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Abstract—A radio telescope analyzes radio frequency (RF)
signal received from celestial objects. It consists of an antenna,
a receiver, and a spectrometer. The spectrometer converts the
time domain signal into the frequency domain signal by an FFT
operation. This paper proposes an FFT circuit based on nested
residue number system (NRNS). Since the FFT operation is the
most computationally intensive part, parallel implementation is
necessary to realize a high-speed FFT. We used an FPGA to imple-
ment the circuit. The FPGA consists of look-up tables (LUTs) and
block RAMs (BRAMs). For direct parallel FFT realization using
an existing FPGA library, the number of LUTs for the complex
multipliers is the bottleneck. To reduce the number of LUTs
in an FPGA, we increase the dynamic range stage by stage. In
this case, NRNS2NRNS converters that convert smaller dynamic
range to larger dynamic range are necessary. We implemented
the proposed NRNS FFT on the Xilinx Corp. Virtex 7 FPGA.
Compared with a conventional binary FFT, although the number
of block RAMs (BRAMs) was increased by 20.0-156.5%, in the
RNS FFT, the number of LUTs was decreased by 42.4-47.8%
and the maximum clock frequency was increased by 9.3-41.7%.
With this technique, we successfully implemented an FFT that
satisfied the required size and speed specifications on an available
FPGA, since the excessive number of LUTs was the bottleneck
of the binary FFT.

I. INTRODUCTION

A. Digital Spectrometer for a Radio Telescope

A radio telescope analyzes the radio frequency (RF) signal
received from celestial objects. Fig. 1 shows the operations
in a typical radio telescope. First, the antenna receives the RF
signal coming from the celestial objects. Second, the feed horn
sends the electromagnetic wave to the receiver through the
waveguide. Third, the receiver transforms it to the intermediate
frequency (IF) signal by using the amplifier and mixer. Finally,
the digital spectrometer converts the analog signal to the
power spectrum. Fig. 2 shows the digital spectrometer. First,
the analog-to-digital converter (ADC) converts the IF analog
signal into a digital signal. Then, the Fourier transform unit
performs the fast Fourier transform (FFT) [3] to obtain the
spectrum. Next, the magnitude unit calculates the power spec-
trum. Finally, to increase the dynamic range of the obtained
power spectrum, they are accumulated. Since the FPGAs have
a dedicated I/O to connect to the high-speed ADCs and can be
reconfigured for a desired specification, they are widely used
in the digital spectrometer [1], [2], [6], [8], [9], [12].

We are developing the next generation radio telescope
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Fig. 2. Digital spectrometer

which is called SKA (square kilometers array). It requires
wide band (up to 24 GHz) FFT operations [14]. Since the
available FPGA operates at only up to a megahertz order, more
parallel operations are necessary. The FPGA consists of look-
up tables (LUTs) and block RAMs (BRAMs). As for a direct
parallel FFT realization using the existing FPGA library [18],
the number of LUTs for the complex multipliers becomes
the bottleneck [8], [9]. Thus, the reduction of the number of
LUTs is essential. To implement an 𝑛-bit parallel multiplier
for the FFT circuit, LUTs of 𝑂(𝑛 ⋅ 2𝑛) is necessary. In this
paper, to reduce the number of LUTs, we decompose large
parallel multipliers into smaller ones by the residue number
system (RNS).

B. Contributions of the Paper

We use a residue number system (RNS) [15], [19] to
decompose 𝑛-input multipliers into smaller ones. With this
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Fig. 3. Signal flow graph.
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Fig. 4. Radix-2 butterfly operator.

technique, we reduce the LUT count to implement the FFT.
The RNS decomposes an integer into a set of 𝐿 integers by
residues of moduli set. In a conventional RNS, since no pair
of moduli have a common factor with any other, the resulting
multipliers have different sizes. This means that RNS-based
design requires LUTs with different sizes. To solve this prob-
lem, we use the nested RNS (NRNS) [11], which recursively
decompose the numbers in RNS. By using the NRNS, we
decompose the multiplier on the FFT circuit into smaller ones
so that they can be efficiently implemented by LUT of an
FPGA. As a result, the proposed method can realize more
FFTs in parallel than the existing FPGA library. Additionally,
we compare the NRNS with the conventional RNS for different
numbers of inputs 𝑛 for the arithmetic circuits. Finally, we
show the condition that the NRNS realization is smaller than
the RNS realization.

