On the Inadmissible Class of Multiple-Valued Faulty-Functions under Stuck-at Faults

Debabani Chowdhury and Debesh K. Das Computer Sc. & Engg. Dept. Jadavpur University, Kolkata 700 032, India Email: debabani.chowdhury@gmail.com; debeshd@hotmail.com Bhargab B. Bhattacharya ACM Unit, Indian Statistical Institute Kolkata 700 108, India Email: *bhargab.bhatta@gmail.com* Tsutomu Sasao Dept. of Computer Science Meiji University, Kawasaki Kanagawa 214-8571, Japan Email: sasao@cs.meiji.ac.jp

Abstract- There exists a class of Boolean functions, called rootfunctions, which can never appear as faulty response in irredundant twolevel AND-OR combinational circuits even when any arbitrary multiple stuck-at faults are injected. However, for multi-valued logic circuits, rootfunctions are not vet well understood. In this work, we characterize some of the multiple-valued root-functions in the context of irredundant two-level AND-OR multiple-valued circuit realizations. As in the case of binary logic, such a function can never appear as a faulty-function in the presence of any stuck-at fault. We present here a preliminary study on multiple-valued root-functions for ternary (3-valued) logic circuits, and identify a class of *n*-variable ternary root-functions using a recursive method called concatenation. Such an approach provides a generalized mechanism for identifying a class of root-functions for other *p*-valued (p > 3), *n*-variable, two-level AND-OR logic circuits. Furthermore, we establish an important connection between root-functions and the classical latin-square functions.

Index Terms- Latin-square functions, multiple-valued logic, stuck-at faults, ternary functions, root-functions

I. INTRODUCTION AND PRELIMINARIES

In a recent work [1], it has been shown that there exists a class of Boolean functions, called root-functions, which never appear as faulty response when an arbitrary single or multiple stuck-at faults are injected in an irredundant twolevel AND-OR circuit realization of a Boolean function. Rootfunctions also play an important role in the characterization of *Impossible Class of Faulty-Functions* (ICFF) [3] under various test models. However, for multiple-valued functions, very little is known about the existence of such root-functions.

The scope of switching algebra can be extended to the domain $D = \{0, 1, ..., (p-1)\}$ of p discrete levels, p > 2, to describe the behaviour of Multiple-Valued Logic (MVL) circuits. We consider here single-output, two-level AND-OR MVL circuits, and study the properties of multiple-valued root-functions in such context. As in the case of binary logic, we define MVL root-functions as those, which can not appear as faulty-functions when an arbitrary single or multiple stuck-at faults are injected in irredundant two-level AND-OR MVL realizations of a multiple-valued function. Some preliminary concept of ternary-valued root-functions, i.e. for p = 3, were introduced in an earlier work [1]. Here, we explore, in-depth, the underlying properties of root-functions for MVL and their connections to another interesting class of functions known as latin-square functions [12].

Note that for any multiple-valued logic function of n variables with the domain $D = \{0, 1, ..., (p-1)\}$, there are $N = p^n$ possible input combinations, and the total number of possible functions is p^N . Thus, for the ternary domain where p = 3, for n input variables, there are $N = 3^n$ possible input combinations and the total number of possible functions will be 3^N . For example, when n = 2, there are $3^9 = 19683$ possible functions. Thus, there are at least p^N different two-level AND-OR circuits (some functions may have more than one twolevel irredundant realizations). Assume a two-level irredundant AND-OR realization for each of these $p^N(N = p^n)$ functions. Now consider the presence of single or multiple faults in the circuits. For each fault, there will be a corresponding faulty-function (denoting the output function when the fault is injected). The question is, whether there exists any function that can never appear as a faulty-function for any possible fault in any of the two-level realizations. If it exists, then that function is a root-function. It is conjectured that there would also exist several root-functions for multiple-valued logic circuits as in the case of Boolean functions [1]. The identification of some of these root-functions among the set of all p^N functions may help characterization of impossible class of multiple-valued faulty-functions, as well. In this paper, we show that there exists a multitude of MVL functions that behave as root-functions and hence, establish that the earlier conjecture [1] is indeed true.

Root-functions in the ternary domain $D = \{0, 1, 2\}$ are named as ternary root-functions. In this paper, we show that many root-functions do exist in the context of two-level implementation of ternary logic as in the binary $B = \{0, 1\}$ domain [1]. We also establish an interesting connection of ternary rootfunctions with the classical ternary latin-square functions [12] and show that the latter set is a subset of the set of former type.

In order to facilitate the identification of ternary root-functions, we propose a recursive procedure called *concatenation* that allows us to construct an *n*-variable ternary root-function from three (n - 1)-variable ternary root-functions. We generalize the method of concatenation in connection to root-functions to make it suitable for the Boolean, ternary, or for other higher *p*-valued functions, i.e., where $D = \{0, 1, 2, ..., (p-1)\}, p \ge 2$. We show that an *n*-variable Boolean (ternary) function can be

constructed from two (three) (n-1)-variable Boolean (ternary) functions. We generate all 2-variable and 3-variable ternary latin-square functions [12], that are ternary root-functions, as well; also each of them is a max-root-function, i.e., it includes the maximum number of product terms in its minimal sum-of-product expression.

