2016 IEEE 46th International Symposium on Multiple-Valued Logic

On the Inadmissible Class of Multiple-Valued
Faulty-Functions under Stuck-at Faults

Debabani Chowdhury and Debesh K. Das
Computer Sc. & Engg. Dept.
Jadavpur University, Kolkata 700 032, India
Email: debabani.chowdhury@ gmail.com;
debeshd @ hotmail.com

Abstract— There exists a class of Boolean functions, called root-
functions, which can never appear as faulty response in irredundant two-
level AND-OR combinational circuits even when any arbitrary multiple
stuck-at faults are injected. However, for multi-valued logic circuits, root-
functions are not yet well understood. In this work, we characterize
some of the multiple-valued root-functions in the context of irredundant
two-level AND-OR multiple-valued circuit realizations. As in the case of
binary logic, such a function can never appear as a faulty-function in the
presence of any stuck-at fault. We present here a preliminary study on
multiple-valued root-functions for ternary (3-valued) logic circuits, and
identify a class of m-variable ternary root-functions using a recursive
method called concatenation. Such an approach provides a generalized
mechanism for identifying a class of root-functions for other p-valued
(p > 3), n-variable, two-level AND-OR logic circuits. Furthermore,
we establish an important connection between root-functions and the
classical latin-square functions.

Index Terms- Latin-square functions, multiple-valued logic, stuck-at

faults, ternary functions, root-functions

1. INTRODUCTION AND PRELIMINARIES

In a recent work [1], it has been shown that there exists
a class of Boolean functions, called root-functions, which
never appear as faulty response when an arbitrary single or
multiple stuck-at faults are injected in an irredundant two-
level AND-OR circuit realization of a Boolean function. Root-
functions also play an important role in the characterization of
Impossible Class of Faulty-Functions (ICFF) [3] under various
test models. However, for multiple-valued functions, very little
is known about the existence of such root-functions.
The scope of switching algebra can be extended to the
domain D = {0,1,...,(p — 1)} of p discrete levels, p > 2,
to describe the behaviour of Multiple-Valued Logic (MVL)
circuits. We consider here single-output, two-level AND-OR
MVL circuits, and study the properties of multiple-valued root-
functions in such context. As in the case of binary logic, we
define MVL root-functions as those, which can not appear as
faulty-functions when an arbitrary single or multiple stuck-
at faults are injected in irredundant two-level AND-OR MVL
realizations of a multiple-valued function. Some preliminary
concept of ternary-valued root-functions, i.e. for p = 3, were
introduced in an earlier work [1]. Here, we explore, in-depth,
the underlying properties of root-functions for MVL and their
connections to another interesting class of functions known as
latin-square functions [12].

0195-623X/16 $31.00 © 2016 IEEE
DOI 10.1109/ISMVL.2016.55

Bhargab B. Bhattacharya
ACM Unit, Indian Statistical Institute
Kolkata 700 108, India
Email: bhargab.bhatta@ gmail.com

276

Tsutomu Sasao
Dept. of Computer Science
Meiji University, Kawasaki
Kanagawa 214-8571, Japan
Email: sasao@cs.meiji.ac.jp

Note that for any multiple-valued logic function of n variables
with the domain D = {0,1,...,(p — 1)}, there are N = p"
possible input combinations, and the total number of possible
functions is pV. Thus, for the ternary domain where p = 3,
for n input variables, there are N = 3" possible input com-
binations and the total number of possible functions will be
3. For example, when n = 2, there are 3° = 19683 possible
functions. Thus, there are at least pN different two-level AND-
OR circuits (some functions may have more than one two-
level irredundant realizations). Assume a two-level irredundant
AND-OR realization for each of these p”™ (N = p") functions.
Now consider the presence of single or multiple faults in
the circuits. For each fault, there will be a corresponding
faulty-function (denoting the output function when the fault
is injected). The question is, whether there exists any function
that can never appear as a faulty-function for any possible
fault in any of the two-level realizations. If it exists, then
that function is a root-function. It is conjectured that there
would also exist several root-functions for multiple-valued
logic circuits as in the case of Boolean functions [1]. The
identification of some of these root-functions among the set
of all pV functions may help characterization of impossible
class of multiple-valued faulty-functions, as well. In this paper,
we show that there exists a multitude of MVL functions that
behave as root-functions and hence, establish that the earlier
conjecture [1] is indeed true.

Root-functions in the ternary domain D = {0, 1, 2} are named
as ternary root-functions. In this paper, we show that many
root-functions do exist in the context of two-level implemen-
tation of ternary logic as in the binary B = {0, 1} domain [1].
We also establish an interesting connection of ternary root-
functions with the classical ternary latin-square functions [12]
and show that the latter set is a subset of the set of former
type.

