
An Efficient Heuristic for Linear Decomposition of
Index Generation Functions

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper proposes a heuristic for linear decom-
position of index generation functions using a balanced decision
tree. The proposed heuristic finds a good linear decomposition
of an index generation function by recursively dividing a
set of its function values into two balanced subsets. Since
the proposed heuristic is fast and requires a small amount
of memory, it is applicable even to large index generation
functions that cannot be solved in a reasonable time by existing
heuristics. This paper shows time and space complexities of the
proposed heuristic, and experimental results using some large
examples to show its efficiency.

Keywords-Heuristic; balanced decision tree; linear decompo-
sition; index generation functions; logic design.

I. INTRODUCTION

Pattern matching and text search are basic operations
used in many applications, such as detection of computer
viruses and packet classification. Logical behavior of these
operations can be specified as index generation functions [4],
[5]. Since index generation functions are frequently updated
particularly in the above network applications, a memory-
based design of index generation functions is desired.

To design index generation functions using memory ef-
ficiently, a method using linear decomposition [2], [12]
of index generation functions has been proposed [7]. This
method realizes an index generation function f (X) using
two blocks L and G, as shown in Fig. 1. The first block
L realizes linear functions with EXOR gates, registers,
and multiplexers, and the second one G realizes a general
function with a (2p×q)-bit memory, where p is the number
of linear functions, and q is the number of bits needed to
represent function values.

Linear functions General function

p qn
L GX f

Figure 1. Linear decomposition of an index generation function.

Table I
EXAMPLE OF INDEX GENERATION FUNCTION.

Registered vectors indices
x1 x2 x3 x4 f
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 1 0 1 4

In this design method, minimization of p is important
to reduce size of the memory for G. Thus, various heuris-
tics for minimization have been proposed [6], [7], [9],
[10]. However, for larger index generation functions, more
efficient minimization heuristics are still required. Hence,
in this paper, we propose a heuristic with smaller time
and space complexities than the existing heuristics. The
proposed heuristic is useful not only to find good linear
decompositions of large index generation functions, but also
to investigate a trade-off between complexity of L and
memory size of G for large index generation functions.

The rest of this paper is organized as follows: Section II
defines index generation functions and linear decomposition.
Section III formulates the minimization problem of the
number of linear functions, and shows our heuristic to solve
it. Section IV shows experimental results from practical
examples, and Section V concludes the paper.

II. PRELIMINARIES

We briefly define index generation functions [4], [5] and
their linear decompositions [2], [7], [12].

Definition 1: An incompletely specified index gener-
ation function, or simply index generation function,
f (x1,x2, . . . ,xn) is a multi-valued function, where k assign-
ments of values to binary variables x1,x2, . . ., and xn map
to K = {1,2, . . . ,k}. That is, the variables of f are binary-
valued, while f is k-valued. Further, there is a one-to-one re-
lationship between the k assignments of values to x1,x2, . . .,
and xn and K. Other assignments are left unspecified. The
k assignments of values to x1,x2, . . ., and xn are called a set
of registered vectors. K is called a set of indices. k = |K|
is called weight of the index generation function f .

Example 1: Table I shows a 4-variable index generation
function with weight four. Note that, in this function, input

2016 IEEE 46th International Symposium on Multiple-Valued Logic

0195-623X/16 $31.00 © 2016 IEEE

DOI 10.1109/ISMVL.2016.52

96

Table II
GENERAL FUNCTIONS g1 AND g2 IN LINEAR DECOMPOSITION OF f .

y1 y2 g1 g2
0 0 1 2
0 1 2 1
1 0 3 3
1 1 4 4

values other than 0001, 0010, 0100, and 1101 are NOT
assigned to any function values. (End of Example)

An arbitrary n-variable index generation function with
weight k can be realized by a (2n× q)-bit memory, where
q = �log2(k + 1)�. To reduce the memory size, linear decom-
position is effective [7].