II. BACKGROUND

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of *n*-variables, where x_i takes on values from $D = \{0, 1, ..., p-1\}$. A function F(X) is a mapping $F : D^n \to D$. Specifically, F(X) is said to be an *n*-variable *p*-valued function. For p = 3, function F(X) is said to be a ternary function. A function value F(x) corresponding to a specific assignment of values x to variables in X is called a minterm.

Example 1: Fig. 1 shows an example of a 2-variable ternary function F(x, y) having three minterms with value 1 and five minterms with value 2.

	$y^0 = 0$	$y^1 = 1$	$y^2 = 2$
$x^0 = 0$	2	1	2
$x^1 = 1$	1	2	0
$x^2 = 2$	2	2	1

Fig. 1. An example of a 2-variable ternary function F(x,y) in its maprepresentation

Definition 1: The unary operator on the *p*-valued variable x, called a literal, is denoted by $x^b = p-1$ when x = b, otherwise 0.

Definition 2: Max operator (\lor) returns the maximum of its two operands. Let *a* and *b* be two operands; then max function $a \lor b = max(a, b)$.

Definition 3: Min operator (.) returns the minimum of its two operands. Let *a* and *b* be two operands; then min function $a \wedge b = (a.b) = min(a, b)$.

Definition 4: A sum-of-product expression for function F(X) is minimal if there is no other expression for F(X) with fewer product terms or literals.

The minimal sum-of-product expression for a 2-variable ternary function F in Fig. 1 is $F(x,y) = (1.x^0.y^1) \lor (1.x^1.y^0) \lor (1.x^2.y^2) \lor (x^0.y^2) \lor (x^1.y^1) \lor (x^2.y^0).$

Definition 5: Stuck-at-fault (s-a-f) [5]: A line h_i in a network is said to be stuck-at-q if a fixed logic value q set at this line, models the effect of the fault at the circuit output, where $q \in \{0, 1, \dots, p-1\}$. This fault is denoted by h_i/q . Clearly, in a circuit with k lines, there are $(p+1)^k - 1$ possible faults in the network.

Definition 6: [13] A combinational circuit is said to be irredundant if all stuck-at faults, single or multiple, are detectable by input-output experiments.

Definition 7: [7]: A Boolean root-function is a logic function that can never appear as a faulty response in any irredundant two-level AND-OR logic circuit in the presence of any arbitrary (single or multiple) stuck-at faults.

Example 2: Fig. 2 shows an example of 4-variable Boolean root-function f with true vectors (0000,0111,1100,1001,1010). With respect to stuck-at faults, the root-functions for multiple-valued logic is defined as follows.

Definition 8: A root-function in multiple-valued logic is a

function that can never appear as a faulty response in any irredundant two-level multiple-valued AND-OR circuit in the presence of any arbitrary (single or multiple) stuck-at faults.

	$x'_3.x'_4 = 00$	$x'_{3}.x_{4} = 01$	$x_3.x_4 = 11$	$x_3.x'_4 = 10$
$x_1' \cdot x_2' = 00$	1	0	0	0
$x'_1 \cdot x_2 = 01$	0	0	1	0
$x_1.x_2 = 11$	1	0	0	0
$x_1 \cdot x'_2 = 10$	0	1	0	1

Fig. 2. 4-variable Boolean root-function $f(x_1, x_2, x_3, x_4)$ in its maprepresentation with five true minterms

Definition 9: The Boolean root-functions that contain the maximum number of true minterms are called max-root-functions.

Example 3: Fig. 3 shows an example of a 3-variable Boolean max-root-function $M(x_1, x_2, x_3)$ with maximum (four) number of true minterms.

x2.x	$3 = 00 x_2$	$2 \cdot x_3 = 01$	$x_2.x_3 = 11$	$x_2 \cdot x_3 = 10$
$x'_1 = 0$	1	0	1	0
$x_1 = 1$	0	1	0	1

Fig. 3. 3-variable Boolean max-root-function $M(x_1, x_2, x_3)$ in its maprepresentation with maximum (four) number of true minterms

Obviously, a max-root-function contains maximum number of product terms in their minimal sum of-products expression. In this light, we can define the max-root-functions for ternary logic as follows.

Definition 10: An *n*-variable ternary root-function that has the maximum number of product terms in their minimal sum-of-products expression is a ternary max-root-function.

Example 4: Fig. 4 shows 2-variable ternary max-root-function H(x, y) with maximum (six) number of product terms.

	$y^0 = 0$	$y^1 = 1$	$y^2 = 2$
$x^0 = 0$	0	1	2
$x^1 = 1$	1	2	0
$x^2 = 2$	2	0	1

Fig. 4. An example of a 2-variable ternary max-root-function H(x,y) in its map-representation

Definition 11: [12] A permuter functions P(x) of a *p*-valued variable x is a function such that for no two distinct values of x, the function assumes the same value.

Definition 12: [12] A latin-square function $f(x_1, x_2, ..., x_n)$ is a function that satisfies the following property: $\forall i = 0, 1, \dots, n, f(a_1, a_2, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n) = g(x_i)$ is a permuter function on x_i for any assignment of values $(a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n)$ to $(x_1, x_2, ..., x_{i-1}, ..., x_{i+1}, ..., x_n)$.

Example 5: Fig. 4 shows an example of a 2-variable ternary latin-square function H(x, y) in its map-representation.