C. Organization of the Paper

The rest of the paper is organized as follows: Chapter 2
shows the pipelined binary FFT circuit; Chapter 3 introduces
the conventional residue number system (RNS); Chapter 4
shows the FFT circuit based on the RNS (RNS FFT); Chapter
5 proposes the FFT based on the Nested RNS (NRNS FFT);
Chapter 6 compares the NRNS FFT with the RNS one; Chapter
7 shows the experimental results; and Chapter 8 concludes the
paper.

II. BINARY FFT

A. Fast Fourier Transform (FFT)

Let (𝑥0, 𝑥1, . . . , 𝑥𝑁−1) be an input consisting of 𝑁 com-
plex numbers. The discrete Fourier Transform (𝑁 point
DFT) is (𝑐0, 𝑐1, . . . , 𝑐𝑁−1), where

𝑐𝑘 =

𝑁−1∑
𝑗=0

𝑎𝑗𝑤
𝑗𝑘
𝑁 , (1)
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Fig. 5. Pipelined radix-2 binary FFT.

and 𝑤𝑗𝑘
𝑁 = 𝑒𝑥𝑝(−2𝜋𝑖 𝑗𝑘𝑁 ) is a twiddle factor. A time com-

plexity of a direct computation for Expr. (1) is 𝑂(𝑁2). By
applying decompositions to the 𝑁 point DFT 𝑠 = ⌈log𝑟𝑁⌉
times recursively, we have a Cooley-Tukey Fast Fourier
Transform (𝑁 point FFT) [3]. Let 𝑠 = ⌈𝑙𝑜𝑔𝑟𝑁⌉ be the
number of stages, and 𝑟 be the radix of the FFT. In this
paper, we assume that 𝑟 = 2. Fig. 3 shows a signal flow graph
obtained by the FFT algorithm, where 𝑁 = 8 and 𝑟 = 2.

B. Pipeline Radix-2 Binary FFT

As shown in Fig. 3, different stages handle points with
different distances. By applying an index swap operation
replacing indices between adjacent stages, we can adjust the
points of the inputs for the butterfly operations. The swap
memory performs an index swap operation. Let 𝑤 be a preci-
sion of the FFT. Then, the amount of memory for each swap
is 𝑤𝑁 , and the total amount of memory for the swap memory
is 𝑤𝑁⌈𝑙𝑜𝑔𝑟𝑁⌉. Fig. 4 shows a radix-2 butterfly operator
for 𝑟 = 2, which consists of two complex multipliers. Fig. 5
shows a pipelined radix-2 FFT [4], which allows continuous
data processing. Unfortunately, the radix-2 binary FFT requires
very large multipliers, since the dynamic range of the latter
stages are very large.

III. RESIDUE NUMBER SYSTEM (RNS)

A residue number system (RNS) [19], [15] is defined by
a set of 𝐿 integer constants as follows:

⟨𝑚1,𝑚2, . . . ,𝑚𝐿⟩,
where no pair of moduli have a common factor with any other.
An arbitrary integer 𝑍 can be uniquely represented by the RNS
as a tuple of 𝐿 integers as follows:

(𝑧1, 𝑧2, . . . , 𝑧𝐿),

where 𝑧𝑖 ≡ 𝑍 (𝑚𝑜𝑑 𝑚𝑖).