In order to facilitate the identification of ternary root-functions,
we propose a recursive procedure called concatenation that
allows us to construct an n-variable ternary root-function from
three (n — 1)-variable ternary root-functions. We generalize
the method of concatenation in connection to root-functions to
make it suitable for the Boolean, ternary, or for other higher p-
valued functions, i.e., where D = {0,1,2,....(p—1)}, p > 2.
We show that an n-variable Boolean (ternary) function can be

IEEE
computer
® psouety

constructed from two (three) (n—1)-variable Boolean (ternary)
functions. We generate all 2-variable and 3-variable ternary
latin-square functions [12], that are ternary root-functions, as
well; also each of them is a max-root-function, i.e., it includes
the maximum number of product terms in its minimal sum-
of-product expression.

II. BACKGROUND

Let X = {x1,29,...,2,} be a set of n-variables, where x;
takes on values from D = {0,1,...,p — 1}. A function F'(X)
is a mapping F' : D™ — D. Specifically, F(X) is said to be an
n-variable p-valued function. For p = 3, function F'(X) is said
to be a ternary function. A function value F'(x) corresponding
to a specific assignment of values x to variables in X is called
a minterm.

Example 1: Fig. 1 shows an example of a 2-variable ternary
function F(z,y) having three minterms with value 1 and five

minterms with value 2.
1

v =0 y =1 y* =2
20 =0 2 1 2
2l =1 1 2 0
22 =2 2 2 1
Fig. 1. An example of a 2-variable ternary function F'(x,y) in its map-
representation

Definition 1: The unary operator on the p-valued variable z,
called a literal, is denoted by b = p—1 when x = b, otherwise
0.

Definition 2: Max operator (V) returns the maximum of its
two operands. Let a and b be two operands; then max function
aV b=maz(a,b).

Definition 3: Min operator (.) returns the minimum of its two
operands. Let a and b be two operands; then min function
aAb= (a.b) = min(a,b).

Definition 4: A sum-of-product expression for function F'(X)
is minimal if there is no other expression for F'(X) with fewer
product terms or literals.

The minimal sum-of-product expression for a 2-variable
ternary function F in Fig. 1 is F(z,y) (1.2%y1) v
(Laty®) v (1La?y?) v (2°.92) v (atyl) v (22.90).
Definition 5: Stuck-at-fault (s-a-f) [5]: A line h; in a network
is said to be stuck-at-q if a fixed logic value ¢ set at this
line, models the effect of the fault at the circuit output, where
g€ {0,1,---,p— 1}. This fault is denoted by h;/q. Clearly,
in a circuit with % lines, there are (p -+ 1)* — 1 possible faults
in the network.

Definition 6: [13] A combinational circuit is said to be irre-
dundant if all stuck-at faults, single or multiple, are detectable
by input-output experiments.

Definition 7: [7]: A Boolean root-function is a logic function
that can never appear as a faulty response in any irredundant
two-level AND-OR logic circuit in the presence of any arbi-
trary (single or multiple) stuck-at faults.

Example 2: Fig. 2 shows an example of 4-variable Boolean
root-function f with true vectors (0000,0111,1100,1001,1010).
With respect to stuck-at faults, the root-functions for multiple-
valued logic is defined as follows.

Definition 8: A root-function in multiple-valued logic is a

271

function that can never appear as a faulty response in any
irredundant two-level multiple-valued AND-OR circuit in the
presence of any arbitrary (single or multiple) stuck-at faults.

’ !’ ’ ’
wg.wy =00 | wo.wg =01 | wgwy=11 | wg.ay =10

7 T

@) .y = 00 1 0 0 0

7

@) .y =01 0 0 1 0

x) .wg = 11 1 0 0 0

T
ry.wy = 10 0 1 0 1
Fig. 2. 4-variable Boolean root-function f(z1,x2,23,x4) in its map-

representation with five true minterms

Definition 9: The Boolean root-functions that contain the
maximum number of true minterms are called max-root-
functions.

Example 3: Fig. 3 shows an example of a 3-variable Boolean
max-root-function M (z1, 2, z3) with maximum (four) num-
ber of true minterms.

’

’ ’ !
xy.xq =00 | wop.wg =01 | xzg.xg=11 | zg.zq =10

z; =0 1 0 1 0
z, =1 0 T 0 1

Fig. 3. 3-variable Boolean max-root-function M (x1,x2,x3) in its map-
representation with maximum (four) number of true minterms

Obviously, a max-root-function contains maximum number of
product terms in their minimal sum of-products expression.
In this light, we can define the max-root-functions for ternary
logic as follows.

Definition 10: An n-variable ternary root-function that has the
maximum number of product terms in their minimal sum-of-
products expression is a ternary max-root-function.

Example 4: Fig. 4 shows 2-variable ternary max-root-function
H(x,y) with maximum (six) number of product terms.

1/0

'!11: L‘Iz:

0

SN

=

=0
0
1
2

1
1
2
0

I
w|~|o

N

[¢
1

Fig. 4. An example of a 2-variable ternary max-root-function H(z,y) in its
map-representation

Definition 11: [12] A permuter functions P(x) of a p-valued
variable x is a function such that for no two distinct values
of x, the function assumes the same value.