III. METHOD OF CONCATENATION IN BINARY LOGIC

The concatenation operation on Boolean functions can be used recursively to construct new functions with a larger number of variables [9], [10]. The method of concatenation was used earlier for the construction of resilient Boolean functions in a different context [9], [10]. In fact, for binary logic, an *n*-variable (for even *n*) Maiorana-McFarland type of bent function can be constructed by concatenating $2^{\frac{n}{2}}$ distinct affine functions on $\frac{n}{2}$ variables. Later, such ideas were used to construct Boolean functions with versatile cryptographic properties [9], [10]. For an illustration of this method, let us consider two (n-1)-variable Boolean functions, g, h. For an instance, an *n*-variable Boolean function f_1 can be generated from g, h by appending 0 with every true vector of g and appending 1 with every true vector of h, and then selecting those appended vectors as true vectors of f_1 . Again another *n*-variable Boolean function f_2 can be generated from g, h by appending 1 with every true vector of g and appending 0 with every true vectors of g and appending 0 with every true vector of g and appending 0 with every true vector of f_2 . Thus, the concatenation between g and h can be expressed as: $f_1 = x'_n g \lor x_n h, f_2 = x'_n h \lor x_n g$. We use this concatenation technique to construct larger root-functions from basic root-functions as follows.

Procedure Root-through-Concatenate(*n*)

1. Consider two root-functions R_1 and R_2 of (n-1)-variables $(x_{n-1}, x_{n-2}, ..., x_2, x_1)$ where $R_1 \cap R_2 = \emptyset$.

2. Append x_n with each of R_1 and R_2 with values 0(1) and 1(0) respectively to construct functions $f_1(f_2)$ of *n*-variables. Let appended x_n with 0(1) be represented as $x_n^0(x_n^1)$. Then, $f_1 = x_n^0 R_1 \vee x_n^1 R_2$ and $f_2 = x_n^1 R_1 \vee x_n^0 R_2$.

Example 6: Figures 5(a) and 5(b) show 3-variable Boolean root-functions g and h with true vectors 000, 111 and 001, 110 in their map-representations, respectively. The function f_1 can be generated from g and h by the method of concatenation by appending 0 with every true vector of g as shown in Fig. 6, and that obtained by appending 1 with every true vector of h is shown in Fig. 7. The root-function obtained in this manner for n = 4 is shown in Fig. 5(c).

						e		1	0	1	0
1	0	0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	1	0	1
(a)	q(0)	00.1	11)	(b)	h(00)1.1	10)	0	0	0	0
()	5(-)		(.)		,	- /	(c)			

 $f_1(0000, 0011, 1101, 1110)$ Fig. 5. 4-variable Boolean root-functions f_1 generated by concatenation between two 3-variable root-functions g and h, where $f_1 = x'_n g \lor x_n h$

vectors of g before	vectors of g after	vectors in g with values	vectors in f_1 with values	
appending 0	appending 0			
000	0000	g(000) = 1	$f_1(0000) = 1$	
001	0010	g(001) = 0	$f_1(0010) = 0$	
011	0110	g(011) = 0	$f_1(0110) = 0$	
010	0100	g(010) = 0	$f_1(0100) = 0$	
100	1000	g(100) = 0	$f_1(1000) = 0$	
101	1010	g(101) = 0	$f_1(1010) = 0$	
111	1110	g(111) = 1	$f_1(1110) = 1$	
110	1100	g(110) = 0	$f_1(1100) = 0$	
Fig. 6. Ve	ctors in f_1 with	values produc	ed from true vect	ors in g

vectors of h	vectors of h	vectors in h	vectors in f_2
before	after	with values	with values
appending 1	appending 1		
000	0001	h(000) = 0	$f_1(0001) = 0$
001	0011	h(001) = 1	$f_1(0011) = 1$
011	0111	h(011) = 0	$f_1(0111) = 0$
010	0101	h(010) = 0	$f_1(0101) = 0$
100	1001	h(100) = 0	$f_1(1001) = 0$
101	1011	h(101) = 0	$f_1(1011) = 0$
111	1111	h(111) = 0	$f_1(1111) = 0$
110	1101	h(110) = 1	$f_1(1101) = 1$

Fig. 7. vectors in f_1 with values produced from vectors in h

IV. ROOT-FUNCTIONS IN TERNARY LOGIC

We adopt the concatenation technique to produce ternary root-functions. The method is also applicable for a general multiple-valued logic system with a slight modification. Here, we identify only those root-functions that satisfy the conditions for being max-root as well as latin-square.

A. 1-Variable Ternary Root-Functions

The total number of 1-variable ternary logic functions is $3^{3^1} = 27$. Among them, we show functions $g_{(1,1)}$, $g_{(1,2)}$, $g_{(1,3)}$, $g_{(1,4)}$, $g_{(1,5)}$, $g_{(1,6)}$, $g_{(1,7)}$, $g_{(1,8)}$, $g_{(1,9)}$ in Fig. 8; each of these nine functions is also a root-function.

