On the Inadmissible Class of Multiple-Valued Faulty-Functions under Stuck-at Faults

Debabani Chowdhury and Debesh K. Das
Computer Sc. \& Engg. Dept.
Jadavpur University, Kolkata 700 032, India
Email: debabani.chowdhury@gmail.com;
debeshd@hotmail.com

Bhargab B. Bhattacharya
ACM Unit, Indian Statistical Institute
Kolkata 700 108, India
Email: bhargab.bhatta@gmail.com

Tsutomu Sasao
Dept. of Computer Science
Meiji University, Kawasaki
Kanagawa 214-8571, Japan
Email: sasao@cs.meiji.ac.jp

Abstract

There exists a class of Boolean functions, called rootfunctions, which can never appear as faulty response in irredundant twolevel AND-OR combinational circuits even when any arbitrary multiple stuck-at faults are injected. However, for multi-valued logic circuits, rootfunctions are not yet well understood. In this work, we characterize some of the multiple-valued root-functions in the context of irredundant two-level AND-OR multiple-valued circuit realizations. As in the case of binary logic, such a function can never appear as a faulty-function in the presence of any stuck-at fault. We present here a preliminary study on multiple-valued root-functions for ternary (3 -valued) logic circuits, and identify a class of n-variable ternary root-functions using a recursive method called concatenation. Such an approach provides a generalized mechanism for identifying a class of root-functions for other \boldsymbol{p}-valued ($p>3$), n-variable, two-level AND-OR logic circuits. Furthermore, we establish an important connection between root-functions and the classical latin-square functions.

Index Terms- Latin-square functions, multiple-valued logic, stuck-at faults, ternary functions, root-functions

I. Introduction and Preliminaries

In a recent work [1], it has been shown that there exists a class of Boolean functions, called root-functions, which never appear as faulty response when an arbitrary single or multiple stuck-at faults are injected in an irredundant twolevel AND-OR circuit realization of a Boolean function. Rootfunctions also play an important role in the characterization of Impossible Class of Faulty-Functions (ICFF) [3] under various test models. However, for multiple-valued functions, very little is known about the existence of such root-functions.
The scope of switching algebra can be extended to the domain $D=\{0,1, \ldots,(p-1)\}$ of p discrete levels, $p>2$, to describe the behaviour of Multiple-Valued Logic (MVL) circuits. We consider here single-output, two-level AND-OR MVL circuits, and study the properties of multiple-valued rootfunctions in such context. As in the case of binary logic, we define MVL root-functions as those, which can not appear as faulty-functions when an arbitrary single or multiple stuckat faults are injected in irredundant two-level AND-OR MVL realizations of a multiple-valued function. Some preliminary concept of ternary-valued root-functions, i.e. for $p=3$, were introduced in an earlier work [1]. Here, we explore, in-depth, the underlying properties of root-functions for MVL and their connections to another interesting class of functions known as latin-square functions [12].

Note that for any multiple-valued logic function of n variables with the domain $D=\{0,1, \ldots,(p-1)\}$, there are $N=p^{n}$ possible input combinations, and the total number of possible functions is p^{N}. Thus, for the ternary domain where $p=3$, for n input variables, there are $N=3^{n}$ possible input combinations and the total number of possible functions will be 3^{N}. For example, when $n=2$, there are $3^{9}=19683$ possible functions. Thus, there are at least p^{N} different two-level ANDOR circuits (some functions may have more than one twolevel irredundant realizations). Assume a two-level irredundant AND-OR realization for each of these $p^{N}\left(N=p^{n}\right)$ functions. Now consider the presence of single or multiple faults in the circuits. For each fault, there will be a corresponding faulty-function (denoting the output function when the fault is injected). The question is, whether there exists any function that can never appear as a faulty-function for any possible fault in any of the two-level realizations. If it exists, then that function is a root-function. It is conjectured that there would also exist several root-functions for multiple-valued logic circuits as in the case of Boolean functions [1]. The identification of some of these root-functions among the set of all p^{N} functions may help characterization of impossible class of multiple-valued faulty-functions, as well. In this paper, we show that there exists a multitude of MVL functions that behave as root-functions and hence, establish that the earlier conjecture [1] is indeed true.
Root-functions in the ternary domain $D=\{0,1,2\}$ are named as ternary root-functions. In this paper, we show that many root-functions do exist in the context of two-level implementation of ternary logic as in the binary $B=\{0,1\}$ domain [1]. We also establish an interesting connection of ternary rootfunctions with the classical ternary latin-square functions [12] and show that the latter set is a subset of the set of former type.
In order to facilitate the identification of ternary root-functions, we propose a recursive procedure called concatenation that allows us to construct an n-variable ternary root-function from three $(n-1)$-variable ternary root-functions. We generalize the method of concatenation in connection to root-functions to make it suitable for the Boolean, ternary, or for other higher p valued functions, i.e., where $D=\{0,1,2, \ldots,(p-1)\}, p \geq 2$. We show that an n-variable Boolean (ternary) function can be
constructed from two (three) $(n-1)$-variable Boolean (ternary) functions. We generate all 2 -variable and 3 -variable ternary latin-square functions [12], that are ternary root-functions, as well; also each of them is a max-root-function, i.e., it includes the maximum number of product terms in its minimal sum-of-product expression.

