values for X2.

V. NUMBER OF VECTORS REALIZED BY AN IGU

In this section, we derive the expected number of registered

vectors realized by an IGU [10].

Lemma 5.1: When 0 < α
 1, 1−α can be approximated

by e−α.

Lemma 5.2: Let F (X) be a uniformly distributed random

index generation function of n variables with weight k, where

k
 2n. Consider a decomposition chart [5], where p is

the number of variables labelling the columns. Then, the

probability that a column of the decomposition chart has all-

zero elements is approximately e−ξ, where ξ = k
2p .

Theorem 5.1: Consider a set of uniformly distributed index

generation functions F (x1, x2, . . . , xn) with weight k. Con-

sider an IGU whose inputs to the main memory are x1, x2, . . . ,

114

and xp. Then, the expected number of registered vectors of F
that can be realized by the IGU is 2p(1−e−ξ), where ξ = k

2p .

VI. REALIZATION USING FOUR IGUS

In an IGU, the main memory has p inputs and q = �log2(k+
1)� outputs, while the AUX memory has q inputs and (n −
p) outputs. Thus, the total amount of memory for an IGU is

q2p + (n− p)2q.
Conjecture 3.1 shows that to implement an index generation

function with weight k by an IGU, the number of inputs to the

main memory is p � 2 log2 k − 3. Also, note that q � log2 k
and n
 k. Thus, the size of the memory is O(k2 log k).

This shows that, when k is large, a single IGU realization

of an index generation function is inefficient.

Example 6.1: Let k = 220 − 1. Then, by Conjecture 3.1,

we have p = 2�log2(k + 1)� − 3 = 37. Thus, the size of the

main memory in a single IGU realization is q2p = 20×237 =
2.75× 1012 bits. Thus, we need a more efficient method.

To reduce the total amount of memory, we partition the

registered vectors into m groups, and realize each group

independently [3], [9]. Fig. 6.1 shows a network using four

IGUs. This architecture is called a 4IGU[9]. In this case, we

should use independent linear transformations for different

IGUs. The importance of the linear transformations will be

discussed in Section VII.

Next, we show that index generation functions can be

realized with a 4IGU. This is more efficient than a single IGU

realization when k is large.

Theorem 6.1: Consider an index generation function with

weight k. Then, more than 99.9% of the registered vectors can

be realized by a 4IGU, where the number of input variables

to the main memory for each IGU is p = �log2((k + 1))�.
(Proof) Let k1 = k. We assume that, for each IGU, the

distribution of the vectors is uniform.

1) IGU1: Let ξ1 = k1

2p .

The number of realized vectors is 2p(1− e−ξ1).
The number of remaining vectors is

k2 = k1 − 2p(1− e−ξ1) = k1 + 2p(e−ξ1 − 1).

2) IGU2: Let ξ2 = k2

2p = k1

2p + (e−ξ1 − 1).
The number of realized vectors is 2p(1− e−ξ2).
The number of remaining vectors is

k3 = k1 − 2p(1− e−ξ1)− 2p(1− e−ξ2)

= k1 + 2p(e−ξ1 + e−ξ2 − 2).

3) IGU3: Let ξ3 = k3

2p = k
2p + (e−ξ1 + e−ξ2 − 2).

The number of realized vectors is 2p(1− e−ξ3).
The number of remaining vectors is

k4 = k1 + 2p(e−ξ1 + e−ξ2 − 2)− 2p(1− e−ξ3)

= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3).

4) IGU4: Let ξ4 = k1

2p + (e−ξ1 + e−ξ2 + e−ξ3 − 3).
The number of realized vectors is 2p(1− e−ξ4).

IGU1

IGU2

IGU3

IGU4

Fig. 6.1. Realization of an index generation function by 4IGU.

The number of remaining vectors is

k5 = k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3)− 2p(1− e−ξ3)

= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 + e−ξ4 − 4).

When k1 = 2p, the fraction of the original vectors that

remain is about 1.6× 10−6. �

Note that, in the proof, we assumed that IGUs have inde-

pendent linear transformations, so that the distribution of the

vectors are uniform.