𝑀 =
∏𝐿

𝑖=1𝑚𝑖 is a dynamic range of the RNS. In the
RNS, the addition, the subtraction, and the multiplication are
performed in digit-wise. Let 𝑋 and 𝑌 be integers, 𝑥𝑖 and
𝑦𝑖 be integers in the RNS defined by 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝐿). Let
∘ denote + (addition), − (subtraction), or ∗ (multiplication).
Then, 𝑍 = 𝑋 ∘ 𝑌 can be represented as

𝑍 = (𝑧1, 𝑧2, . . . , 𝑧𝐿),

where 𝑧𝑖 ≡ (𝑥𝑖 ∘ 𝑦𝑖) (𝑚𝑜𝑑 𝑚𝑖). Note that, the division is not
included in the operations.

Example 3.1: Let ⟨𝑚1,𝑚2,𝑚3⟩ = ⟨3, 4, 5⟩ be the moduli
set. Consider the multiplication 𝑋 × 𝑌 , where 𝑋 = 8 and
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𝑌 = 2. Since 𝑋 × 𝑌 = 16, the product is represented by
(1, 0, 1) in the RNS. 𝑋 and 𝑌 are represented by (2, 0, 3) and
(2, 2, 2) in the RNS, respectively. In this case, 𝑋 × 𝑌 in the
RNS is computed as follows:

𝑋 × 𝑌 ≡ (4 𝑚𝑜𝑑 3, 0 𝑚𝑜𝑑 4, 6 𝑚𝑜𝑑 5)

≡ (1, 0, 1).

In the RNS, the arithmetic operation is performed in digit-
wise. This means that we can decompose large multipliers into
smaller ones. In this way, we can reduce the sizes of LUTs
for the FFT.

IV. RADIX-2 RNS FFT CIRCUIT

Expr. (1) shows that the FFT operation consists of the
addition, the subtraction, and the multiplication. By applying
the RNS to the FFT, we have the FFT circuit based on the
RNS (RNS FFT) shown in Fig. 6. In this circuit, first, the
binary input signal is converted into the RNS by read only
memories (ROMs). Typically, the input signals from analog-
digital converters (ADCs) are 8-14 bits. The binary to RNS
converter can be implemented by 18Kb BRAMs on the FPGA.
Next, the RNS FFT circuit computes each signal in the digit-
wise manner. In this paper, we assume that the conversion from
the RNS to the binary is done off-line.

Fig. 7 shows the modulo 𝑚𝑖 RNS butterfly, which is
derived from the binary butterfly operator shown in Fig. 4. In
Fig. 7, 𝐴 = (𝐴𝑅, 𝐴𝐼) and 𝐵 = (𝐵𝑅, 𝐵𝐼) denote the complex
inputs, 𝑊 = (𝑊𝑅,𝑊𝐼) denotes the complex twiddle factor,
𝑅 denotes the real part, and 𝐼 denotes the imaginary part. The
𝑚𝑖 RNS butterfly module can be realized by small LUTs [16].
Let 𝑚𝑖 be the modulo in the RNS. Then, the total amount of
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memory for the modulo 𝑚𝑖 butterfly is 10 × (𝑚𝑖)
2⌈𝑙𝑜𝑔2𝑚𝑖⌉

bits, since the butterfly operator uses 10 arithmetic circuits.
Fig. 7 shows that the 𝑁 points RNS FFT requires memories
with

∑𝐿
𝑖=1 10× (𝑚𝑖)

2⌈𝑙𝑜𝑔2𝑚𝑖⌉× 𝑙𝑜𝑔2𝑁 bits. In other words,
the number of LUTs is 𝑂((𝑚𝑖)

2⋅(𝑙𝑜𝑔 𝑚𝑖)⋅(𝑙𝑜𝑔𝑁)). Therefore,
we can decreases the number of LUTs by decreasing 𝑚𝑖 .