II. Background

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n-variables, where x_{i} takes on values from $D=\{0,1, \ldots, p-1\}$. A function $F(X)$ is a mapping $F: D^{n} \rightarrow D$. Specifically, $F(X)$ is said to be an n-variable p-valued function. For $p=3$, function $F(X)$ is said to be a ternary function. A function value $F(x)$ corresponding to a specific assignment of values x to variables in X is called a minterm.
Example 1: Fig. 1 shows an example of a 2-variable ternary function $F(x, y)$ having three minterms with value 1 and five minterms with value 2.

	$y^{0}=0$	$y^{1}=1$	$y^{2}=2$
$x^{0}=0$	2	1	2
$x^{1}=1$	1	2	0
$x^{2}=2$	2	2	1

Fig. 1. An example of a 2-variable ternary function $F(x, y)$ in its maprepresentation

Definition 1: The unary operator on the p-valued variable x, called a literal, is denoted by $x^{b}=p-1$ when $x=b$, otherwise 0.

Definition 2: Max operator (V) returns the maximum of its two operands. Let a and b be two operands; then max function $a \vee b=\max (a, b)$.
Definition 3: Min operator (.) returns the minimum of its two operands. Let a and b be two operands; then min function $a \wedge b=(a . b)=\min (a, b)$.
Definition 4: A sum-of-product expression for function $F(X)$ is minimal if there is no other expression for $F(X)$ with fewer product terms or literals.
The minimal sum-of-product expression for a 2 -variable ternary function F in Fig. 1 is $F(x, y)=\left(1 . x^{0} . y^{1}\right) \vee$ $\left(1 . x^{1} \cdot y^{0}\right) \vee\left(1 \cdot x^{2} \cdot y^{2}\right) \vee\left(x^{0} \cdot y^{2}\right) \vee\left(x^{1} \cdot y^{1}\right) \vee\left(x^{2} \cdot y^{0}\right)$.
Definition 5: Stuck-at-fault (s-a-f) [5]: A line h_{i} in a network is said to be stuck-at- q if a fixed logic value q set at this line, models the effect of the fault at the circuit output, where $q \in\{0,1, \cdots, p-1\}$. This fault is denoted by h_{i} / q. Clearly, in a circuit with k lines, there are $(p+1)^{k}-1$ possible faults in the network.
Definition 6: [13] A combinational circuit is said to be irredundant if all stuck-at faults, single or multiple, are detectable by input-output experiments.
Definition 7: [7]: A Boolean root-function is a logic function that can never appear as a faulty response in any irredundant two-level AND-OR logic circuit in the presence of any arbitrary (single or multiple) stuck-at faults.
Example 2: Fig. 2 shows an example of 4 -variable Boolean root-function f with true vectors $(0000,0111,1100,1001,1010)$. With respect to stuck-at faults, the root-functions for multiplevalued logic is defined as follows.
Definition 8: A root-function in multiple-valued logic is a
function that can never appear as a faulty response in any irredundant two-level multiple-valued AND-OR circuit in the presence of any arbitrary (single or multiple) stuck-at faults.

	$x_{3}^{\prime} \cdot x_{4}^{\prime}=00$	$x_{3}^{\prime} \cdot x_{4}=01$	$x_{3} \cdot x_{4}=11$	$x_{3} \cdot x_{4}^{\prime}=10$
$x_{1}^{\prime} \cdot x_{2}^{\prime}=00$	1	0	0	0
$x_{1} \cdot x_{2}=01$	0	0	1	0
$x_{1} \cdot x_{2}=11$	1	0	0	0
$x_{1} \cdot x_{2}^{\prime}=10$	0	1	0	1

Fig. 2. 4-variable Boolean root-function $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in its maprepresentation with five true minterms
Definition 9: The Boolean root-functions that contain the maximum number of true minterms are called max-rootfunctions.
Example 3: Fig. 3 shows an example of a 3-variable Boolean max-root-function $M\left(x_{1}, x_{2}, x_{3}\right)$ with maximum (four) number of true minterms.