Definition 12: [12] A latin-square function f(z1, %2, ..., %)
is a function that satisfies the following property:
Vi =0,1,---,n, f(a1,a2,...,0i—1,Ti, Git1, ..., an) = g(x;)
is a permuter function on x; for any assign-
ment of values (a1,a2, ey @i 1, Qig 1, ey Q) to
(1‘1, L2y ey Lj—T1y eeey Litly-eny In)

Example 5: Fig. 4 shows an example of a 2-variable ternary
latin-square function H (z,y) in its map-representation.

III. METHOD OF CONCATENATION IN BINARY LOGIC
The concatenation operation on Boolean functions can be
used recursively to construct new functions with a larger
number of variables [9], [10]. The method of concatenation
was used earlier for the construction of resilient Boolean
functions in a different context [9], [10]. In fact, for binary
logic, an n-variable (for even n) Maiorana-McFarland type of
bent function can be constructed by concatenating 2% distinct
affine functions on 3 variables. Later, such ideas were used
to construct Boolean functions with versatile cryptographic
properties [9], [10]. For an illustration of this method, let us

consider two (n — 1)-variable Boolean functions, g, h. For an
instance, an n-variable Boolean function f; can be generated
from g, h by appending 0 with every true vector of g and
appending 1 with every true vector of h, and then selecting
those appended vectors as true vectors of fi. Again another
n-variable Boolean function f; can be generated from g, h
by appending 1 with every true vector of g and appending 0
with every true vector of h, and then selecting those appended
vectors as true vectors of fo. Thus, the concatenation between
g and h can be expressed as: f1 = x/ngVasnh, fo= x/nhv:rng.
We use this concatenation technique to construct larger root-
functions from basic root-functions as follows.

Procedure Root-through-Concatenate(n)

1. Consider two root-functions Ry and Rs of (n— 1)-variables
(.’L‘n_l7 Lp—2y o0y L2y .7;‘1) where R1 N R2 =J.

2. Append z,, with each of R; and Ry with values 0(1) and
1(0) respectively to construct functions fi(f2) of n-variables.
Let appended x,, with 0(1) be represented as x2(x}). Then,
fl = I%Rl \Y .I,}LRQ and fQ = CE,}LRl V ngg

Example 6: Figures 5(a) and 5(b) show 3-variable Boolean
root-functions g and h with true vectors 000, 111 and 001, 110
in their map-representations, respectively. The function f; can
be generated from g and i by the method of concatenation by
appending 0 with every true vector of g as shown in Fig. 6,
and that obtained by appending 1 with every true vector of h
is shown in Fig. 7. The root-function obtained in this manner
for n = 4 is shown in Fig. 5(c).

[TToToTJTo]J[o]1ToTlo] (11 g (l)
[T o 1T Jo]J[o]o o1 |[0 1 0
() g(000,111) (b) A(00T, 110

0

o|—| o

0 0

0
©
/1(0000,0011,1101,1110)

Fig. 5. 4-variable Boolean root-functions fi generated by /concatenation

between two 3-variable root-functions g and h, where f1 = z,,g V xnh

vectors of g vectors of g vectors in g vectors in fi

before after with values with values
ppending 0 | appending 0
000 0000 | ¢(000) =1 | f1(0000) = 1
001 0010 [g(001) =0 [f1(0010) =0
011 0110 | ¢(011) =0 | f1(0110) =0
010 0100 | g(010) =0 | f1(0100) =0
100 1000 | g(100) =0 | £:(1000) =0
101 1010 | g(101) =0 | f1(1010) =0
111 1110 [g(111) =1 | f1(1110) =1
110 1100 | g(110) =0 | f1(1100) =0

Fig. 6. Vectors in f1 with values produced from true vectors in g

vectors of h vectors of h vectors in h vectors in fo

before after with values with values
appending 1 appending 1

000 0001 | R(000) =0 | f1(0001) =0
001 0011 | R(001) =1 | f1(0011) =1
011 OI11 [h(011) =0 | f1(0111) =0
010 0101 | A(010) =0 | f1(0101) =0
100 1001 | R(100) =0 | f:(1001) =0
101 1011 | h(101) =0 | f1(1011) =0
111 1111 | h(A11) =0 | f1(1111) =0
110 1101 [h(110) =1 | A2(1101) =1

Fig. 7. vectors in f; with values produced from vectors in h

IV. ROOT-FUNCTIONS IN TERNARY LOGIC
We adopt the concatenation technique to produce ternary
root-functions. The method is also applicable for a general
multiple-valued logic system with a slight modification. Here,
we identify only those root-functions that satisfy the conditions
for being max-root as well as latin-square.