0	1	2		1	2	0	1	2	0	1	1	0	2	1	1 [1	0	2
(a)	$g_{(1)}$	1)		(b)	$g_{(1)}$,2)		(c)	$g_{(1)}$,3)		(d)	$g_{(1)}$,4)		(e)	$g_{(1)}$,5)
-	1	0		- 1	0	0	_	2	1					_				

Fig. 8. All 1-variable ternary root-functions $g_{(1,1)}$, $g_{(1,2)}$, $g_{(1,3)}$, $g_{(1,4)}$, $g_{(1,5)}$, $g_{(1,6)}$, $g_{(1,7)}$, $g_{(1,8)}$, $g_{(1,9)}$ in their map- representation

All 1-variable ternary constant functions $f_{000} = 0$, $f_{111} = 1$ and $f_{222} = 2$ are reachable from these nine functions. Besides that, table 1 shows all other faulty-functions reachable from these nine functions. Thus, all other functions are reachable from these nine functions when suitable stuck-at faults are injected in their two-level irredundant AND-OR MVL circuit realization. It can be also shown that none of these nine functions are reachable from any function under a faulty-condition. Hence, these nine functions are root-functions. Moreover, each of these functions has two product terms in their minimal sumof-product expression. For n = 1, the number of maximum product terms in minimal sum-of-product expression of a ternary function is also two. Thus, for n = 1, there does not exist any other root-function other than the max-rootfunctions. Among these nine functions, six functions $g_{(1,1)}$, $g_{(1,2)}, g_{(1,3)}, g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ are latin-square functions.

Root-Functions (R)	Faulty-Functions Reachable From Corresponding R
0 1 2	0 0 2 1 1 2 1 1 0 0 1 0
0 2 1	0 2 0 1 2 1 1 0 1 0 0 1
1 0 2	0 0 2 1 1 2 1 1 0 0 0 0
1 2 0	0 2 0 1 2 1 1 0 1 1 0 0
2 0 1	
2 1 0	
1 2 2	
2 1 2	
2 2 1	

TABLE I

Reachability from 1-variable root-functions to faulty-functions B. Construction of Root-Function in Ternary Logic

We use the concatenation procedure to construct root-functions when n > 1. In binary logic, two binary root-functions are required for every concatenation. In the case of ternary logic, three ternary max-root-functions are required for every concatenation. In general, for *p*-valued logic, *p* different logic functions are required for every concatenation.

For an illustration, let $g_{(n-1,1)}$, $g_{(n-1,2)}$, $g_{(n-1,3)}$ be three (n-1)-variable ternary functions. Now, an *n*-variable ternary function $f_{(n,1)}$ can be generated by appending 0 with every true vector of $g_{(n-1,1)}$, and appending 1 with every true vector of $g_{(n-1,2)}$ and similarly, by appending 2 with every true vector of $g_{(n-1,3)}$, and finally, by selecting those appended vectors as vectors of $f_{(n,1)}$ with the same value

as in $g_{(n-1,1)}$, $g_{(n-1,2)}$ and $g_{(n-1,3)}$. Such a concatenation operation with $g_{(n-1,1)}$, $g_{(n-1,2)}$ and $g_{(n-1,3)}$ is denoted by $f_{(n,1)} = x^0 g_{(n-1,1)} \vee x^1 g_{(n-1,2)} \vee x^2 g_{(n-1,3)}$. In ternary logic, three (n-1)-variable ternary root-functions are required for performing concatenation. A set of such triple functions is called a concatenable triplet.

Definition 13: The concatenable triplet is formed by three distinct ternary latin-square functions $\{g_{(n-1,1)}, g_{(n-1,2)}, \}$ $g_{(n-1,3)}$, where for every (n-1)-variable minterm x, $g_{(n-1,i)}(x) \cap g_{(n-1,j)}(x) = \emptyset$ for $\forall (i,j), 1 \le (i,j) \le 3$ and $i \neq j$.

The number of n-variable ternary functions that can be generated from each concatenable triplet is 3! = 6. For example, a concatenable triplet $\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\}$ can generate six functions $f_{(n,1)}, f_{(n,2)}, f_{(n,3)}, f_{(n,4)}, f_{(n,5)}, f_{(n,6)}$ as given below:

 $f_{(n,1)} = x^0 g_{(n-1,1)} \vee x^1 g_{(n-1,2)} \vee x^2 g_{(n-1,3)}$ $f_{(n,2)} = x^0 g_{(n-1,1)} \vee x^2 g_{(n-1,2)} \vee x^1 g_{(n-1,3)}$ $f_{(n,3)} = x^1 g_{(n-1,1)} \vee x^0 g_{(n-1,2)} \vee x^2 g_{(n-1,3)}$ $f_{(n,4)} = x^1 g_{(n-1,1)} \vee x^2 g_{(n-1,2)} \vee x^0 g_{(n-1,3)}$ $f_{(n,5)} = x^2 g_{(n-1,1)} \vee x^0 g_{(n-1,2)} \vee x^1 g_{(n-1,3)}$ $f_{(n,6)} = x^2 g_{(n-1,1)} \vee x^1 g_{(n-1,2)} \vee x^0 g_{(n-1,3)}.$

C. Concatenation Procedure for Ternary Logic

Procedure 1: Multi-valued-root(number of variables *n*) **1.** Identify the set of all concatenable triplets for (n-1)variable $(x_{n-1}, x_{n-2}, ..., x_1)$.

2. For each triplet $\{g_n - 1, 1\}, g_n - 1, 2\}, g_n - 1, 3\}$, do the following:

3. Consider a triplet $\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\}$. Execute Step 4 for each possible combination of $\{p_i, p_j, p_k\}$ where $p_i, p_j, p_k \in \{0, 1, 2\}$ and $p_i \neq p_j \neq p_k$.