	$x_{2}^{\prime} \cdot x_{3}^{\prime}=00$	$x_{2}^{\prime} \cdot x_{3}=01$	$x_{2} \cdot x_{3}=11$	$x_{2} \cdot x_{3}^{\prime}=10$
$x_{1}^{\prime}=0$	1	0	1	0
$x_{1}=1$	0	1	0	1

Fig. 3. 3-variable Boolean max-root-function $M\left(x_{1}, x_{2}, x_{3}\right)$ in its maprepresentation with maximum (four) number of true minterms
Obviously, a max-root-function contains maximum number of product terms in their minimal sum of-products expression. In this light, we can define the max-root-functions for ternary logic as follows.
Definition 10: An n-variable ternary root-function that has the maximum number of product terms in their minimal sum-ofproducts expression is a ternary max-root-function.
Example 4: Fig. 4 shows 2-variable ternary max-root-function $H(x, y)$ with maximum (six) number of product terms.

	$y^{0}=0$	$y^{1}=1$	$y^{2}=2$
$x^{0}=0$	0	1	2
$x^{1}=1$	1	2	0
$x^{2}=2$	2	0	1

Fig. 4. An example of a 2-variable ternary max-root-function $H(x, y)$ in its map-representation
Definition 11: [12] A permuter functions $P(x)$ of a p-valued variable x is a function such that for no two distinct values of x, the function assumes the same value.
Definition 12: [12] A latin-square function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a function that satisfies the following property: $\forall i=0,1, \cdots, n, f\left(a_{1}, a_{2}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)=g\left(x_{i}\right)$ is a permuter function on x_{i} for any assignment of values $\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$ to $\left(x_{1}, x_{2}, \ldots, x_{i-1}, \ldots, x_{i+1}, \ldots, x_{n}\right)$.
Example 5: Fig. 4 shows an example of a 2-variable ternary latin-square function $H(x, y)$ in its map-representation.

III. Method of Concatenation in Binary Logic

The concatenation operation on Boolean functions can be used recursively to construct new functions with a larger number of variables [9], [10]. The method of concatenation was used earlier for the construction of resilient Boolean functions in a different context [9], [10]. In fact, for binary logic, an n-variable (for even n) Maiorana-McFarland type of bent function can be constructed by concatenating $2^{\frac{n}{2}}$ distinct affine functions on $\frac{n}{2}$ variables. Later, such ideas were used to construct Boolean functions with versatile cryptographic properties [9], [10]. For an illustration of this method, let us
consider two ($n-1$)-variable Boolean functions, g, h. For an instance, an n-variable Boolean function f_{1} can be generated from g, h by appending 0 with every true vector of g and appending 1 with every true vector of h, and then selecting those appended vectors as true vectors of f_{1}. Again another n-variable Boolean function f_{2} can be generated from g, h by appending 1 with every true vector of g and appending 0 with every true vector of h, and then selecting those appended vectors as true vectors of f_{2}. Thus, the concatenation between g and h can be expressed as: $f_{1}=x_{n}^{\prime} g \vee x_{n} h, f_{2}=x_{n}^{\prime} h \vee x_{n} g$. We use this concatenation technique to construct larger rootfunctions from basic root-functions as follows.

Procedure Root-through-Concatenate (n)

1. Consider two root-functions R_{1} and R_{2} of $(n-1)$-variables $\left(x_{n-1}, x_{n-2}, \ldots, x_{2}, x_{1}\right)$ where $R_{1} \cap R_{2}=\varnothing$.
2. Append x_{n} with each of R_{1} and R_{2} with values $0(1)$ and $1(0)$ respectively to construct functions $f_{1}\left(f_{2}\right)$ of n-variables. Let appended x_{n} with $0(1)$ be represented as $x_{n}^{0}\left(x_{n}^{1}\right)$. Then, $f_{1}=x_{n}^{0} R_{1} \vee x_{n}^{1} R_{2}$ and $f_{2}=x_{n}^{1} R_{1} \vee x_{n}^{0} R_{2}$.
Example 6: Figures 5(a) and 5(b) show 3-variable Boolean root-functions g and h with true vectors 000,111 and 001,110 in their map-representations, respectively. The function f_{1} can be generated from g and h by the method of concatenation by appending 0 with every true vector of g as shown in Fig. 6, and that obtained by appending 1 with every true vector of h is shown in Fig. 7. The root-function obtained in this manner for $n=4$ is shown in Fig. 5(c).

| 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 |
| (a) $g(000,111)$ | | | |