Example 6.2: Consider an index generation function with

weight k = 220 − 1 = 1048575. Let us realize the function

by the 4IGU shown in Fig. 6.1. Suppose that the number of

inputs to the main memory in each IGU is p = 20. We assume

that for each IGU, the distribution of the vectors is uniform.

1) IGU1: Let ξ1 = k1

2p = 1,048,575
220 = 0.9999990. It

realizes 2p(1−e−ξ1) = 1048576×0.6321203 � 662826
registered vectors. The number of remaining vectors is

k2 = 385749.

2) IGU2: Let ξ2 = k2

2p = 385749
220 = 0.3678789. It realizes

2p(1 − e−ξ2) = 1048576 × 0.3077990 � 322750
registered vectors. The number of remaining vectors is

k3 = 62999.

3) IGU3: Let ξ3 = k3

2p = 62999
220 = 0.208374. It real-

izes 2p(1 − e−ξ3) = 1048576 × 0.0583113 � 61143
registered vectors. The number of remaining vectors is

k4 = 1856.

4) IGU4: Let ξ4 = k4

2p = 1856
220 = 0.0202942. It realizes

2p(1−e−ξ4) = 1048576×0.0017685 � 1854 registered

vectors. The number of remaining vectors is only k5 =
2.

Note that, in a 4IGU, the main memory of each IGU has

p inputs and p outputs, while the AUX memory has p inputs

and (n − p) outputs. Thus, the total amount of memory for

each IGU is

p2p + (n− p)2p = n2p.

Then, the total memory for the 4IGU is 4n2p. Thus, when

n = 40 and p = 20, the 4IGU requires 4n2p = 4×40×220 =
167.7 × 106 bits. This is more efficient than the single IGU

realization in Example 6.1, which requires 2.75× 1012 bits.

115

Definition 6.1: Let the linear circuit realize the p compound

variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,nxn,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,nxn,

.

yp = ap,1x1 ⊕ ap,2x2 ⊕ · · · ⊕ ap,nxn.

Then, the transformation matrix is

A =

⎡
⎢⎢⎣
a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

ap,1 ap,2 . . . ap,n

⎤
⎥⎥⎦ .

Definition 6.2: Let A and B be two transformation matrices

of p × n. The rank of a matrix A is the number of linearly

independent row vectors, and denoted by rank(A). Matrix B
depends on A if

rank(A) = rank

[
A
B

]
.

Otherwise, B is independent of A.

Example 6.3: Consider three matrices:

A =

[
1 0 0 0
0 1 0 0

]
, B =

[
1 0 0 0
1 1 0 0

]
,

C =

[
1 0 0 0
0 1 1 0

]
.

Since, rank(A) = rank

[
A
B

]
= 2 < rank

[
A
C

]
= 3, B

depends on A, while C is independent of A.

Theorem 6.2: Consider two decomposition charts for an

index generation function. Assume that in the first chart,

the column variables are Y = (y1, y2, . . . , yp), while in the

second chart, the column variables are Z = (z1, z2, . . . , zp).
Also assume that the row variables are the same. If two

transformation matrices for Y and Z are dependent each other,

then one decomposition chart is obtained from the other by

permuting the columns of the other chart. Thus, the numbers of

variables to represent two functions that corresponds to these

two decomposition charts are the same.

Example 6.4: Consider the function f1(x1, x2, x3, x4) in

Fig. 3.1, where X1 = (x1, x2) are the column variables and

X2 = (x3, x4) are the row variables. Let Y1 = (y1, y2), where

y1 = x1 and y2 = x1⊕x2. Consider the decomposition chart,

where Y1 = (y1, y2) are column variables. Fig. 6.2 (left) is the

corresponding chart, and let f2(y1, y2, x3, x4) be the function.

Note that columns for y1 = 1 are permuted. Thus, the numbers

of variables to represent two functions f1(x1, x2, x3, x4) and

f2(y1, y2, x3, x4) are the same, and both are two.