4. Append x_n with each of $\{g_{(n-1,1)}, g_{(n-1,2)}, g_{(n-1,3)}\}$ with values p_i, p_j, p_k , respectively and construct the function $f_{(n)}$. Let x_n appended with p_i be denoted as $x_n^{p_i}$. Hence, $f_n =$ $x_n^{p_i}g_{(n-1,1)} \vee x_n^{p_j}g_{(n-1,2)} \vee x_n^{p_k}g_{(n-1,3)}$, which is an *n*-variable ternary root-function.

5. return.

Procedure 2: Generate-root(number of variables n)

1. for (variable = 2; variable < n; variable++)

Call Procedure 1 Multi-valued-root(variable).

2. end. D. 2-Variable Ternary Root-Function

1) Generation of All 2-variable Ternary Latin-Square Maxroot-Functions: Starting from the set of 1-variable ternary latin-square functions, we construct 2-variable ternary rootfunctions as follows. We know that there are six ternary 1variable latin-square max-root-functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)},$ $g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ shown in Fig. 8. We find two concatenable triplets $\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\}$ and $\{g_{(1,4)}, g_{(1,5)}, g_{(1,6)}\}$ where each of concatenable triplet can generate 3! = 6 different 2variable ternary latin-square max-root-functions. Thus, a total of twelve 2-variable ternary latin-square max-root-functions can be constructed.

Example 7 : Let us choose $\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\}$ as a concatenable triplet. Function $g_{(2,1)}$ is 2-variable ternary rootfunction generated from $\{g_{(1,1)}, g_{(1,2)}, g_{(1,3)}\}$, i.e. $g_{(2,1)} =$ $x^0 g_{(1,1)} \vee x^1 g_{(1,2)} \vee x^2 g_{(1,3)}$ where 10, 01, 22 are 1-valued vectors, 20, 11, 02 are 2-valued vectors and 00, 21, 12 are 0-valued vectors. Fig. 9, Fig. 10, and Fig. 11 illustrate the method for generating vectors of $g_{(2,1)}$ from vectors of $g_{(1,1)}$, $g_{(1,2)}$ and $g_{(1,3)}$, respectively, by appending 0 with vectors of $g_{(1,1)}$, appending 1 with vectors of $g_{(1,2)}$ and appending 2 with vectors of $g_{(1,3)}$. Notice that $g_{(1,1)}$ is also a latin-square function. Similary, other 2-variable ternary latin-square maxroot-functions can be generated from 1-variable latin-square max-root-functions $g_{(1,1)}, g_{(1,2)}, g_{(1,3)}, g_{(1,4)}, g_{(1,5)}, g_{(1,6)}$ as in Fig. 8 by the method of concatenation:

 $g_{(2,2)} = x^0 g_{(1,3)} \vee x^1 g_{(1,1)} \vee x^2 g_{(1,2)}$ $g_{(2,3)} = x^0 g_{(1,2)} \vee x^1 g_{(1,3)} \vee x^2 g_{(1,1)}$ $g_{(2,4)} = x^0 g_{(1,1)} \vee x^1 g_{(1,3)} \vee x^2 g_{(1,2)}$ $g_{(2,5)} = x^0 g_{(1,2)} \vee x^1 g_{(1,1)} \vee x^2 g_{(1,3)}$ $g_{(2,6)} = x^0 g_{(1,3)} \vee x^1 g_{(1,2)} \vee x^2 g_{(1,1)}$ $g_{(2,7)} = x^0 g_{(1,4)} \vee x^1 g_{(1,5)} \vee x^2 g_{(1,6)}$ $g_{(2,8)} = x^0 g_{(1,6)} \vee x^1 g_{(1,4)} \vee x^2 g_{(1,5)}$ $g_{(2,9)} = x^0 g_{(1,5)} \vee x^1 g_{(1,6)} \vee x^2 g_{(1,4)}$ $g_{(2,10)} = x^0 g_{(1,4)} \vee x^1 g_{(1,6)} \vee x^2 g_{(1,5)}$ $g_{(2,11)} = x^0 g_{(1,5)} \vee x^1 g_{(1,4)} \vee x^2 g_{(1,6)}$ $g_{(2,12)} = x^0 g_{(1,6)} \vee x^1 g_{(1,5)} \vee x^2 g_{(1,4)}.$

These	functions	are	shown	in	Fig	12
LICSC	Tuncuons	are	SHOWH	ш	112.	14

Vectors of g'_1 before appending 0	Vectors of g'_1 after appending 0	Vectors in g'_1 with values	Vectors in g_1 with values							
0	00	$g_{1}^{\prime}(0) = 0$	$g_1(00) = 0$							
1	10	$g_1'(1) = 1$	$g_1(10) = 1$							
2	20	$g_1'(2) = 2$	$g_1(20) = 2$							

Fig. 9. Vectors in g_1 with values produced from vectors in g'_1

Vectors of g'_2 before appending 1	Vectors of g'_2 after appending 1	Vectors in g'_2 with values	Vectors in g_1 with values
0	01	$g_{2}'(0) = 1$	$g_1(01) = 1$
1	11	$g_{2}'(1) = 2$	$g_1(11) = 2$
2	21	$g_{2}^{\prime}(2) = 0$	$g_1(21) = 0$