Fig. 5. 4 -variable Boolean root-functions f_{1} generated by concatenation between two 3 -variable root-functions g and h, where $f_{1}=x_{n}^{\prime} g \vee x_{n} h$

vectors of \mathbf{g} before appending 0	vectors of \mathbf{g} after appending 0	vectors in g with values	vectors in f_{1} with values
000	0000	$g(000)=1$	$f_{1}(0000)=1$
001	0010	$g(001)=0$	$f_{1}(0010)=0$
011	0110	$g(011)=0$	$f_{1}(0110)=0$
010	0100	$g(010)=0$	$f_{1}(0100)=0$
100	1000	$g(100)=0$	$f_{1}(1000)=0$
101	1010	$g(101)=0$	$f_{1}(1010)=0$
111	1110	$g(111)=1$	$f_{1}(1110)=1$
110	1100	$g(110)=0$	$f_{1}(1100)=0$

Fig. 6. Vectors in f_{1} with values produced from true vectors in g

vectors of \mathbf{h} before appending 1	vectors of \mathbf{h} after appending 1	vectors in h with values	vectors in f_{2} with values
000	0001	$h(000)=0$	$f_{1}(0001)=0$
001	0011	$h(001)=1$	$f_{1}(0011)=1$
011	0111	$h(011)=0$	$f_{1}(0111)=0$
010	0101	$h(010)=0$	$f_{1}(0101)=0$
100	1001	$h(100)=0$	$f_{1}(1001)=0$
101	1011	$h(101)=0$	$f_{1}(1011)=0$
111	1111	$h(111)=0$	$f_{1}(1111)=0$
110	1101	$h(110)=1$	$f_{1}(1101)=1$

Fig. 7. vectors in f_{1} with values produced from vectors in h

IV. Root-Functions in Ternary Logic

We adopt the concatenation technique to produce ternary root-functions. The method is also applicable for a general multiple-valued logic system with a slight modification. Here, we identify only those root-functions that satisfy the conditions for being max-root as well as latin-square.

A. 1-Variable Ternary Root-Functions

The total number of 1 -variable ternary logic functions is $3^{3^{1}}$ $=27$. Among them, we show functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)}$, $g_{(1,4)}, g_{(1,5)}, g_{(1,6)}, g_{(1,7)}, g_{(1,8)}, g_{(1,9)}$ in Fig. 8; each of these nine functions is also a root-function.

0	1	2	1	2	0			0	1			2	1	1	0	2	
(a) $g_{(1,1)}$				$g_{(}$				$g_{(}$	3)				(1,4)	(e) $g_{(1,5)}$			
2	1	0	1	2	2	2	1		2	2	2		1				
$\begin{array}{llll}\text { (f) } g_{(1,6)} & \text { (g) } g_{(1,7)} & \text { (h) } g_{(1,8)} & \text { (i) } g_{(1,9)}\end{array}$																	

Fig. 8. All 1-variable ternary root-functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)}, g_{(1,4)}$, $g_{(1,5)}, g_{(1,6)}, g_{(1,7)}, g_{(1,8)}, g_{(1,9)}$ in their map-representation
All 1-variable ternary constant functions $f_{000}=0, f_{111}=1$ and $f_{222}=2$ are reachable from these nine functions. Besides that, table 1 shows all other faulty-functions reachable from these nine functions. Thus, all other functions are reachable from these nine functions when suitable stuck-at faults are injected in their two-level irredundant AND-OR MVL circuit realization. It can be also shown that none of these nine functions are reachable from any function under a faulty-condition. Hence, these nine functions are root-functions. Moreover, each of these functions has two product terms in their minimal sum-of-product expression. For $n=1$, the number of maximum product terms in minimal sum-of-product expression of a ternary function is also two. Thus, for $n=1$, there does not exist any other root-function other than the max-rootfunctions. Among these nine functions, six functions $g_{(1,1)}$, $g_{(1,2)}, g_{(1,3)}, g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ are latin-square functions.

Root-Functions (R)	Faulty-Functions Reachable From Corresponding R																	
0 1 2																		
0 2 1	0 2 0 1 2 1																	
1 0 2	0 0 2 1 1 2 1 1 0																	
1 2 0	0 2 0 1 2 1 1 0 1																	
2 0 1	2 0 0																	
2 1 0	2 0 0																	
1 2 2	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 2 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 1 & 0 & 0 \\ \hline \end{array}$																	
2 1 2	0 2 0 1 2 1																	
2 2 1	0 0 2 1 1 2 2 2 0 0 0 1																	

TABLE I
Reachability from 1 -Variable root-functions to faulty-functions B. Construction of Root-Function in Ternary Logic