Fig. 8 shows the swap memory on the radix-2 RNS FFT.
As shown in Fig. 6, the RNS FFT consists of 𝐿 moduli FFTs.
Swap values for 𝐿 butterfly operators are stored in the swap
memory. When 𝑟 = 2, the RNS butterfly operator swaps 𝑁

2
signals. Also, each RNS butterfly operator produces ⌈𝑙𝑜𝑔2𝑚𝑖⌉
bits. Thus, the amount of swap memory 𝑀𝑒𝑚 for each stage
is

𝑀𝑒𝑚 =
𝑁

2
× (

𝐿∑
𝑖=1

⌈𝑙𝑜𝑔2𝑚𝑖⌉).

Since the number of stages is ⌈𝑙𝑜𝑔2𝑁⌉, the total amount of
swap memories is 𝑀𝑒𝑚⌈𝑙𝑜𝑔2𝑁⌉ bits.

V. FFT CIRCUIT BASED ON NESTED RNS

A. RNS FFT using RNS2RNS Converters

A direct realization of the RNS FFT shown in Fig. 6
requires an excessive number of LUTs, since the dynamic
range is too large for the first half stages of the RNS butterflies.
In this paper, we increase the dynamic range stage by stage.
We insert RNS2RNS converters [10] that converts a small
dynamic range to a large dynamic range. Fig. 9 shows the
RNS FFT inserted RNS2RNS converters. In this circuit, since
large moduli are removed, the number of LUTs is reduced.
However, it requires additional RNS2RNS converters. We
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Fig. 10. Example of an RNS2RNS converter.
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Fig. 11. RNS2RNS converter.

decompose the RNS2RNS converter by applying the functional
decomposition.

Fig. 10 shows the function table for the RNS2RNS con-
verter which converts (𝑚1,𝑚2) = (2, 3) to (𝑚1,𝑚2,𝑚3) =
(2, 3, 5). Although we can use an arbitrary moduli set in
the RNS2RNS converter, to reduce the amount of hard-
ware, we use 𝑔(𝑚1,𝑚2, . . . ,𝑚𝐿) = (𝑚1,𝑚2, . . . ,𝑚𝐿,𝑚𝐿+1)
as the RNS2RNS converter. In this case, as shown in
Fig. 11, the RNS2RNS converter requires only the circuit for
𝑔′(𝑚1,𝑚2, . . . ,𝑚𝐿) = 𝑚𝐿+1. Let 𝑀 =

∏𝐿
𝑖=1𝑚𝑖 be the

dynamic range. A single-memory realization of the RNS2RNS
converter requires a memory with 𝑀⌈𝑙𝑜𝑔2𝑚𝐿+1⌉ bits. In
our implementation, as shown in Fig. 12, we decompose
the RNS2RNS converter into the RNS2Bin converter and
the Bin2RNS converter. Let 𝑚𝐿+1 be the modulo in the
Bin2RNS converter, then the column multiplicity of the de-
composition is at most 𝑚𝐿+1. Thus, we can reduce the
necessary number of LUTs by applying the functional de-
composition [13]. In a similar manner, the RNS2Bin con-
verter representing the mod-EVMDD: Modulo Edge-Valued
MDD, which is a combination of the multi-valued deci-
sion diagram (MDD) [5] and the edge-valued decision dia-
gram (EVDD) [7], can be reduced by the functional decom-
position [10].

B. Nested RNS (NRNS)

Since moduli set of RNS consists of pairwise prime num-
bers, we need LUTs with different sizes. Assume that an
integer 𝑍 is represented by 𝑍 = (𝑧1, 𝑧2, . . . , 𝑧𝐿) in the RNS,
and 𝑧𝑖 is represented by the RNS recursively. Then, we have
the nested RNS (NRNS) [11] which is defined by a set of
𝑗 moduli ⟨𝑚𝑖1,𝑚𝑖2, . . . ,𝑚𝑖𝑗⟩, where no pair of moduli have
a common factor with any other. In the NRNS, 𝑧𝑖 can be
uniquely represented as a tuple of 𝑗 integers as follows:

𝑍 =
(
𝑧1, 𝑧2, . . . , (𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑗)𝑖, . . . , 𝑧𝐿

)
.