Fig. 10. Vectors in g_1 with values produced from vectors in g'_2

Vectors of g'_3 before appending 2	Vectors of g'_3 after appending 2	Vectors in g'_3 with values	Vectors in g_1 with values
0	01	$g'_{3}(0) = 2$	$g_1(02) = 2$
1	11	$g'_{3}(1) = 0$	$g_1(12) = 0$
2	21	$g'_{3}(2) = 1$	$g_1(22) = 1$

Fig. 11. Vectors in g_1 with values produced from vectors in g'_3

	$y^0 = 0$	$y^1 = 1$	$y^2 = 2$				
$x^0 = 0$	$c^0 = 0$ 00 01 $c^1 = 1$ 10 11		02	0 1 2	2 0	1	
$x^1 = 1$			12		0 1	2	
$x^2 = 2$	$x^2 = 2$ 20 21		22	$(\mathbf{b}) a$	(c) a	$\begin{pmatrix} c \end{pmatrix} q_{(2-2)}$	
(a) Map-	(a) Man-representation of			$(0) g_{(2,1)}$	$(c) g_{(2)}$	2)	
ternary fu	nction						
1 2	0 0	2 1	1 0 2	2 1 0	0 1	2	
2 0	1 1	0 2	2 1 0	0 2 1	2 0	1	
0 1	2 2	1 0	0 2 1	1 0 2	1 2	0	
(d) $g_{(2,3)}$	3) (e)	$g_{(2,4)}$	(f) $g_{(2,5)}$	(g) $g_{(2,6)}$	(h) $g_{(2)}$	7)	
2 0	1 1	2 0	0 2 1	1 0 2	2 1 0		
1 2	0 0	1 2	2 1 0	0 2 1	1 0 2		
0 1	2 2	0 1	1 0 2	2 1 0	0 2 1		
(1) $g_{(2,8)}$	3) (j)	$g_{(2,9)}$	(k) $g_{(2,10)}$	(l) $g_{(2,11)}$	(m) $g_{(2,12)}$)	
Fig	12 All	2-variable	ternary latin-	square max-root	-functions		

The total number of 2-variable ternary logic functions is 3^{3^2} = 19683. Among them, we could construct only twelve rootfunctions by the method of concatenation. These functions are

latin-square functions as well [12]. Moreover, these twelve functions satisfy the properties of max-root-functions, where number of product terms is maximum, i.e. $6 = (2.3^{n-1}, n = 2)$ [12].

E. 3-Variable Ternary Root-Function

From Fig. 12, notice that the number of 2variable concatenable triplets four, is and these $\{g_{(2,4)}, g_{(2,5)}, g_{(2,6)}\},\$ triplets are $\{g_{(2,1)}, g_{(2,2)}, g_{(2,3)}\},\$ $\{g_{(2,7)}, g_{(2,8)}, g_{(2,9)}\}, \{g_{(2,10)}, g_{(2,11)}, g_{(2,12)}\}.$ From each of this triplet, we obtain 3! = 6 different 3-variable ternary max-root-functions. Hence, the number of 3-variable ternary latin-square max-root-functions generated by concatenation is 24. The total number of 3-variable ternary logic functions is 3^{3^3} . Among them, we could identify only these 24 functions as root-functions. Again for each of them, the number of product terms are 2.3^{n-1} , n = 3. Hence, all of these are ternary 3-variable max-root-functions. Fig. 13 shows the map-representation for 3-variable ternary functions. All 3-variable ternary latin-square max-root-functions $R_{(3,1)}, R_{(3,2)}, \dots, R_{(3,24)}$ have been identified and shown in Appendix.

F. Number of Latin-square Max-root-Functions

In ternary logic, we have 6, 12, or 24 latin-square, maxroot-functions for 1-variable, 2-variable, or for 3-variable, respectively. In ternary, the number of n-variable latin-square max-root-functions = 2 × number of (n - 1)-variable latinsquare max-root-functions.

G. Number of Product Terms in Max-Root-Functions

For each 1-variable or 2-variable ternary max-root-function, the number of product terms in its minimal sum-of-products expression is 3 and 6, respectively. All max-root-functions have the maximum number of product terms in their minimal sum-of-product expressions. For *n*-variable ternary max-root-functions, the number of product terms will be equal to 2.3^{n-1} . In general, for *p*-valued system, an *n*-variable max-root-function will have $(p-1).p^{n-1}$ number of product terms in its minimal sum-of-product expression.

H. Relation Among Root, Max-Root, and Latin-Square Functions

We have observed earlier that all max-root-functions constructed by the concatenation method are also latin-square functions. The question is: Whether there exists any other max-root-functions, which are not latin-square functions. For n = 1, we have seen that there are nine max-root-functions among which three $(g_{(1,7)}, g_{(1,8)})$ and $g_{(1,9)}$ in Fig. 8) are not latin-square functions. Therefore, in general, the set of latinsquare functions is a subset of the set of max-root-functions. However, for n = 2 and 3, we could not identify any max-rootfunction that is not a latin-square function. Nevertheless, we believe such functions indeed exist. Also, for n = 1, we have identified nine root-functions, and all of them are max-rootfunctions. In binary logic, for n = 1 and 2, every root-function is a max-root-function. Note that in binary logic, for n > 2, there exist root-functions, which are not max-root-functions. Fig. 2 shows an example of a 4-variable root-function, which is not a max-root-function. Unfortunately, in ternary logic, we could not construct any such root-function for n = 2 or 3. We, however, believe that such functions do exist. This discussion leads to the following observation.