We use the concatenation procedure to construct root-functions when $n>1$. In binary logic, two binary root-functions are required for every concatenation. In the case of ternary logic, three ternary max-root-functions are required for every concatenation. In general, for p-valued logic, p different logic functions are required for every concatenation.
For an illustration, let $g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}$ be three ($n-1$)-variable ternary functions. Now, an n-variable ternary function $f_{(n, 1)}$ can be generated by appending 0 with every true vector of $g_{(n-1,1)}$, and appending 1 with every true vector of $g_{(n-1,2)}$ and similarly, by appending 2 with every true vector of $g_{(n-1,3)}$, and finally, by selecting those appended vectors as vectors of $f_{(n, 1)}$ with the same value
as in $g_{(n-1,1)}, g_{(n-1,2)}$ and $g_{(n-1,3)}$. Such a concatenation operation with $g_{(n-1,1)}, g_{(n-1,2)}$ and $g_{(n-1,3)}$ is denoted by $f_{(n, 1)}=x^{0} g_{(n-1,1)} \vee x^{1} g_{(n-1,2)} \vee x^{2} g_{(n-1,3)}$. In ternary logic, three $(n-1)$-variable ternary root-functions are required for performing concatenation. A set of such triple functions is called a concatenable triplet.
Definition 13: The concatenable triplet is formed by three distinct ternary latin-square functions $\left\{g_{(n-1,1)}, g_{(n-1,2)}\right.$, $\left.g_{(n-1,3)}\right\}$, where for every $(n-1)$-variable minterm x, $g_{(n-1, i)}(x) \cap g_{(n-1, j)}(x)=\varnothing$ for $\forall(i, j), 1 \leq(i, j) \leq 3$ and $i \neq j$.
The number of n-variable ternary functions that can be generated from each concatenable triplet is $3!=6$. For example, a concatenable triplet $\left\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\right\}$ can generate six functions $f_{(n, 1)}, f_{(n, 2)}, f_{(n, 3)}, f_{(n, 4)}, f_{(n, 5)}, f_{(n, 6)}$ as given below:
$f_{(n, 1)}=x^{0} g_{(n-1,1)} \vee x^{1} g_{(n-1,2)} \vee x^{2} g_{(n-1,3)}$
$f_{(n, 2)}=x^{0} g_{(n-1,1)} \vee x^{2} g_{(n-1,2)} \vee x^{1} g_{(n-1,3)}$
$f_{(n, 3)}=x^{1} g_{(n-1,1)} \vee x^{0} g_{(n-1,2)} \vee x^{2} g_{(n-1,3)}$
$f_{(n, 4)}=x^{1} g_{(n-1,1)} \vee x^{2} g_{(n-1,2)} \vee x^{0} g_{(n-1,3)}$
$f_{(n, 5)}=x^{2} g_{(n-1,1)} \vee x^{0} g_{(n-1,2)} \vee x^{1} g_{(n-1,3)}$
$f_{(n, 6)}=x^{2} g_{(n-1,1)} \vee x^{1} g_{(n-1,2)} \vee x^{0} g_{(n-1,3)}$.

C. Concatenation Procedure for Ternary Logic

Procedure 1: Multi-valued-root(number of variables n)

1. Identify the set of all concatenable triplets for $(n-1)$ variable $\left(x_{n-1}, x_{n-2}, \ldots, x_{1}\right)$.
2. For each triplet $\left.\left.\left.\left\{g_{(} n-1,1\right), g_{(} n-1,2\right), g_{(} n-1,3\right)\right\}$, do the following:
3. Consider a triplet $\left\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\right\}$. Execute Step 4 for each possible combination of $\left\{p_{i}, p_{j}, p_{k}\right\}$ where $p_{i}, p_{j}, p_{k} \in\{0,1,2\}$ and $p_{i} \neq p_{j} \neq p_{k}$.
4. Append x_{n} with each of $\left\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\right\}$ with values p_{i}, p_{j}, p_{k}, respectively and construct the function $f_{(n)}$. Let x_{n} appended with p_{i} be denoted as $x_{n}^{p_{i}}$. Hence, $f_{n}=$ $x_{n}^{p_{i}} g_{(n-1,1)} \vee x_{n}^{p_{j}} g_{(n-1,2)} \vee x_{n}^{p_{k}} g_{(n-1,3)}$, which is an n-variable ternary root-function.
5. return.