Definition 2: Linear decomposition of an index genera-
tion function f (x1,x2, . . . ,xn) is a representation of f using
a general function g(y1,y2, . . . ,yp) and linear functions yi:

yi(x1,x2, . . . ,xn) = ci1x1⊕ ci2x2⊕ . . .⊕ cinxn

(i = 1,2, . . . , p),

where ci j ∈ {0,1} (j = 1,2, . . . ,n), and for all registered
vectors of the index generation function, the following holds:

f (x1,x2, . . . ,xn) = g(y1,y2, . . . ,yp).

Each yi is called a compound variable. For each yi, ∑n
j=1 ci j

is called a compound degree of yi, denoted by deg(yi),
where ci j is viewed as an integer, and ∑ is integer sum.

Example 2: The index generation function f in Exam-
ple 1 can be represented by y1 = x2, y2 = x1 ⊕ x3, and
g1(y1,y2) shown in Table II. (i.e. all four values of f are
distinguished by just y1 and y2.) In this case, deg(y1) = 1
and deg(y2) = 2, respectively. f can be also represented by
y1 = x2, y2 = x4, and g2(y1,y2) in the same table. In this
case, both deg(y1) and deg(y2) are 1. In either case, f can
be realized by the architecture in Fig. 1 with a (22×3)-bit
memory. (End of Example)

In this way, by using linear decomposition, memory
size needed to realize an index generation function can be
reduced. But, to realize a compound variable with compound
degree d, (d− 1) 2-input EXOR gates are required. Thus,
lower compound degree is desirable when memory size is
equal.

III. MINIMIZATION OF NUMBER OF LINEAR FUNCTIONS

This section formulates the minimization problem of the
number of linear functions, and presents a heuristic to solve
the problem.

A. Formulation of Minimization Problem

Since the architecture in Fig. 1 realizes an index genera-
tion function with EXOR gates and a (2p×q)-bit memory,
to obtain an optimum realization of an index generation
function, we have to solve the following problem:

Problem 1: Given an index generation function f and the
maximum compound degree t, find a linear decomposition

y1

y2

1, 2, 3, 4
Set of function values

y2

3, 4

3 4

1, 2

y = 11y = 01

2 1

y = 02y = 02 y = 12 y = 12

Figure 2. Point of view as a binary decision tree.

of f such that the number of linear functions p is the
minimum, and compound degrees are at most t. For linear
decompositions with the same value of p, the one with the
lowest compound degree is optimum.

As will be shown later, increasing the compound degree
tends to reduce the value of p. But, it is limited to t because
of delay and area of the circuit L to realize linear functions.

Example 3: For linear decompositions of f in Example 2,
the decomposition with y = x2, y2 = x4, and g2(y1,y2) is
optimum. (End of Example)

B. Heuristic for Minimization Problem

Since the solution space of Problem 1 is too large to
solve the problem exactly, various heuristics have been pro-
posed [6], [7], [9], [10]. However, for larger index generation
functions, a heuristic that finds a good linear decomposition
with smaller time and space complexities is still required.
To reduce both time and space complexities, we propose a
heuristic that searches only promising linear decompositions
efficiently.

To solve Problem 1, we have to find the smallest set
of compound variables such that k distinct combinations
of values of the compound variables have a one-to-one
correspondence to a set of indices for f . In other words,
we have to find the fewest compound variables that divide a
set of indices into singletons (sets consisting of exactly one
index). This corresponds to constructing a binary decision
tree with the smallest height. This is the key idea for our
heuristic.

Example 4: As shown in Fig. 2, finding the optimum
linear decomposition in Example 3 can be considered as
constructing a binary decision tree with the smallest height
that divides a set of indices into singletons by compound
variables y1 and y2. (End of Example)

Since a binary decision tree with the smallest height is a
balanced decision tree, we propose a heuristic to construct
a balanced decision tree using compound variables. To do
this, a set of indices is divided into two subsets with balanced
size recursively by compound variables. Before describing
requirements to find such compound variables, we define
additional terms.