278

A. 1-Variable Ternary Root-Functions
The total number of 1-variable ternary logic functions is 33!
= 27. Among them, we show functions g(1,1), 9(1,2)> 9(1,3)>
9(1,4)> 9(1,5)» 9(1,6)» 9(1,7)> 9(1,8)> 9(1,9) in Fig. 8; each of these
nine functions is also a root-function.

Lol T2 JaT2lo][2ofrjoT2T r][rJoTl2]
@ 91,1 ®) 9(1,2) © 91,3 @ 9(1,4) © 91,5
2T o222 T2][22]1]
® 9(1,6) ® 91,7 M) 9(1,8) @ 9(1,9)

Fig. 8. All 1-variable ternary root-functions g(1,1y, 9(1,2), 9(1,3)> 9(1,4)
9(1,5)> 9(1,6)> 9(1,7)> 9(1,8)> 9(1,9) in their map- representation

All 1-variable ternary constant functions foog = 0, f111 = 1
and fo90 = 2 are reachable from these nine functions. Besides
that, table 1 shows all other faulty-functions reachable from
these nine functions. Thus, all other functions are reachable
from these nine functions when suitable stuck-at faults are
injected in their two-level irredundant AND-OR MVL circuit
realization. It can be also shown that none of these nine func-
tions are reachable from any function under a faulty-condition.
Hence, these nine functions are root-functions. Moreover, each
of these functions has two product terms in their minimal sum-
of-product expression. For n = 1, the number of maximum
product terms in minimal sum-of-product expression of a
ternary function is also two. Thus, for n = 1, there does
not exist any other root-function other than the max-root-
functions. Among these nine functions, six functions 9(1,1)s
9(1,2)> 9(1,3)> 9(1,4)> 9(1,5)» 9(1,6) are latin-square functions.

Root-Functions (R) | Faulty-F Reachable From Corresp R

[0T T T2] [O0To T2 T[T 2] T TToJ[oTTTo]
[0T 2T 1] [0T 2T o[T[T][TTOoTTJ[oTO0TT]
[T ToTJ2] [0ToT 2T rT2]J[Tt [TToJ[oTO0To]
[T T2T07] [oT2To [t 2T [T [To [T]|J[T]T0T]0]
[2ToTT1] [T oTJo [z T[T J[o[T [T][oTo0oT 1]
[2 T T T0] [2ToJ o[2] v T][O0 T TJ[o0TTToO]
[T T2T72] [2ToJoJ[2] T rJ[oJ2T2][1TT0T0]
[2 T 1 [2] [0T2JoJ[T [aTr]J[2JoT2]J[0TTTo]
[2T2T771] [0oJToT2 [T [T [2][2T2T0o][o0oTo0oT 1]

TABLE I
REACHABILITY FROM 1-VARIABLE ROOT-FUNCTIONS TO FAULTY-FUNCTIONS

B. Construction of Root-Function in Ternary Logic

We use the concatenation procedure to construct root-functions
when n > 1. In binary logic, two binary root-functions
are required for every concatenation. In the case of ternary
logic, three ternary max-root-functions are required for every
concatenation. In general, for p-valued logic, p different logic
functions are required for every concatenation.

For an illustration, let g(,—11), Yn—1,2)» Y(n—1,3) be three
(n — 1)-variable ternary functions. Now, an n-variable ternary
function f(;,, 1) can be generated by appending 0 with every
true vector of g(,_1,1), and appending 1 with every true
vector of g(,_1) and similarly, by appending 2 with ev-
ery true vector of g(,_13), and finally, by selecting those
appended vectors as vectors of f(, 1) with the same value

as in g(p—1,1)> g(n—1,2) and g(n_1,3). Such a concatenation
operation with g(,—11), g(n—1,2) and g(,—1,3) is denoted by
f(n,l) = ':Cog(n—l,l) \/‘Tlg(n—l,Q) \/xQ.g(n—l,IS)- In ternary logic,
three (n — 1)-variable ternary root-functions are required for
performing concatenation. A set of such triple functions is
called a concatenable triplet.

Definition 13: The concatenable triplet is formed by three
distinct ternary latin-square functions {g(,—1,1)» Y(n—1,2)
9(n-1,3)}, where for every (n — 1)-variable minterm u,
In-1,1)(T) N gn-1,4)(x) = @ for ¥V (i,5), 1 < (i,j) < 3
and 7 # j.