Procedure 2: Generate-root(number of variables n)

1. for (variable $=2$; variable $\leq n$; variable++)

Call Procedure 1 Multi-valued-root(variable).
2. end.
D. 2-Variable Ternary Root-Function

1) Generation of All 2-variable Ternary Latin-Square Max-root-Functions: Starting from the set of 1-variable ternary latin-square functions, we construct 2 -variable ternary rootfunctions as follows. We know that there are six ternary 1variable latin-square max-root-functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)}$, $g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ shown in Fig. 8. We find two concatenable triplets $\left\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\right\}$ and $\left\{g_{(1,4)}, g_{(1,5)}, g_{(1,6)}\right\}$ where each of concatenable triplet can generate $3!=6$ different 2 variable ternary latin-square max-root-functions. Thus, a total of twelve 2 -variable ternary latin-square max-root-functions can be constructed.
Example 7 : Let us choose $\left\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\right\}$ as a concatenable triplet. Function $g_{(2,1)}$ is 2 -variable ternary rootfunction generated from $\left\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\right\}$, i.e. $g_{(2,1)}=$
$x^{0} g_{(1,1)} \vee x^{1} g_{(1,2)} \vee x^{2} g_{(1,3)}$ where $10,01,22$ are 1 -valued vectors, $20,11,02$ are 2 -valued vectors and $00,21,12$ are 0 -valued vectors. Fig. 9, Fig. 10, and Fig. 11 illustrate the method for generating vectors of $g_{(2,1)}$ from vectors of $g_{(1,1)}$, $g_{(1,2)}$ and $g_{(1,3)}$, respectively, by appending 0 with vectors of $g_{(1,1)}$, appending 1 with vectors of $g_{(1,2)}$ and appending 2 with vectors of $g_{(1,3)}$. Notice that $g_{(1,1)}$ is also a latin-square function. Similary, other 2 -variable ternary latin-square max-root-functions can be generated from 1-variable latin-square max-root-functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)}, g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ as in Fig. 8 by the method of concatenation:

$$
\begin{aligned}
& g_{(2,2)}=x^{0} g_{(1,3)} \vee x^{1} g_{(1,1)} \vee x^{2} g_{(1,2)} \\
& g_{(2,3)}=x^{0} g_{(1,2)} \vee x^{1} g_{(1,3)} \vee x^{2} g_{(1,1)} \\
& g_{(2,4)}=x^{0} g_{(1,1)} \vee x^{1} g_{(1,3)} \vee x^{2} g_{(1,2)} \\
& g_{(2,5)}=x^{0} g_{(1,2)} \vee x^{1} g_{(1,1)} \vee x^{2} g_{(1,3)} \\
& g_{(2,6)}=x^{0} g_{(1,3)} \vee x^{1} g_{(1,2)} \vee x^{2} g_{(1,1)} \\
& g_{(2,7)}=x^{0} g_{(1,4)} \vee x^{1} g_{(1,5)} \vee x^{2} g_{(1,6)} \\
& g_{(2,8)}=x^{0} g_{(1,6)} \vee x^{1} g_{(1,4)} \vee x^{2} g_{(1,5)} \\
& g_{(2,9)}=x^{0} g_{(1,5)} \vee x^{1} g_{(1,6)} \vee x^{2} g_{(1,4)} \\
& g_{(2,10)}=x^{0} g_{(1,4)} \vee x^{1} g_{(1,6)} \vee x^{2} g_{(1,5)} \\
& g_{(2,11)}=x^{0} g_{(1,5)} \vee x^{1} g_{(1,4)} \vee x^{2} g_{(1,6)} \\
& g_{(2,12)}=x^{0} g_{(1,6)} \vee x^{1} g_{(1,5)} \vee x^{2} g_{(1,4)}
\end{aligned}
$$

These functions are shown in Fig. 12.

Vectors of g_{1}^{\prime} before appending 0	Vectors of g_{1}^{\prime} after appending 0	Vectors in g_{1}^{\prime} with values	Vectors in g_{1} with values
0	00	$g_{1}^{\prime}(0)=0$	$g_{1}(00)=0$
1	10	$g_{1}^{\prime}(1)=1$	$g_{1}(10)=1$
2	20	$g_{1}^{\prime}(2)=2$	$g_{1}(20)=2$

Fig. 9. Vectors in g_{1} with values produced from vectors in g_{1}^{\prime}

Vectors of g_{2}^{\prime} before appending 1	Vectors of g_{2}^{\prime} after appending 1	Vectors in g_{2}^{\prime} with values	Vectors in g_{1} with values
0	01	$g_{2}^{\prime}(0)=1$	$g_{1}(01)=1$
1	11	$g_{2}^{\prime}(1)=2$	$g_{1}(11)=2$
2	21	$g_{2}^{\prime}(2)=0$	$g_{1}(21)=0$

Fig. 10. Vectors in g_{1} with values produced from vectors in g_{2}^{\prime}

Vectors of g_{3}^{\prime} before appending 2	Vectors of g_{3}^{\prime} after appending 2	Vectors in g_{3}^{\prime} with values	Vectors in g_{1} with values
0	01	$g_{3}^{\prime}(0)=2$	$g_{1}(02)=2$
1	11	$g_{3}^{\prime}(1)=0$	$g_{1}(12)=0$
2	21	$g_{3}^{\prime}(2)=1$	$g_{1}(22)=1$