97

Heuristic 1: Heuristic to find a good compound variable
Input: a partition of indices P , an index generation
function, and a compound degree t
Output: a compound variable yopt

1. Let y be 0 (the constant zero function).
2. Find xi with the minimum cost(P ,y⊕ xi) among

x1,x2, . . . , and xn.
3. Replace y with y⊕xi and deg(y) with deg(y)+1.
4. If cost(P ,y) is smaller than the previous smallest

one, then yopt = y.
5. If cost(P ,y) = 0, then terminate the heuristic.
6. Else, iterate Steps 2 to 5 until deg(y) = t.

Definition 3: An inverse function of a general function
z = g(y1,y2, . . . ,yp) in a linear decomposition is a mapping
from K = {1,2, . . . ,k} to a set of p-bit vectors Bp, denoted by
g−1(z). In this inverse function g−1(z), a mapping obtained
by focusing only on the i-th bit of the p-bit vectors: K →
{0,1} is called an inverse function to a compound variable
yi, denoted by (g−1)i(z).

Definition 4: Let ON(yi) = {z | z ∈ K,(g−1)i(z) = 1},
where K = {1,2, . . . ,k} and (g−1)i(z) is an inverse function
of g(y1,y2, . . . ,yn) to yi. |ON(yi)| is called the cardinality
of yi or informally the number of 1s included in yi.

Example 5: For g2(y1,y2) in Table II, its inverse functions
to y1 and y2 are (g−1

2)1(z) and (g−1
2)2(z), respectively. We

have (g−1
2)1(2) = 0, (g−1

2)1(1) = 0, (g−1
2)1(3) = 1, and

(g−1
2)1(4) = 1. Similarly, (g−1

2)2(2) = 0, (g−1
2)2(1) = 1,

(g−1
2)2(3) = 0, and (g−1

2)2(4) = 1. The cardinalities of both
y1 and y2 are 2. (End of Example)

Theorem 1: An index generation function with weight
k = 2m, where m is a positive integer, can be represented by a
completely balanced binary decision tree with m compound
variables, if and only if there exist m compound variables
satisfying the following requirement: For all subsets Y of
the set of the m compound variables, (1) holds,∣∣∣∣∣

\

yi∈Y

ON(yi)

∣∣∣∣∣= 2m−h, (1)

where h = |Y |.
(Proof) See Appendix A.

Although compound variables satisfying the above re-
quirements are ideal to construct a balanced decision tree,
weights of index generation functions are not always 2m,
and only limited functions have such compound variables.
In addition, finding such m compound variables is hard.
Thus, to construct a balanced decision tree, we heuristically
select a compound variable closer to the ideal one satisfying
the above requirements by minimizing the following cost
function over the unselected compound variables:

cost(P ,yi) =

√√√√∑
S∈P

(|S|
2
−|S∩ON(yi)|

)2

, (2)

Heuristic 2: Heuristic to find a good linear decomposition
Input: an index generation function and a compound
degree t
Output: a set of compound variables
1. Let P = {K} and i = 1.
2. Find a compound variable yi by Heuristic 1.
3. Divide each S ∈ P with yi.
4. Update P with the divided subsets.
5. i = i+ 1.
6. Iterate Steps 2 to 5 until |P |= k.

where P is a partition of a set of indices with already
selected compound variables. Initially, when there are no
selected compound variables, P is the trivial partition con-
sisting of a single block containing all indices.

This cost function is defined with the view of a Euclidean
distance (2-norm) between yi and an optimum compound
variable that divides all subsets into halves. A compound
variable with a small cost function tends to be a member of
the optimum set of variables. Heuristic 1 shows a heuristic
to find a good compound variable using the cost function.
In the heuristic, P is a partition of a set of indices with
already selected compound variables, and t is the maximum
compound degree.

Since Heuristic 1 selects promising variables xi using the
cost function, and compounds only those variables, it can
find a good compound variable with small time and space
complexities. In Steps 2 and 4, when the cost function is
equal, the heuristic selects a compound variable that divides
subsets into smaller subsets. That is, the following is used
as the second cost function:

max
S∈P

(max(|S∩ON(yi)|, |S \ON(yi)|)).
In addition, a compound variable with smaller compound
degree is prioritized since the heuristic begins with the
smallest compound degree.