The number of n-variable ternary functions that can be gener-
ated from each concatenable triplet is 3! = 6. For example, a
concatenable triplet {g(,—1,1)> Y(n—1,2) G(n—1,3) Can generate
six functions f(n,l)7 f('rL,Q)’ f(’n,S)v f(n,4)7 f(n,S)’ f(’n,G) as given
below:

fony) =2°9(n—1,1) V' g(n_1,2) V 2°g(n_13)

fny2) =2%G(n—1,1) V2°9(n—1,2) V' g(n—1,3)

fn3) =T 9n-1,1) V2°9(n-1,2) V 3°g(n_1.3)

fay =2 gn—1.1) V22 g(n—12) V 2°9(n_1,3)

fnys) =2%gmn—1,1) V2°9(n—1,2) V' g(n—1,3)

fn6) =T 9(n-1,1) V' g(n-1,2) V 2°g(n—1,3)-

C. Concatenation Procedure for Ternary Logic
Procedure 1: Multi-valued-root(number of variables n)
1. Identify the set of all concatenable triplets for (n — 1)-
variable (2,1, Zp_2,...,T1).
2. For each triplet {gin — 1,1),g9n — 1,2),gn — 1,3)}, do
the following:
3. Consider a triplet {g(n—1,1),9(n-1,2) 9(n—1,3)}- Execute
Step 4 for each possible combination of {p;,p;,py} where
pi;pj,pk € {0,1,2} and p; # pj # pi.
4. Append x,, with each of {g(,—1,1), 9(n—1,2), G(n—1,3)} With
values p;, p;, pi, respectively and construct the function f(y,).
Let x,, appended with p; be denoted as xP:. Hence, f,
TP G(n—1,1) VT Gn—1,2) VILF g(n_1.3), Which is an n-variable
ternary root-function.
5. return.
Procedure 2: Generate-root(number of variables n)
1. for (variable = 2; variable < n; variable++)

Call Procedure 1 Multi-valued-root(variable).

2. end.
D. 2-Variable Ternary Root-Function

1) Generation of All 2-variable Ternary Latin-Square Max-
root-Functions: Starting from the set of 1-variable ternary
latin-square functions, we construct 2-variable ternary root-
functions as follows. We know that there are six ternary 1-
variable latin-square max-root-functions g1 1), g(1,2)> 9(1,3)»
9(1,4)> 9(1,5)» 9(1,6) shown in Fig. 8. We find two concatenable
triplets {g(1,1)> 9(1,2)» 9(1,3)} and {g(1,4)> 9(1,5)> 9(1,6)} Where
each of concatenable triplet can generate 3! = 6 different 2-
variable ternary latin-square max-root-functions. Thus, a total
of twelve 2-variable ternary latin-square max-root-functions
can be constructed.

Example 7 : Let us choose {ga,1). 9(1,2), 91,3} as a
concatenable triplet. Function g5 1) is 2-variable ternary root-
function generated from {g(1,1), 9(1,2)> 91,3)}> i.e. g21) =

279

wog(l,l) V mlg(l’g) \Y, x2g(173) where 10, 01, 22 are 1-valued
vectors, 20, 11, 02 are 2-valued vectors and 00, 21, 12 are
0-valued vectors. Fig. 9, Fig. 10, and Fig. 11 illustrate the
method for generating vectors of g2 1) from vectors of g(; 1),
9(1,2) and g(1 3, respectively, by appending 0 with vectors of
9(1,1)> appending 1 with vectors of g(;2) and appending 2
with vectors of g(; 3y. Notice that g(; 1) is also a latin-square
function. Similary, other 2-variable ternary latin-square max-
root-functions can be generated from 1-variable latin-square
max-root-functions g(1,1y, 9(1,2)> 9(1,3)> 9(1,4)> 9(1,5)> 9(1,6) aS
in Fig. 8 by the method of concatenation:

9(2,2) = 9009(1.3) Vv 9319(1,1) \ 9029(1.2)

9g(2,3) = 5509(1,2) Vv $19(1,3> \ 9029(1,1)

9(2,4) = 109(1,1) \ 119(1,3) Vv 129(1,2)

9g(2,5) = 9009(1.2) Vv 3319(1,1) \ 9029(1.3)

9g(2,6) = 9009(1,3) Vv flg(l,z) \ 9«‘29(1,1)

92,7 = 109(1,4) \ Il!](l,s) \ 129(1,6)

9g(2,8) = 9009(1.6) \% 9319(1,4) \ 9629(1,5)

9g(2,9) = 9«‘09(1,5) Vv flg(l,c) \ 1‘29(1.4)

g(2,10) = 109(1,4) Vv Ilg(l,e) \ Z29(1,5)

g(2,11) = 9’309(1,5) Vv m19(1,4) % 9329(1,6)

9g(2,12) = 9009(1,6) \ 301!1(1.5) % 9029(1,4)-

These functions are shown in Fig. 12.