Fig. 11. Vectors in g_{1} with values produced from vectors in g_{3}^{\prime}

	$y^{0}=0$	$y^{1}=1$	$y^{2}=2$
$x^{0}=0$	00	01	02
$x^{1}=1$	10	11	12
$x^{2}=2$	20	21	22
(a) Map-representation of	2-variable		

Fig. 12. All 2 -variable ternary latin-square max-root-functions
The total number of 2 -variable ternary logic functions is $3^{3^{2}}$ $=19683$. Among them, we could construct only twelve rootfunctions by the method of concatenation. These functions are
latin-square functions as well [12]. Moreover, these twelve functions satisfy the properties of max-root-functions, where number of product terms is maximum, i.e. $6=\left(2.3^{n-1}, n=2\right)$ [12].

E. 3-Variable Ternary Root-Function

From Fig. 12, notice that the number of 2variable concatenable triplets is four, and these triplets \quad are $\quad\left\{g_{(2,1)}, g_{(2,2)}, g_{(2,3)}\right\}, \quad\left\{g_{(2,4)}, g_{(2,5)}, g_{(2,6)}\right\}$, $\left\{g_{(2,7)}, g_{(2,8)}, g_{(2,9)}\right\}, \quad\left\{g_{(2,10)}, g_{(2,11)}, g_{(2,12)}\right\}$. From each of this triplet, we obtain $3!=6$ different 3 -variable ternary max-root-functions. Hence, the number of 3-variable ternary latin-square max-root-functions generated by concatenation is 24 . The total number of 3 -variable ternary logic functions is $3^{3^{3}}$. Among them, we could identify only these 24 functions as root-functions. Again for each of them, the number of product terms are $2.3^{n-1}, n=3$. Hence, all of these are ternary 3 -variable max-root-functions. Fig. 13 shows the map-representation for 3-variable ternary functions. All 3-variable ternary latin-square max-root-functions $R_{(3,1)}, R_{(3,2)}, \ldots, R_{(3,24)}$ have been identified and shown in Appendix.

F. Number of Latin-square Max-root-Functions

In ternary logic, we have 6,12 , or 24 latin-square, max-root-functions for 1 -variable, 2 -variable, or for 3-variable, respectively. In ternary, the number of n-variable latin-square max-root-functions $=2 \times$ number of $(n-1)$-variable latinsquare max-root-functions.

G. Number of Product Terms in Max-Root-Functions

For each 1 -variable or 2 -variable ternary max-root-function, the number of product terms in its minimal sum-of-products expression is 3 and 6, respectively. All max-root-functions have the maximum number of product terms in their minimal sum-of-product expressions. For n-variable ternary max-rootfunctions, the number of product terms will be equal to 2.3^{n-1}. In general, for p-valued system, an n-variable max-root-function will have $(p-1) \cdot p^{n-1}$ number of product terms in its minimal sum-of-product expression.

H. Relation Among Root, Max-Root, and Latin-Square Functions

We have observed earlier that all max-root-functions constructed by the concatenation method are also latin-square functions. The question is: Whether there exists any other max-root-functions, which are not latin-square functions. For $n=1$, we have seen that there are nine max-root-functions among which three $\left(g_{(1,7)}, g_{(1,8)}\right.$ and $g_{(1,9)}$ in Fig. 8) are not latin-square functions. Therefore, in general, the set of latinsquare functions is a subset of the set of max-root-functions. However, for $n=2$ and 3 , we could not identify any max-rootfunction that is not a latin-square function. Nevertheless, we believe such functions indeed exist. Also, for $n=1$, we have identified nine root-functions, and all of them are max-rootfunctions. In binary logic, for $n=1$ and 2 , every root-function is a max-root-function. Note that in binary logic, for $n>2$, there exist root-functions, which are not max-root-functions.

Fig. 2 shows an example of a 4 -variable root-function, which is not a max-root-function. Unfortunately, in ternary logic, we could not construct any such root-function for $n=2$ or 3 . We, however, believe that such functions do exist. This discussion leads to the following observation.
Observation: For any $n, S_{L} \subset S_{M} \subset S_{R}$ where S_{L}, S_{M} and S_{R} denote the set of all ternary latin-square functions, ternary max-root-functions, and ternary root-functions, respectively.