Observation: For any $n, S_L \subset S_M \subset S_R$ where S_L, S_M and S_R denote the set of all ternary latin-square functions, ternary max-root-functions, and ternary root-functions, respectively.

V. CONCLUSION

We have identified a few multiple-valued root-functions and studied some of their attributes. Some special root-functions are classified as being max-root, and a subset of the latter consists of as latin-square functions. We have described a concatenation-based procedure for constructing n-variable latin-square functions recursively from (n-1)-variable functions for multiple-valued logic. We have identified all 1variable ternary max-root-functions, and among them, six are observed to be latin-square functions. We have also identified all ternary 2- and 3-variable latin-square functions by the method of concatenation. We noticed that such ternary latin-square functions exhibit certain regular patterns in their map-representations. However, the mechanism for identifying ternary root-functions that are not max-root-functions, is yet to be investigated. Also, exploring the attributes of other ternary non-max-root-functions requires further study.

REFERENCES

- D. K. Das, D. Chowdhury, B. B. Bhattacharya, T. Sasao, "Inadmissible class of Boolean Functions under Stuck-at Faults," in *Proc., IEEE* 44th International Symposium on Multiple-Valued Logic (ISMVL 2014, 19-21 May), vol. 1, pp. 237-242, 2014.
- [2] M. E. R. Romero, E. M. Martins, and R. R. Santos, "Multiple-valued logic algebra for the synthesis of digital circuits," *In Proceedings*, 39th International Symposium on Multiple-Valued Logic, pp. 262-267, 2009.
- [3] B. B. Bhattacharya and B. Gupta, "On the impossible class of faulty-functions in logic networks under short circuit faults," *IEEE Trans. Comput.*, vol. C-35, no. 1, pp. 85-90, Jan. 1986.
- [4] G. Epstein, G. Frieder, and D. C. Rine, "The Development of Multiple-Valued Logic as Related to Computer Science," In D. C. Rine, editor, *Computer Science* and Multiple-Valued Logic: Theory and Applications, pages 81-101, North-Holland, Amsterdam, 1977.
- [5] T. Raju Damarla, "Fault detection in multiple-valued logic circuits," In Proceedings, Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.
- [6] Z. Kohavi, "Switching and Finite Automata Theory," *McGraw-Hill, Inc.*, 1970.
- [7] D. K. Das, S. Chakraborty and B. B. Bhattacharya, "Boolean algebraic properties of fault behavior in logic circuits," *In Proc., Int. Workshop on Boolean Problems*, pp. 143-150, Sept., 2000.
- [8] D. K. Das, S. Chakraborty, and B. B. Bhattacharya, "Interchangeable Boolean functions and their effects on redundancy in logic circuits," *In Proc., ASP-DAC*, pp. 469-474, 1998.
- [9] S. Maitra and E. Pasalic, "A Maiorana-McFarland type construction for resilient Boolean functions on *n*-variables (*n* even) with nonlinearity $> 2^{n-1} - 2^{n/2} + 2^{n/2-2}$," Discrete Applied Mathematics, 154(2): 357-369 (2006).
- [10] P. Sarkar and S. Maitra, "Construction of Nonlinear Resilient Boolean Functions using "Small" Affine Functions," *IEEE Transactions on Information Theory*, vol. 50, no. 9, pp. 2185-2193, 2004.
- [11] Damarla, T.R., "Fault detection in multiple valued logic circuits," In Proceedings, Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.
- [12] P. Tirumalai and J. T. Butler, "On the Realization of Multiple-valued Logic Functions Using CCD PLA's," *In Proc., IEEE International Symposium on Multiple-Valued Logic*, pp. 33-42, 1984.
- [13] S. Chakraborty, D. K. Das, B. B. Bhattacharya, "Logical Redundancies in Irredundant Combinational Circuits," *Journal of Electronic Testing : Theory and Applications*,4(2):125-130, May 1993.

	$x_1^0 = 0$	$x_1^1 = 1$	$x_1^2 = 2$					
$x_2^0 = 0$	000	100	200					
$x_2^1 = 1$	010	110	210					
$x_2^2 = 2$	020	120	220					
(a) $x_3^0 = 0$								
	$x_1^0 = 0$	$x_1^1 = 1$	$x_1^2 = 2$					
$x_2^0 = 0$	001	101	201					
$x_2^1 = 1$	011	111	211					
$x_2^2 = 2$	021	121	221					
(b) $x_3^1 = 1$								
	$x_1^0 = 0$	$x_1^1 = 1$	$x_1^2 = 2$					
$x_2^0 = 0$	002	102	202					
$x_2^1 = 1$	012	112	212					
$x_2^2 = 2$	022	222						
(c) $x_3^2 = 2$								

Fig. 13. Map-representation for 3-variable ternary function with variables (x_1, x_2, x_3) .