By using Heuristic 1 iteratively, we can find a good linear
decomposition. Heuristic 2 shows a heuristic to find a good
linear decomposition using Heuristic 1. Heuristic 2 divides a
set of indices iteratively using compound variables selected
by Heuristic 1, and it terminates when a set of indices is
divided into singletons.

Although there exist heuristics to construct optimum
decision trees and diagrams based on linear functions [1],
[3], their objective functions for optimization is essentially
different from the proposed heuristic. Therefore, even if
the existing heuristics could be applied to Problem 1, the
proposed heuristic is more efficient since it is a dedicated
heuristic to solve Problem 1. Detailed comparison is omitted
due to the page limitation.

C. Time and Space Complexities of the Heuristic

Since the cost function cost(P ,yi) is computed by check-
ing which subset S ∈ P each index belongs to and whether

98

y1

y2

y = 11y = 01

2

1
y = 02 y = 12

yk -1

k

y = 1k -1y = 0k -1

k - 1

Figure 3. Imbalanced decision tree with height k.

Table III
TIME AND SPACE COMPLEXITIES OF HEURISTICS.

Heuristics Time Space
Ours O(nk log(k)) O(nk)

RM2011 [6] O(n5k) O(nk)
ASP-DAC2012 [7] O(ntk log(k)) O(ntk)

IEICE2014 [9] N/A O(nk2)
ISMVL2015 [10] O(nsk log(k)) O(nk)

it belongs to ON(yi), its time complexity is O(k). In Step 2
of Heuristic 1, the cost function is invoked n times to find
the best xi among x1 to xn. Since Step 2 is iterated t times,
the time complexity of Heuristic 1 is

O(k)×n× t = O(knt).

Similarly to the cost function, the time complexity for
dividing subsets of P in Step 3 of Heuristic 2 is O(k).
Heuristic 2 invokes this computation and Heuristic 1 it-
eratively until |P | = k. Since the number of iterations in
Heuristic 2 is k− 1 in the worst case, its time complexity
is (O(knt) + O(k))× (k − 1) = O(k2nt). In this case, an
extremely imbalanced decision tree is constructed as shown
in Fig. 3. However, it rarely happens because the heuristic
intends to construct a balanced decision tree. Thus, the
number of iterations is log(k) on the average, resulting
in a time complexity of O(ntk log(k)). Since t is a small
constraint parameter rather than the size of the problem,
it can be considered as a constant. Therefore, the time
complexity of Heuristic 2 is

O(nk log(k)).

Memory sizes to store subsets of indices and to store se-
lected compound variables are O(k) and O(n), respectively.
On the other hand, memory size to store given registered
vectors is O(kn). Since other working spaces require much
less memory size, the space complexity of Heuristic 2 is

O(kn).

Table III compares our heuristic with existing heuristics,
in terms of time and space complexities. Table III shows that
our heuristic can solve even larger instances of Problem 1
(e.g., n = 40 and k = 1,000,000) with a computation time

Table IV
COMPARISON IN TERMS OF QUALITY OF SOLUTIONS.

Benchmarks k Heur. Compound degree t
1 2 3 4 5 6

1-out-of-20 code 20 [7] 19 14 10 8 7 6
Ours 19 14 10 8 7 6

3-out-of-20 code 1,140 [7] 19 17 14 12 12 11
Ours 19 17 14 13 13 13

IP address table 4,591 [7] 24 20 19 18 18 18
Ours 23 21 20 20 20 20

IP address table 7,903 [7] 23 21 20 20 20 20
Ours 23 22 22 22 21 21

English words 3,366 [7] 31 21 19 17 17 -
(ListB) Ours 31 21 20 19 19 19

English words 4,705 [7] 37 24 20 19 18 -
(ListC) Ours 37 24 21 20 20 20

that is several orders of magnitude smaller and with smaller
memory size than previous heuristics.

IV. EXPERIMENTAL RESULTS

The proposed heuristic is implemented in the C language,
and run on the following computer environment: CPU: Intel
Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS
5.7, and C-compiler: gcc -O2 (version 4.1.2).