T
Vectors of g, | Vectors of g, | Vectors in g Vectors in g;

before after with values with values
app di 0 pp di 0 .
0 0 | g0=0] g(00)=0
1 0] gm=1] gao=1
2 20| g@=2] gi(20)=2

Fig. 9. Vectors in g1 with values produced from vectors in g/1

Vectors in g1
with values

T
Vectors in g,
with values

Vectors of g,
before

Vectors of g,
after

appending 1 appending 1
0 o | gO=1] gOn=1
1 11 () =2 | gi(11) =2
2 21 92(2) =0 | g1(21) =0

Fig. 10. Vectors in g1 with values produced from vectors in g;

T T T
Vectors of g, Vectors of g, Vectors in g, Vectors in g1

before after with values with values
appending 2 ppending 2 i

0 01 g5(0) =2 91(02) =2

1 11 g5(1) =0 g1(12) =0

2 21 g5(2) =1 g1(22) =1

Fig. 11. Vectors in g1 with values produced from vectors in g;

T 2

T
40 =0 Yyl =1 y2 =2
z0 =0 00 01 02 ? ; [2) ﬁ ll) ;
21 =1 10 11 12 R) 1 i >)
T =2 20 21 22 b C
(a) Map-representation of 2-variable ® 92,1y © 9(2,2)
ternary function
T [20 02 1 T 0] 2 2 [110 01]2
2 0 1 1 0 2 2 1 0 0 2 1 2 0 1
0 1 2 2 1 0 0 2 1 1 0 2 1 2 0
@) g(2,3) © 92,9 ® 9(2,5) (@) 9(2,6) M) 92,7
2 0 1 1 2 0 0 2 1 1 0 2 2 1 0
1 2 0 0 1 2 2 1 0 0 2 1 1 0 2
0 1 2 2 0 1 1 0 2 2 1 0 0 2 1
® 9(2,8) @ 92,9 ® 92,100 D g1y @ g2

Fig. 12. All 2-variable ternary latin-square max-root-functions
The total number of 2-variable ternary logic functions is 3%
= 19683. Among them, we could construct only twelve root-
functions by the method of concatenation. These functions are

latin-square functions as well [12]. Moreover, these twelve
functions satisfy the properties of max-root-functions, where
number of product terms is maximum, i.e. 6 = (2.3 1, n = 2)
[12].

E. 3-Variable Ternary Root-Function

From Fig. 12, notice that the number of 2-
variable concatenable triplets is four, and these
triplets are {g(21),922), 923} {924),925) 926}

{9275 92.8), 92,9 }> 19(2,10)5 9(2,11)5 9(2,12) }- From each
of this triplet, we obtain 3! = 6 different 3-variable ternary
max-root-functions. Hence, the number of 3-variable ternary
latin-square max-root-functions generated by concatenation
is 24. The total number of 3-variable ternary logic functions
is 3%°. Among them, we could identify only these 24
functions as root-functions. Again for each of them, the
number of product terms are 2.3"7! n 3. Hence, all
of these are ternary 3-variable max-root-functions. Fig. 13
shows the map-representation for 3-variable ternary functions.
All 3-variable ternary latin-square max-root-functions
R(3,1), R(3,2), ---s (3,24) have been identified and shown in
Appendix.

FE. Number of Latin-square Max-root-Functions

In ternary logic, we have 6, 12, or 24 latin-square, max-
root-functions for 1-variable, 2-variable, or for 3-variable,
respectively. In ternary, the number of n-variable latin-square
max-root-functions = 2 x number of (n — 1)-variable latin-
square max-root-functions.

G. Number of Product Terms in Max-Root-Functions

For each 1-variable or 2-variable ternary max-root-function,
the number of product terms in its minimal sum-of-products
expression is 3 and 6, respectively. All max-root-functions
have the maximum number of product terms in their minimal
sum-of-product expressions. For n-variable ternary max-root-
functions, the number of product terms will be equal to
2.3"~1. In general, for p-valued system, an n-variable max-
root-function will have (p —1).p" ! number of product terms
in its minimal sum-of-product expression.

H. Relation Among Root, Max-Root, and Latin-Square Func-
tions

We have observed earlier that all max-root-functions con-
structed by the concatenation method are also latin-square
functions. The question is: Whether there exists any other
max-root-functions, which are not latin-square functions. For
n = 1, we have seen that there are nine max-root-functions
among which three (g(1,7), g(1,8) and g(1 9y in Fig. 8) are not
latin-square functions. Therefore, in general, the set of latin-
square functions is a subset of the set of max-root-functions.
However, for n = 2 and 3, we could not identify any max-root-
function that is not a latin-square function. Nevertheless, we
believe such functions indeed exist. Also, for n = 1, we have
identified nine root-functions, and all of them are max-root-
functions. In binary logic, for n = 1 and 2, every root-function
is a max-root-function. Note that in binary logic, for n > 2,
there exist root-functions, which are not max-root-functions.

280

Fig. 2 shows an example of a 4-variable root-function, which
is not a max-root-function. Unfortunately, in ternary logic, we
could not construct any such root-function for n = 2 or 3. We,
however, believe that such functions do exist. This discussion
leads to the following observation.

Observation: For any n, S;, C Sy C Sg where Sy, Sy and
Sr denote the set of all ternary latin-square functions, ternary
max-root-functions, and ternary root-functions, respectively.