Next, consider the decomposition chart, where Z1 =
(z1, z2), z1 = x1 and z2 = x2 ⊕ x3, are column vari-

ables. Fig. 6.2 (right) is the corresponding chart, and let

f3(z1, z2, x3, x4) be the function. Compared with Fig. 3.1,

the element 3 is moved to the right in Fig. 6.2 (right). The

number of variables to represent f3(z1, z2, x3, x4) is different

from that of f1(x1, x2, x3, x4). Note that f1(x1, x2, x3, x4)

1y

4x

2y

3x

2

3

4

1

1z

4x

2z

3x

2

3

4

1

Fig. 6.2. f2(y1, y2, x3, x4) and f3(z1, z2, x3, x4)

corresponds to the matrix A, f2(y1, y2, x3, x4) corresponds to

the matrix B, and f3(z1, z2, x3, x4) corresponds to the matrix

C, in Example 6.3.

VII. SELECTION OF LINEAR TRANSFORMATIONS

In the previous sections, we assume that IGUs have in-

dependent linear transformations. However, when the linear

transformations are the same for all the IGUs, the number of

registered vectors realized by IGUs will be decreased. In this

part, we will prove this using statistical analysis. First, we

illustrate the design method for a 4IGU.

Example 7.1: Consider a realization of an index generation

function shown in Fig. 7.1 by a 4IGU. It is a random function

of 6 variables. Blank entries denote 0’s. Note that the column

variables are X1 = (x1, x2, x3), while the row variables are

X2 = (x4, x5, x6). Assume that the column variables are used

for the main memories. The number of registered vectors is

k = 20. The registered vectors are divided into four subsets,

and realized separately as follows:

1) IGU1 realizes the mapping of vectors to index values 1,
18, 2, 20, 7,10, 1, and 17 (topmost registered vectors in

boldface numbers).

2) IGU2 realizes the mapping of vectors to index values

16, 11, 15, 14, 13, 6, and 3 (vectors in italic numbers).

3) IGU3 realizes the mapping of vectors to index values 4,

12,19, and 9 (vectors in underlined numbers).

4) IGU4 realizes the mapping of vectors to index values 5

and 8.

When X1 = (x1, x2, x3) are used for the main memories, four

IGUs are necessary to implement the function.

0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x1

0 0 0 7 10 1
0 0 1 20 14 6
0 1 0 1 15 13
0 1 1 18
1 0 0 16 17
1 0 1 19 3
1 1 0 12 9
1 1 1 4 11 2 5 8
x6 x5 x4

Fig. 7.1. Decomposition chart for F (X1, X2).

116

Theorem 7.1: Let k be the number of registered vectors,

and p be the number of inputs to the main memory. Then,

the expected number of vectors realized by a 4IGU using the

same linear transformations is

2p[4− e−β(4 + 3β + β2 +
1

6
β3)],

where β = k
2p .

(Proof) Consider the decomposition chart of a random index

generation function. Let p be the number of inputs to the main

memory. Note that the number of non-zero elements in the

decomposition chart correspond to that of the distinct balls

in distinct 2p bins. Assume that k balls are randomly thrown

into N1 = 2p bins. Also assume that k and N1 are large. Let

α = 1
N1

. Then, αk = β.

No Ball: The probability that a certain bin has no ball after

one throw is
N1 − 1

N1
= 1− α.

The probability that a certain bin has no ball after k throws:

P0 = (1− α)k � e−αk = e−β ,

because each throw is an independent event.

One Ball: The probability that a certain bin has one ball after

one throw is α. The probability that a certain bin has exactly

one ball after k throws:

P1 =

(
k

1

)
α(1− α)k−1

= kα(1− α)k−1

� βe−α(k−1) � βe−β .

Two Balls: The probability that a certain bin has two balls

after two throws is α2. The probability that a certain bin has

exactly two balls after k throws:

P2 =

(
k

2

)
α2(1− α)k−2

� 1

2
β2e−α(k−2) � 1

2
β2e−β .

Three Balls: The probability that a certain bin has three balls

after three throws is α3. The probability that a certain bin has

just three balls after k throws:

P3 =

(
k

3

)
α3(1− α)k−3

=
k(k − 1)(k − 2)

3!
α3(1− α)k−3

� 1

3!
β3(1− α)k−3 � 1

3!
β3e−β .

In this case, most of the vectors can be realized by a 4IGU as

follows:

1) IGU1 stores one element from each of the columns that

have at least one element. It stores 2p(1− P0) vectors,

on the average.