A. On Quality of Solutions

Among the existing heuristics in Table III, the heuristic
presented in ASP-DAC2012 [7] produces the best solutions
(i.e., the smallest numbers of compound variables). Thus,
we compare our heuristic with it in terms of quality of
solutions. Table IV compares the numbers of compound
variables selected by both heuristics for some benchmarks
shown in [7].

Even though the search space of our heuristic is much
smaller than that of the existing heuristic, the number of
compound variables selected by our heuristic is not much
larger than that selected by the existing heuristic, as shown
in Table IV. Particularly, for the benchmark of 1-out-of-
20 code, our heuristic found the exact minimum number of
compound variables [11] when t = 1 to 8 except for t = 2.
This shows that our heuristic finds good solutions efficiently
by pruning unpromising solutions heuristically.

B. Results for Large Problems

To show that our heuristic can be applied to larger prob-
lems, we used the following three examples: 1) random so-
cial security and tax numbers (SST numbers) in Japan [13];
2) the bible [17]; and 3) the US constitution [18] including
amendments [19], [20]. 1) is used as a numeric example
with large k, and 2) and 3) are examples of text search with
large n. For information on how to generate index generation
functions from these examples, see Appendix B. Table V
shows computation time of our heuristic and the number of
compound variables for these examples.

For each example function, we can predict the number of
compound variables using Property 1 shown in [8].

99

Table V
COMPUTATION TIME IN SECONDS AND NUMBER OF COMPOUND VARIABLES.

Computation time Compound degree t
Benchmarks n k t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

SST numbers 48 1,000,000 81.30 165.91 250.50 333.25 406.49 492.62 568.60 639.45 712.01 778.98
Bible 560 20,827 3.75 6.38 9.09 11.80 14.42 17.13 19.78 22.38 25.05 27.72

US constitution 1,512 253 0.05 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.23 0.25

Number of compound variables t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
SST numbers 42 37 36 35 35 35 35 35 35 35

Bible 44 31 28 27 25 25 25 24 24 24
US constitution 15 12 11 11 10 10 10 10 11 11

 0

 5

 10

 15

 20

 25

 30

100
95 - 100
90 - 95
85 - 90
80 - 85
75 - 80
70 - 75
65 - 70
60 - 65
55 - 60
50 - 55
45 - 50
40 - 45
35 - 40
30 - 35
25 - 30
20 - 25
15 - 20
10 - 15
5 - 10
0 - 5

N
o.

 o
f v

ar
ia

bl
es

 /
n

(%
)

|ON(x)| / k (%)

SST numbers
Bible

US Constitution

 0

 5

 10

 15

 20

 25

 30

100
95 - 100
90 - 95
85 - 90
80 - 85
75 - 80
70 - 75
65 - 70
60 - 65
55 - 60
50 - 55
45 - 50
40 - 45
35 - 40
30 - 35
25 - 30
20 - 25
15 - 20
10 - 15
5 - 10
0 - 5

N
o.

 o
f v

ar
ia

bl
es

 /
n

(%
)

|ON(x)| / k (%)

SST numbers
Bible

US Constitution

Figure 4. Histograms for the number of variables xi and |ON(xi)|
.

Property 1: [8] When n is sufficiently large and k 	
2n, most index generation functions with weight k can be
represented by L−1, L, or L+1 compound variables, where
L = 2�log2(k + 1)�− 4.

For the function of the SST numbers, the pre-
dicted number of compound variables is L − 1 = 2 ×
�log2(1,000,001)�−5 = 35; for the function of the bible, it
is L−1 = 2×�log2(20,828)�−5 = 25; and for the function
of the US constitution, it is L−1 = 2×�log2(254)�−5 = 11.
As shown in Table V, our heuristic achieves those numbers
or even smaller numbers when t ≥ 3 for the SST numbers,
t ≥ 5 for the bible, and t ≥ 3 for the US constitution.

These results show that even if n and k are large, our
heuristic finds a good solution within a reasonable time.

C. Number of Compound Variables vs. Compound Degree

Fig. 4 shows distributions of |ON(xi)| for the example
index generation functions. In the figure, the horizontal
axis shows ratios of the number of 1s included in original
variables xi in registered vectors, and the vertical axis shows
ratios of the number of xi having the same ratio of |ON(xi)|.