V. CONCLUSION

We have identified a few multiple-valued root-functions and
studied some of their attributes. Some special root-functions
are classified as being max-root, and a subset of the lat-
ter consists of as latin-square functions. We have described
a concatenation-based procedure for constructing n-variable
latin-square functions recursively from (n — 1)-variable func-
tions for multiple-valued logic. We have identified all 1-
variable ternary max-root-functions, and among them, six are
observed to be latin-square functions. We have also identi-
fied all ternary 2- and 3-variable latin-square functions by
the method of concatenation. We noticed that such ternary
latin-square functions exhibit certain regular patterns in their
map-representations. However, the mechanism for identifying
ternary root-functions that are not max-root-functions, is yet to
be investigated. Also, exploring the attributes of other ternary
non-max-root-functions requires further study.

REFERENCES

[1] D. K. Das, D. Chowdhury, B. B. Bhattacharya, T. Sasao, “Inadmissible class
of Boolean Functions under Stuck-at Faults,” in Proc., IEEE 44" International
Symposium on Multiple-Valued Logic (ISMVL 2014, 19-21 May), vol. 1, pp. 237-
242, 2014.

[2] M. E. R. Romero, E. M. Martins, and R. R. Santos, “Multiple-valued logic algebra
for the synthesis of digital circuits,” In Proceedings, 39th International Symposium
on Multiple-Valued Logic, pp. 262-267, 2009.

[3] B. B. Bhattacharya and B. Gupta, “On the impossible class of faulty-functions in
logic networks under short circuit faults,” IEEE Trans. Comput., vol. C-35, no. 1, pp.
85-90, Jan. 1986.

[4] G. Epstein, G. Frieder, and D. C. Rine, “The Development of Multiple-Valued
Logic as Related to Computer Science,” In D. C. Rine, editor, Computer Science
and Multiple-Valued Logic: Theory and Applications, pages 81-101, North-Holland,
Amsterdam, 1977.

[5] T. Raju Damarla, “Fault detection in multiple-valued logic circuits,” In Proceedings,
Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.

[6] Z. Kohavi, “Switching and Finite Automata Theory,” McGraw-Hill, Inc., 1970.

[7] D. K. Das, S. Chakraborty and B. B. Bhattacharya, “Boolean algebraic properties
of fault behavior in logic circuits,” In Proc., Int. Workshop on Boolean Problems, pp.
143-150, Sept., 2000.

[8] D. K. Das, S. Chakraborty, and B. B. Bhattacharya, “Interchangeable Boolean
functions and their effects on redundancy in logic circuits,” In Proc., ASP-DAC,
pp. 469-474, 1998.

[9] S. Maitra and E. Pasalic, “A Maiorana-McFarland type construction for resilient
Boolean functions on n-variables (n even) with nonlinearity > 2771 — 2n/2 4
27/2=2 > Discrete Applied Mathematics, 154(2): 357-369 (2006).

[10] P. Sarkar and S. Maitra, “Construction of Nonlinear Resilient Boolean Functions
using "Small” Affine Functions,” IEEE Transactions on Information Theory, vol. 50,
no. 9, pp. 2185-2193, 2004.

[11] Damarla, T.R., “Fault detection in multiple valued logic circuits,” In Proceedings,
Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.

[12] P. Tirumalai and J. T. Butler, “On the Realization of Multiple-valued Logic
Functions Using CCD PLA’s,” In Proc., IEEE International Symposium on Multiple-
Valued Logic, pp. 33-42, 1984.

[13] S. Chakraborty, D. K. Das, B. B. Bhattacharya, “Logical Redundancies in Ir-
redundant Combinational Circuits,” Journal of Electronic Testing : Theory and
Applications,4(2):125-130, May 1993.

Fig. 13.

(z1, 2, 3).

=0 [o] =1 | 23 =2
2] =0 000 100 200
xd = 1 010 110 210
x5 =2 020 120 220
(@ =3 =0
20 =0 [al=1] 2% =
2J =0 001 101 201
zl =1 011 111 211
z2 =2 021 121 221
(b) = =1
29 =0 [2l =1 2 =2
2 =0 002 102 202
vl =1 012 112 212
z2 = 2 022 122 222
() 22 =2

Map-representation for 3-variable

Appendix

Map-representation

1

2

0

2
0

1

Map-representation

1

2

2

0

0

1

Map-representation

0

1

2

1
2

0

Map-representation
T [20
2 [0 |1
0 | 1 |2
Map-representation
T [20
2 [0 | 1
0 | 1 | 2

Map representation

0

1

2

1
2

0

Map-representation
0 [2 [1
T [0 |2
2 [1] 0

Map-representation

2

1

0

2

1

0

Map-representation
2 [1[0
0 | 2 | 1
T [0 [2
Map-representation
T [0 2
2 [1|0
0 | 2 |1