In the NRNS, we describe the original moduli 𝑚𝑖 in the
subscript of the right parenthesis. Since the NRNS can be
applied to each element in the RNS recursively, moduli can be

Fig. 12. Decomposition of the RNS2RNS converter.

decomposed into smaller sizes. In this case, we must consider
the dynamic range. Let 𝑋 and 𝑌 be integers represented
by 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝐿) and 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝐿) in
the RNS, respectively. By applying the NRNS to 𝑥𝑖 and
𝑦𝑖, we have 𝑋 =

(
𝑥1, 𝑥2, . . . , (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑗)𝑚𝑖

, . . . , 𝑥𝐿
)

and 𝑌 =
(
𝑦1, 𝑦2, . . . , (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑗)𝑚𝑖

, . . . , 𝑦𝐿
)
. Since the

dynamic range for the NRNS is 𝑀𝑚𝑖
=

∏𝑗
𝑙=1𝑚𝑖𝑙, the relation

𝑀𝑚𝑖
≥ 𝑥𝑖∘𝑦𝑖 must be satisfied. By rewriting the output of the

Bin2RNS converter 𝑧𝑖 shown in Fig. 12 to (𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑗)𝑖,
we have the Bin2NRNS converter.

Example 5.2: Consider that the RNS ⟨3, 4, 5⟩ is repre-
sented by the moduli set

〈
3, 4, ⟨3, 4⟩5

〉
by the NRNS. Let

𝑋 = 17 and 𝑌 = 3. In the NRNS, 𝑋 and 𝑌 are represented
by 𝑋 ≡ (2, 1, (2, 2)5) and 𝑌 ≡ (0, 3, (0, 3)5), respectively.
Thus, 𝑋 + 𝑌 in the NRNS is computed by

𝑋 + 𝑌 ≡ (2 𝑚𝑜𝑑 3, 4 𝑚𝑜𝑑 4, (2 𝑚𝑜𝑑 3, 5 𝑚𝑜𝑑 4)5)

≡ (2, 0, (2, 1)5).

By converting (2, 1)5 in the RNS ⟨3, 4⟩5 to the binary number,
we have 5. Note that, 5 (𝑚𝑜𝑑 5) = 0. Then, we have

(2, 0, (2, 1)5) = (2, 0, 5) ≡ (2, 0, 0).

By converting (2, 0, 0) in the RNS ⟨3, 4, 5⟩ into the binary
number, we have 20, which is equal to the result of 17+ 3.

VI. COMPARISON OF NRNS-BASED ARITHMETIC
CIRCUITS WITH RNS-BASED ONES

Let ⟨𝑚1,𝑚2, . . . ,𝑚𝐿⟩ be the moduli set for the RNS. Sup-
pose that the moduli set ⟨𝑚1,𝑚2, . . . ,𝑚𝐿,𝑚𝐿+1⟩ where the
RNS2RNS converter adds a new modulo 𝑚𝐿+1. By applying
the NRNS to 𝑚𝐿+1, we have the moduli set for the NRNS as〈
𝑚1,𝑚2, . . . ,𝑚𝐿, ⟨𝑚𝐿+1,1,𝑚𝐿+1,2, . . . ,𝑚𝐿+1,𝑗 , ⟩

〉
. In this

section, we analyze the number of LUTs with respect to𝑚𝐿+1.
First, we estimate the number of LUTs. Let 𝐿𝑅𝑁𝑆 be the
necessary number of LUTs to realize an arithmetic circuit 1

based on the RNS, and 𝐿𝑁𝑅𝑁𝑆 be that based on the NRNS.
Note that, in this paper, since we assume that the RNS2RNS
converter is realized by BRAMs instead of LUTs, we do not
count the number of LUTs for each converter. Also, we assume
a moduli set consisting of prime numbers. The number of
LUTs for the RNS is estimated by