As shown in Fig. 4, the example functions have few
variables xi with |ON(xi)|/k � 0.5 that can divide a set of
indices into halves. Thus, many variables are required when
t = 1, as shown in Table V. However, for such functions, we
can produce variables with |ON(xi)|/k � 0.5 by increasing
the compound degree, and thus, the number of variables

can be reduced. As shown in Table V, however, it is not
reduced so much for t > 5. This means that practically
effective compound degree is at most 5 for the example
index generation functions.

V. CONCLUSION AND COMMENTS

This paper proposes a balanced decision tree based heuris-
tic to minimize the number of compound variables for linear
decomposition of index generation functions. Since time and
space complexities of the proposed heuristic are smaller
than those of existing heuristics, it can be applied to larger
index generation functions. Experimental results show that
the proposed heuristic finds a good solution that is close to
the best solution ever found, even though its search space is
much smaller. And, this paper also shows a relation between
the number of compound variables and compound degrees t,
and shows that the number of compound variables is reduced
by increasing t until t = 5.

The proposed heuristic would be helpful for exact min-
imization algorithm based on a branch-and-bound method
because we can prune unpromising solutions using the
heuristic. We will study an exact minimization algorithm
based on a branch-and-bound method. In addition, we will
study a more efficient cost function than (2).

ACKNOWLEDGMENTS

This research is partly supported by the JSPS Kaken (C),
25330071 and 26330072, and Hiroshima City University
Grant for Academic Research (General Studies), 2015. The
reviewers’ comments were helpful in improving the paper.

REFERENCES

[1] S. Aborhey, “Binary decision tree test functions,” IEEE Trans. on
Comput., Vol. 37, No. 11, pp. 1461–1465, Nov 1988.

[2] R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, Chapter V, pp. 121–228, 1971.

[3] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision
diagrams,” 34th Design Automation Conference, pp. 202–207, 1997.

[4] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[5] T. Sasao, “Index generation functions: recent developments (invited
paper),” 41st International Symposium on Multiple-Valued Logic,
pp. 1–9, May 2011.

[6] T. Sasao, “Linear transformations for variable reduction,” Reed-
Muller Workshop 2011, May 2011.

100

[7] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference, pp. 781–788,
Jan. 2012.

[8] T. Sasao, Y. Urano, and Y. Iguchi, “A lower bound on the number
of variables to represent incompletely specified index generation
functions,” 44th International Symposium on Multiple-Valued Logic,
pp. 7–12, May 2014.

[9] T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear decom-
positions for incompletely specified index generation functions using
difference matrix,” IEICE Transactions on Fundamentals, Vol. E97-
A, No. 12, pp. 2427–2433, Dec. 2014.

[10] T. Sasao, “A reduction method for the number of variables to rep-
resent index generation functions: s-min method,” 45th International
Symposium on Multiple-Valued Logic, pp. 164–169, May 2015.

[11] T. Sasao, I. Fumishi, and Y. Iguchi, “On an exact minimization of
variables for incompletely specified index generation functions using
SAT,” Note on Multiple-Valued Logic in Japan, Vol.38, No.3, pp. 1–8,
Sept. 2015.

[12] D. Varma and E. Trachtenberg, “Design automation tools for efficient
implementation of logic functions by decomposition,” IEEE Trans.
on CAD, Vol. 8, No. 8, pp. 901–916, Aug. 1989.

[13] The Social Security and Tax Number System Cabinet Secretariat,
http://www.cas.go.jp/jp/seisaku/bangoseido/english.html, Oct. 14, 2015.

[14] Document on the Social Security and Tax Number System
(in Japanese), Office for the Social Security and Tax
Number System, Minister’s Secretariat, Cabinet Office
and Social Security Reform Office, Cabinet Secretariat,
http://www.cas.go.jp/jp/seisaku/bangoseido/pdf/gaiyou siryou.pdf,
Oct. 14, 2015.

[15] Lows and Regulations for Social Security and Tax Numbers
(in Japanese), Ministry of Internal Affairs and Communications,
http://law.e-gov.go.jp/announce/H26F11001000085.html, Oct. 14, 2015.