2) IGU2 stores one element from each of the columns that

have two or more elements. It stores 2p[1− (P0 + P1)]
vectors, on the average.

3) IGU3 stores one element from each of the columns that

have three or more elements. It stores 2p[1− (P0+P1+
P2)] vectors, on the average.

4) IGU4 stores one element from each of the columns that

have four or more elements. It stores 2p[1− (P0+P1+
P2 + P3)] vectors, on the average.

Thus, in total, the 4IGU stores 2p[4−(4P0+3P1+2P2+P3)]
vectors, on the average. �

Example 7.2: Let k = 220 − 1 and p = 20. In this case,

we have β � 1.0. IGU1 stores 220(1−P0) = 662826 vectors,

on the average. IGU2 stores 220[1 − (P0 + P1)] = 277076
vectors, on the average. IGU3 stores 220[1−(P0+P1+P2)] =
84201 vectors, on the average. IGU4 stores 220[1 − (P0 +
P1 + P2 + P3)] = 19910 vectors, on the average. When the

linear transformations are independent, only 2 vectors remain,

as shown in Examples 6.2.

Example 7.3: When independent linear transformations are

used, the function in Fig. 7.1 can be realized with only three

IGUs. In this case, IGU1 and IGU3 use X1 = (x1, x2, x3)
as inputs to the main memory, while IGU2 uses X2 =
(x4, x5, x6) as inputs to the main memory. The registered

vectors are divided into three parts, and realized separately

as follows:

1) IGU1 stores one element for each non-empty column.

It realizes the mapping of vectors to index values 4, 11,

2, 15, 5, 13, 19, and 9.

2) IGU2 stores one element for each row. It realizes the

mapping of vectors to index values 7, 14, 1, 18, 16, 3,

12, and 8.

3) IGU3 stores the remaining elements for four columns. It

realizes the mapping of vectors to index values 20, 10,

6, and 17.

In this case, all the vectors can be realized by three IGUs.

VIII. EXPERIMENTAL RESULTS

A. Realization with 4IGUs

To show the validity of the analysis, we generated 10 ran-

dom index generation functions with n = 40 and k = 220−1,

and realized them by 4IGUs, where p = 20.

In the experiment, we used the following linear transfor-

mations: Let (x1, x2, . . . , xn) be the input variables. For the

i-th IGU, (y1, y2, . . . , yp) were used as the inputs to the main

memory, where yj = xj ⊕ xp+i+j , (1 ≤ j ≤ p). Table 8.1

compares the estimated values and experimental results. The

column labeled Estimated denotes the results that were ob-

tained in Example 6.2. The column labeled Experimental
shows the average of 10 sample functions.

In the estimation, the remaining vectors not realized by the

4IGU is only two, that is k5 = 2. On the other hand, in the

experiment, the number of the remaining vectors is 2.2, on the

average.

The reasons for the disparity may be

• The approximations in the estimation made an error.

• The linear transformations used in the experiment are not

independent.

117

TABLE 8.1
NUMBERS OF VECTORS REALIZED BY 4IGU (k = 220 − 1)

Estimated Experiment
IGU ki Realized ki Realized

Vectors Vectors
1 1048575 662826 1048575.0 662807.5
2 385749 322750 385767.5 322781.0
3 62999 61143 62986.5 61123.4
4 1856 1854 1863.1 1860.9

Remain 2 2.2

TABLE 8.2
AVERAGE NUMBERS OF VECTORS REALIZED BY 4IGU (k = 220 − 1)

Same Independent
Transformations Transformations

IGU ki Realized ki Realized
Vectors Vectors

1 1048575.0 663004.9 1048575.0 662807.5
2 385570.1 277075.9 385767.5 322781.0
3 108494.2 84134.0 62986.5 61123.4
4 24360.2 19863.3 1863.1 1860.9

Remain 4496.9 2.2

• The registered vectors in the experiment were not truly

random.

• The number of sample functions were not sufficient.

In practice, we can easily find a good linear transformation

using a minimization tool [12] for the last IGU. Thus, each

function can be realized by a 4IGU. The total amount of

memory is mn2p = 4× 40× 220 = 160× 220 � 167.8× 106.