V. Conclusion

We have identified a few multiple-valued root-functions and studied some of their attributes. Some special root-functions are classified as being max-root, and a subset of the latter consists of as latin-square functions. We have described a concatenation-based procedure for constructing n-variable latin-square functions recursively from $(n-1)$-variable functions for multiple-valued logic. We have identified all 1variable ternary max-root-functions, and among them, six are observed to be latin-square functions. We have also identified all ternary 2 - and 3 -variable latin-square functions by the method of concatenation. We noticed that such ternary latin-square functions exhibit certain regular patterns in their map-representations. However, the mechanism for identifying ternary root-functions that are not max-root-functions, is yet to be investigated. Also, exploring the attributes of other ternary non-max-root-functions requires further study.

References

[1] D. K. Das, D. Chowdhury, B. B. Bhattacharya, T. Sasao, "Inadmissible class of Boolean Functions under Stuck-at Faults," in Proc., IEEE $44^{\text {th }}$ International Symposium on Multiple-Valued Logic (ISMVL 2014, 19-21 May), vol. 1, pp. 237242, 2014.
[2] M. E. R. Romero, E. M. Martins, and R. R. Santos, "Multiple-valued logic algebra for the synthesis of digital circuits," In Proceedings, 39th International Symposium on Multiple-Valued Logic, pp. 262-267, 2009.
[3] B. B. Bhattacharya and B. Gupta, "On the impossible class of faulty-functions in logic networks under short circuit faults," IEEE Trans. Comput., vol. C-35, no. 1, pp. 85-90, Jan. 1986.
[4] G. Epstein, G. Frieder, and D. C. Rine, "The Development of Multiple-Valued Logic as Related to Computer Science," In D. C. Rine, editor, Computer Science and Multiple-Valued Logic: Theory and Applications, pages 81-101, North-Holland, Amsterdam, 1977.
[5] T. Raju Damarla, "Fault detection in multiple-valued logic circuits," In Proceedings, Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.
[6] Z. Kohavi, "Switching and Finite Automata Theory," McGraw-Hill, Inc., 1970.
[7] D. K. Das, S. Chakraborty and B. B. Bhattacharya, "Boolean algebraic properties of fault behavior in logic circuits," In Proc., Int. Workshop on Boolean Problems, pp. 143-150, Sept., 2000.
[8] D. K. Das, S. Chakraborty, and B. B. Bhattacharya, "Interchangeable Boolean functions and their effects on redundancy in logic circuits," In Proc., ASP-DAC, pp. 469-474, 1998
[9] S. Maitra and E. Pasalic, "A Maiorana-McFarland type construction for resilient Boolean functions on n-variables (n even) with nonlinearity $>2^{n-1}-2^{n / 2}+$ $2^{n / 2-2}$, , Discrete Applied Mathematics, 154(2): 357-369 (2006).
[10] P. Sarkar and S. Maitra, "Construction of Nonlinear Resilient Boolean Functions using "Small" Affine Functions," IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 2185-2193, 2004.
[11] Damarla, T.R., "Fault detection in multiple valued logic circuits," In Proceedings, Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.
[12] P. Tirumalai and J. T. Butler, "On the Realization of Multiple-valued Logic Functions Using CCD PLA's," In Proc., IEEE International Symposium on MultipleValued Logic, pp. 33-42, 1984.
[13] S. Chakraborty, D. K. Das, B. B. Bhattacharya, "Logical Redundancies in Irredundant Combinational Circuits," Journal of Electronic Testing : Theory and Applications,4(2):125-130, May 1993.

	$x_{1}^{0}=0$	$x_{1}^{1}=1$	$x_{1}^{2}=2$
$x_{2}^{0}=0$	000	100	200
$x_{2}^{1}=1$	010	110	210
$x_{2}^{2}=2$	020	120	220
(a) $x_{3}^{0}=0$			

	$x_{1}^{0}=0$	$x_{1}^{1}=1$	$x_{1}^{2}=2$
$x_{2}^{0}=0$	001	101	201
$x_{2}^{1}=1$	011	111	211
$x_{2}^{2}=2$	021	121	221
(b) $x_{3}^{1}=1$			

	$x_{1}^{0}=0$	$x_{1}^{1}=1$	$x_{1}^{2}=2$
$x_{2}^{0}=0$	002	102	202
$x_{2}^{1}=1$	012	112	212
$x_{2}^{2}=2$	022	122	222
(c) $x_{3}^{2}=2$			

Fig. 13. Map-representation for 3-variable ternary function with variables $\left(x_{1}, x_{2}, x_{3}\right)$.

Appendix

Map-representation of $R_{(3,2)}=x^{0} g_{(2,1)} \vee x^{1} g_{(2,3)} \vee x^{3} g_{(2,2)}$

Map-representation of $R_{(3,9)}=x^{0} g_{(2,5)} \vee x^{1} g_{(2,4)} \vee x^{3} g_{(2,6)}$