[16] Lows and Regulations for Residents Identification Numbers (in
Japanese), Ministry of Internal Affairs and Communications,
http://law.e-gov.go.jp/htmldata/H11/H11F04301000035.html, Oct. 14, 2015.

[17] Open Source Bible Data, The King James Version, Internet Sacred
Text Archive, http://www.sacred-texts.com/bib/osrc/, Oct. 27, 2015.

[18] The Constitution of the United States: A Transcription,
U.S. National Archives and Records Administration,
http://www.archives.gov/exhibits/charters/constitution.html, Oct. 13, 2015.

[19] The U.S. Bill of Rights: A Transcription, U.S.
National Archives and Records Administration,
http://www.archives.gov/exhibits/charters/constitution.html, Oct. 14, 2015.

[20] The Constitution: Amendments 11-27, U.S. Na-
tional Archives and Records Administration,
http://www.archives.gov/exhibits/charters/constitution.html, Oct. 14, 2015.

APPENDIX

A. Proof for Theorem 1

(if) Assume that there exist m compound variables satisfy-
ing the requirement. Then, since for any compound variable
yi, |ON(yi)|= 2m/2 holds, each yi can divide a set of indices
into halves by yi = 0 and yi = 1. And, each subset of 2m−l

indices obtained by a partition with l variables can be further
divided into halves by yl+1 because |Tl+1

i=1 ON(yi)|= 2m−l/2
holds for l + 1 variables. Since the m compound variables
can divide a set of 2m indices into two equal-sized subsets
recursively, resulting in 2m singletons. By considering par-
titions with each variable as a non-terminal node, and each

singleton as a terminal node, we have a completely balanced
binary decision tree with height m.

(only if) Assume that a completely balanced binary de-
cision tree can be constructed. Then, in the tree, a set of
indices is divided into halves recursively by yi = 0 and yi = 1,
as shown in Fig. 2. Thus, for any compound variable yi,
|ON(yi)|= 2m/2 holds. And, since a set of indices is divided
into equal-sized subsets recursively, for any h variables,
|Th

i=1 ON(yi)|= 2m/2h holds.

B. How to Generate Index Generation Functions

In 2015, Japan introduced the new “social security and
tax number” (SST number) to replace the old “resident’s
identification number” (RIN) [13]. The new SST number
is a 12-digit decimal number (d11 d10 . . . d1 d0)10, and it
consists of a single check digit d0 and an 11-digit number
(d11 d10 . . . d1)10 that is generated from the resident’s 11-
digit RIN [14]. The RIN, in turn, consists of a single check
digit and a 10-digit number that is randomly generated to
prevent the identification of an individual from the num-
ber [16]. Thus, we randomly generated an 11-digit number,
and attached a check digit to its least significant digit to
generate an SST number. The check digit d0 is obtained by
the following computation [15]:

d0 =
{

0 (r ≤ 1)
11− r (otherwise)

r =

(
11

∑
i=7

di× (i−5)+
6

∑
i=1

di× (i+ 1)

)
(mod 11).

We randomly generated 1,000,000 distinct SST numbers,
and assigned an index from 1 to 1,000,000 to each number.
By converting each digit into a 4-bit number, we generated
1,000,000 registered vectors, each with 4×12 = 48 bits.

The bible [17] consists of 31,102 verses, and we took the
first 80 characters from each verse excluding its reference
number and verses shorter than 80 characters. Then, we
obtained 20,827 distinct strings of the characters by remov-
ing the duplicated strings. By assigning an index from 1 to
20,827 to each string, and converting each character into a
7-bit binary number using the ASCII code, we generated the
second index generation function.

The US constitution [18] consists of 256 sentences,
including amendments [19], [20] but excluding headings.
Similarly to the bible, we took the first 216 characters
from each sentence, and then, we obtained 253 strings by
removing the duplicated strings. For sentences shorter than
216 characters, blanks are padded to make their length 216.
By assigning an index from 1 to 253 to each string, and
converting each character into a 7-bit binary number using
the ASCII code, we generated the third index generation
function.

101