B. Effect of Independent Linear Transformations

In Section VII, we showed that independent linear trans-

formations should be used for IGUs. To demonstrate this, we

used the previous 10 random index generation functions with

n = 40 and k = 220 − 1, and realized them by 4IGUs, where

p = 20. Table 8.2 compares the two 4IGU realizations. In the

column labeled Same, the same linear transformations are used

for four IGUs. In the column labeled Independent, independent

linear transformations were used for the different IGUs. The

sample functions are the same as that of Table 8.1.

The effect is very clear. When the same linear transforma-

tions are used for the 4IGU, on the average, 4496.9 vectors

remain, which is consistent with the estimated value 4562 in

Example 7.2. On the other hand, when the independent linear

transformations are used for the 4IGU, on the average, only

2.2 vectors remained which is near to the estimated value 2.0

in Example 6.2.

IX. CONCLUSION AND COMMENTS

In this paper, we presented a method to implement index

generation functions using multiple IGUs. Important results

are

• An index generation function with many registered vec-

tors should be realized by an mIGU rather than a single

IGU.

• Most index generation function with weight k can be

realized by a 4IGU, where p = �log2(k + 1)�.

• In an mIGU, the liner transformations should be indepen-

dent.

With the result of this paper, we can estimate the size of

of the IGUs necessary to implement a specified number of

vectors. Since no optimization of linear transformations is

assumed in the estimation, a fast optimization algorithm can

be applied to the last IGU to accommodate all the remaining

vectors.

In the application to the internet, the registered vectors

must be updated frequently, but only a short time is available

for reconfiguration. With mIGU, we can reduce the memory,

as well as update the vectors without changing the linear

transformations.

ACKNOWLEDGMENTS

This research is partly supported by the Japan Society for

the Promotion of Science (JSPS) Grant in Aid for Scientific

Research. Discussion with Prof. Jon T. Butler was quite useful.

REFERENCES

[1] C. Halatsis and N. Gaitanis, “Irredundant normal forms and
minimal dependence sets of a Boolean functions,” IEEE Trans.
on Computers, vol. C-27, no. 11, Nov. 1978, pp. 1064-1068.

[2] Y. Kambayashi, “Logic design of programmable logic arrays,”
IEEE Trans. on Computers, vol. C-28, no. 9, Sept. l979, pp. 609-
617.

[3] Y. Matsunaga, “Synthesis algorithm for parallel index generator,”
IEICE Trans. Fund. Electronics, Communications and Computer
Sciences, Vol. E97-A, No. 12, pp. 2451-2458, Dec. 2014.

[4] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and sur-
vey,”IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp.
712-727, March 2006.

[5] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[6] T. Sasao, “On the number of dependent variables for incom-
pletely specified multiple-valued functions,” International Sym-
posium on Multiple-Valued Logic (ISMVL-2000), pp. 91-97, May,
2000.

[7] T. Sasao and H. Nakahara, “Implementations of reconfigurable
logic arrays on FPGAs,”International Conference on Field-
Programmable Technology 2007 (ICFPT’07) , Dec. 12-14, 2007,
Kitakyushu, Japan, pp. 217-223.

[8] T. Sasao, “On the numbers of variables to represent sparse logic
functions,”International Conference on Computer Aided Design
(ICCAD-2008), pp. 45-51, November, 2008.

[9] T. Sasao, M. Matsuura and H. Nakahara, “A realization of
index generation functions using modules of uniform sizes,” 19th
International Workshop on Logic and Synthesis (IWLS-2010),
June 18-20, 2010, pp.201-208.

[10] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[11] T. Sasao,“Index generation functions: Recent developments,”

(invited paper) International Symposium on Multiple-Valued
Logic (ISMVL-2011), Tuusula, Finland, May 23-25, 2011.

[12] T. Sasao, “Linear decomposition of index generation func-
tions,” 17th Asia and South Pacific Design Automation Confer-
ence (ASPDAC-2012), Jan. 30–Feb. 2, 2012, Sydney, Australia,
pp. 781-788.

[13] T. Sasao, “Index generation functions: Tutorial,”Journal of
Multiple-Valued Logic and Soft Computing, Vol. 23, No. 3-4,
pp. 235-263, 2014.

118