𝐿𝑅𝑁𝑆 = ⌈𝑘22𝑘/𝐿𝐹𝑃𝐺𝐴⌉, (2)

1The arithmetic circuit has 2𝑘 inputs and 𝑘 outputs, where 𝑘 =
⌈𝑙𝑜𝑔2𝑚𝐿+1⌉.
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TABLE I. SYNTHESIS OPTIONS FOR THE XILINX INC. BINARY FFT.

Option Parameter
Implementation Pipelined, Streaming I/O
Data Format Fixed Point
Input Data Width 8bit
Phase Factor Width 18bit
Scaling Options Unscaled
Output Ordering Bit/Digit Reversed
Complex Multipliers Use CLB Logic
Butterfly Arithmetic Use CLB Logic

where 𝑘 = ⌈𝑙𝑜𝑔2𝑚𝐿+1⌉, and 𝐿𝐹𝑃𝐺𝐴 is the number of bits for
the LUT in an FPGA 2.

We estimate the number of LUTs
for the NRNS whose moduli set is〈
𝑚1,𝑚2, . . . ,𝑚𝐿, ⟨𝑚𝐿+1,1,𝑚𝐿+1,2, . . . ,𝑚𝐿+1,𝑗 , ⟩

〉
. The

dynamic range for the NRNS must satisfy the relation
(𝑚𝐿+1)

2 ≤ ∏𝑗
𝑖=1 𝑟𝐿+1,𝑖. Let 𝑠𝑖 ∈ {0, 1} be the select

variable that satisfies the following:

𝑟𝐿+1,𝑖 =

{
𝑚𝐿+1,𝑖 (𝑠𝑖 = 1)
1 (𝑠𝑖 = 0)

Then, the number of LUTs for the NRNS is estimated by

𝐿𝑁𝑅𝑁𝑆 =

𝑗∑
𝑖=1

⌈𝑠𝑖𝑘𝑖22𝑘𝑖/𝐿𝐹𝑃𝐺𝐴⌉,

where 𝑘𝑖 = ⌈𝑙𝑜𝑔2𝑚𝐿+1,𝑖⌉.
Let 𝐺 be the gain for the number of LUTs. Then, we have

𝐺 =
𝐿𝑅𝑁𝑆

𝐿𝑁𝑅𝑁𝑆
. (3)

Expr. (3) shows that when 𝐺 > 1.00, the NRNS-based
realization requires fewer LUTs than the RNS-based one.

Fig. 13 shows the gain 𝐺 for 𝐿𝐹𝑃𝐺𝐴 = 64, for dif-
ferent value of the moduli 𝑚𝐿+1 in the RNS. Note that,
in our implementation, we used 𝑠𝑗 that minimizes 𝐿𝑁𝑅𝑁𝑆 .
Fig. 13 shows that for 𝑚𝐿+1 ≥ 8 except for 𝑚𝐿+1 = 15,
𝐺 > 1.00. Thus, in that case, by applying the NRNS, we
can reduce the number of LUTs. Note that for 𝑚𝐿+1 = 15,
𝐺 < 1.00, and the NRNS-based design requires more LUTs.

2In the experiment, we used an FPGA that has six-input LUTs. Thus,
𝐿𝐹𝑃𝐺𝐴 = 64

TABLE II. MODULI SET USING IN THE IMPLEMENTATION.

FFT # of points 𝑁 Moduli set
1024 (5,7,9,11,13,16)
2048 (7,8,9,11,13,17)
4096 (7,8,11,13,15,31)
8192 (7,11,13,15,17,19)

16384 (11,13,14,15,17,19)
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Fig. 14. Comparison of the numbers of 6-input LUTs.