Map-representation

0

2

2

0
1

Map-representation

0

2
0

1
2

Map-representation

2

1

0
1

o]

ternary function with variables

of Ria,1y = 2%g(2,1) V a'ga, V 2g2,3)
2 0 1 1 2 0
0 1 2 2 0 1
T 2 0 0 T 2

of Riz,0) = 2°9(2,1) V 2l g(a,3) V 2°g(2,2)
1 2 0 2 0 1
2 0 1 0 1 2
0 1 2 1 2 0

of R33) =@ g(2,2) V «'L’lg(z,l) \ 9039(2 3)
0 1 2 1 2 0
1 2 0 2 0 1
2 0 1 0 1 2

of Rizay = 2°g(2,0) V' g(2,3) V2®g21)
0 1 2 2 0 1
1 2 0 0 1 2
2 0 1 1 2 0

of Rz,5) = #°g(2,3) V@' g(2,1) V °g(2,2)
2 0 1 0 1 2
0 1 2 1 2 0
1 2 0 2 0 1

of R(3.6) = w19(2,2) Vv 1‘39(2,1)
0 1 2
1 2 0
2 0 1

of Ria,7y = 2°9(2,0) V @' g(2,5) V 2°g(2,6)
1 0 2 2 1 0
2 1 0 0 2 1
0 2 1 1 0 2

of Rs,s) = @°g(2,0) V @ 92,6) V 2°9(2,5)
2 1 0 1 0 2
0 2 1 2 1 0
1 0 2 0 2 1

of Rys,0) zlg(2,0) V ©2g(2,6)
1 0 2
2 2 1 0
2 1 0 0 2 1

of R(3.10) = #°g(2,5) V @' g2,6) V 22 g(2,4)
0 2 1 2 1 0
1 0 2 0 2 1
2 1 0 1 0 2

of Rz,11) = 9009(2‘6) \ 9019(2,4) Vv 9039(2.5)
2 1 0 0 2 1
0 2 1 1 0 2
T [0 |2 2 [1|0

of R(z,12) = #°g(2,6) V ©' g(2,5) V 7°g(2,4)
1 0 2 0 2 1
2 1 0 1 0 2
0 2 1 2 1 0

of Ri313) = 2°g(2,7) V ' g(2,8) V 22 g(2,9)
1 0 2 2 1 0
2 1 0 0 2 1
0 2 1 1 0 2

281

Map-representation

2

1

0

2

1

0

Map-representation

0

1
2

Map-representation

0

1

0

2

1

Map-representation

0

2

0

1
2

1

Map-representation

0

1
2

Map-representation

0 [2 1

2 1 0

1 0 | 2
Map-representation

0 [2 [

2 T |0

1 0 | 2
Map representation

2 T 0

1 0 [2

0 | 2 i
Map-representation

1 0 [2

0 [2 i

2 T |0
Map-representation

2 1 0

1 0 [2

0 | 2 1
Map-representation

1 0 [2

0 [2 1

2 1 0

of Rz3,14) = 2°g¢2,7) V ' g(2,09) V 22 g(2.8)
2 1 0 0 2
0 2 1 2 1 0
T [0 [2 0 [2 [1
of R(315) = 9«‘09(2,8) \% xlg(2.7) \ 1‘59(2,9)
021 T[o02
T [0 [2 2 [1 [0
2 1 0 0 2 1
of R(s,16) = 2°g(2,8) V' g(2,0) V 2°g(2,7)
0 2 1 2 1 0
1 0 2 0 2 1
2 1 0 1 0 2
of Rz 17y = 2°g(2,0) V ' g(2,7) V 22 g(2.8)
2 1 0 0 2 1
0 [2 [1 T [0 [2
T [0 [2 2 [1 [0
of R(3,18) = #°g(2,0) V ¥ g(2,8) V #°g(2,7)
T o0 2 0 2 1
2 1 0 1 0 2
0 2 1 2 1 0
of R3,10) = 2°9(2,10) V ' g(2,11) V 2°g(2,12)
1 0 2 2 1 0
0 2 1 1 0 2
2 [1[0 0 [2 [1
of R(3,20) = 2°g(2,10) V 2" g(2,12) V 2°g(2.11)
2 1 0 1 0 2
T [0 [2 0 [2 [1
0 [2 [1 2 [1 [0
of R(3,21) = 1‘09(2,11) Vv 1'19(2.,10) Vv 1'39(2,12)
0 [2 [1 T [o0J2
2 1 0 0 2 1
1 0 2 2 1 0
of R(3,22) = 2°g2,10) V ' g(2,12) V 2°g(2,10)
0 2 1 2 1 0
2 1 0 1 0 2
T [0 [2 0 [2 [1
of R(3,23) = 9505(2,12) \ 9019(2.10) Vv 9039(2.11)
1 0 2 0 2 1
0 [2 [1 2 [1 [0
2 1 0 1 0 2
of R3,24) = 2%9(2,12) V ' g(2,11) V 2°9(2,10)
2110 0 [2 [1
1 0 2 2 1 0
0 2 1 1 0 2