For 𝑚𝐿+1 = 15, since 𝑘 = ⌈𝑙𝑜𝑔2𝑚𝐿+1⌉ = 4, 𝐿𝑁𝑅𝑁𝑆 =
⌈𝑘2𝑘+𝑘/𝐿𝐹𝑃𝐺𝐴⌉ = 16. We used an optimal moduli set
⟨3, 7, 11⟩ that minimizes the number of LUTs for the NRNS.
In this case, 𝐿𝑁𝑅𝑁𝑆 = ⌈2⋅22+2/𝐿𝐹𝑃𝐺𝐴⌉ +⌈3⋅23+3/𝐿𝐹𝑃𝐺𝐴⌉
+⌈4 ⋅ 24+4/𝐿𝐹𝑃𝐺𝐴⌉ = 21. We use the NRNS instead of the
RNS for 𝑚𝐿+1 ≥ 8, except for 𝑚𝐿+1 = 15.

VII. EXPERIMENTAL RESULTS

We implemented the NRNS FFT (NRNS2NRNS) on the
Xilinx Inc. Virtex 7 FPGA. Then, we compared it with the
Xilinx Inc. binary FFT library (Binary) [18], the conventional
RNS FFT (RNS) [16], and the RNS FFT with the RNS2RNS
converter (RNS2RNS) [10]. Table I shows the synthesis op-
tions for the Xilinx binary FFT library. As for the RNS FFT,
we chose moduli set in Table II. Note that, the input signal is
represented by 8 bits, and the twiddle factor is represented by
18 bits. Using the experimental result shown in Fig. 13, we
applied the NRNS to moduli set that is greater than or equal
to 8 except for 15. In Table II, bold numbers show moduli set
applied to NRNS.

Fig. 14 compares the numbers of 6-input LUTs, while
Fig. 15 compares the numbers of 18Kb BRAMs for different
number of FFT points. Since the NRNS decomposed the
FFT circuit, it reduced the number of LUTs by 42.4-47.8%.
Compared with the RNS FFT, the NRNS reduced the LUT
count by 9.4-20.5%. Since the dynamic range is often greater
than the bit range of the binary FFT, the amount of swap
memory for the RNS FFT are larger than that for the binary
FFTs. Fig. 15 shows that compared with the binary FFT,
the NRNS-based design required 20.0-156.5% more BRAMs.
Compared with the RNS FFT, the NRNS-based design required
34.1% more BRAMs. However, for large 𝑁 , the number of
LUTs is the bottleneck [8], [9], while that of the BRAMs is not.
Fig. 16 compares the maximum clock frequencies. Since the
proposed NRNS FFT has a smaller realization, it has a shorter
critical path. Thus, the proposed one operates 9.3-41.7% faster
than conventional ones.
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VIII. CONCLUSION

In this paper, we proposed the FFT circuit based on the
NRNS to reduce the number of LUTs. For large modulo 𝑚,
the NRNS reduces the number of LUTs for arithmetic circuits,
while for small 𝑚, it does not. This paper compared the
NRNS with the RNS for arithmetic circuits. The experimental
analysis showed that for 𝑚 ≥ 8, the NRNS-based design
requires fewer LUTs except for 𝑚 = 15. We realized the
NRNS FFT on the Xilinx Inc. Virtex 7 FPGA. Since the NRNS
decomposes the FFT circuit into smaller one so that the circuit
is implemented efficiently by LUTs, compared with the Xilinx
binary FFT, it required 42.4-47.8% fewer LUTs. Compared
with the conventional RNS FFT, it required 9.4-20.5% fewer
LUTs. Although the NRNS FFT requires more BRAMs, for
large inputs 𝑁 , it is not the bottleneck. As for the maximum
clock frequency, since the proposed RNS FFT has a smaller
realization, it operated in 9.3-41.7% higher frequency.
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