Appendix

$\begin{array}{c c} \text{Map-representation of } R_{(3,1)} = x^0 g_{(2,1)} \lor x^1 g_{(2,2)} \lor x \\ \hline \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \end{array} \qquad \qquad$	${}^{3}g_{(2,3)}$ 1 2 0 1 2 0 1 2 0 1 2
$\begin{array}{c c} \text{Map-representation of } R_{(3,2)} = x^0 g_{(2,1)} \lor x^1 g_{(2,3)} \lor x \\ \hline 1 & 2 & 0 \\ \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \end{array} \qquad \qquad$	${3 \atop {0 \atop {0 \atop {0 \atop {1 \atop {2 \atop {0 \atop {2 \atop {1 \atop {2 \atop {0 \atop {2 \atop {0 \atop {2 \atop {1 \atop {2 \atop {0 \atop {2 \atop {1 \atop {2 \atop {0 \atop {2 \atop {1 \atop {1$
$\begin{array}{c c} \text{Map-representation of } R_{(3,3)} = x^0 g_{(2,2)} \lor x^1 g_{(2,1)} \lor x \\ \hline \hline 2 & 0 & 1 \\ \hline 0 & 1 & 2 \\ \hline 1 & 2 & 0 \\ \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \\ \end{array}$	${\begin{array}{c cccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} \text{Map-representation of } R_{(3,4)} = x^0 g_{(2,2)} \lor x^1 g_{(2,3)} \lor x \\ \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \\ \hline 0 & 1 & 2 \end{array} \qquad \qquad$	${3 \atop {0} g_{(2,1)} \over {2 \atop {0} \atop {0} \atop {1} \atop {2} \atop {1} \atop {2} \atop {0} }}$
$\begin{array}{c c} \text{Map-representation of } R_{(3,5)} = x^0 g_{(2,3)} \lor x^1 g_{(2,1)} \lor x \\ \hline \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \\ \hline 0 & 1 & 2 \\ \hline 1 & 2 & 0 \\ \hline 1 & 2 & 0 \\ \hline \end{array}$	${3 \atop {0} {9(2,2)} \over 1 \ 2 \ 0 \ 1} {2 \atop {0} \ {1} \ {2} \ {0} \ {1} \ {2} \ {0} \ {1} \ {2} \ {0} \ {1} \ {1} \ {2} \ {0} \ {1} \ $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${3 \atop {0 \atop {0 \atop {1 \atop {2 \atop {1 \atop {2 \atop {0 \atop {1 \atop {1 \atop {2 \atop {1 \atop {2 \atop {1 \atop {2 \atop {1 \atop {1$
$\begin{array}{c cccc} \text{Map-representation of } R_{(3,7)} = x^0 g_{(2,4)} \lor x^1 g_{(2,5)} \lor x \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline \end{array}$	${3 \atop {0} g_{(2,6)} \over {2 \atop {0} \atop {0} \atop {2} \atop {1} \atop {0} \atop {2} }}$
$\begin{array}{c cccc} \text{Map-representation of } R_{(3,8)} = x^0 g_{(2,4)} \lor x^1 g_{(2,6)} \lor x \\ \hline \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \hline 1 & 0 & 2 \\ \hline \end{array}$	${}^{3}g_{(2,5)} \ {\scriptstyle 1 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ } \ $
$\begin{array}{c cccc} \text{Map-representation of } R_{(3,9)} = x^0 g_{(2,5)} \lor x^1 g_{(2,4)} \lor x \\ \hline \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline \end{array}$	${}^{3}g_{(2,6)} \ {\scriptstyle 1 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x^3g_{(2,4)}$ $egin{array}{c c} \hline 2 & 1 & 0 \ \hline 0 & 2 & 1 \ \hline 1 & 0 & 2 \ \hline \end{array}$
$\begin{array}{c c} \text{Map-representation of } R_{(3,11)} = x^0 g_{(2,6)} \lor x^1 g_{(2,4)} \lor \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 2 \\ \hline \\ \hline \\ 0 \\ \hline \\ 2 \\ \hline \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \\ \hline$	$x^3g_{(2,5)}$ $egin{array}{c c} 0 & 2 & 1 \ \hline 1 & 0 & 2 \ \hline 2 & 1 & 0 \ \end{array}$
$\begin{array}{c c} \text{Map-representation of } R_{(3,12)} = x^0 g_{(2,6)} \lor x^1 g_{(2,5)} \lor \\ \hline \\$	$\begin{array}{c cccc} x^3 g_{(2,4)} \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} x^3 g_{(2,9)} \\ \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \end{array}$

$\begin{array}{c c} \text{Map-representation of } R_{(3,14)} = x^0 g_{(2,7)} \lor x^1 g_{(2,9)} \lor \\ \hline \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \end{array}$	$x^3g_{(2,8)} \ {floorangle 1 \ 0 \ 2} \ {floorangle 2 \ 1 \ 0} \ {floorangle 0 \ 2 \ 1} \ {floorangle 0 \ 2 \ 2 \ 1} \ {floorangle 0 \ 2 \ 2 \ 1} \ {floorangle 0 \ 2 \ 2 \ 2 \ 1} \ {floorangle 0 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$
$\begin{array}{c cccc} \text{Map-representation of } R_{(3,15)} = x^0 g_{(2,8)} \lor x^1 g_{(2,7)} \lor \\ \hline \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \end{array} \qquad \qquad$	$x^3g_{(2,9)} \ {floor} \ {flo$
$ \begin{array}{c c} \text{Map-representation of } R_{(3,16)} = x^0 g_{(2,8)} \lor x^1 g_{(2,9)} \lor \\ \hline \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline \end{array} $	$x^3g_{(2,7)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c} \text{Map-representation of } R_{(3,17)} = x^0 g_{(2,9)} \lor x^1 g_{(2,7)} \lor \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \end{array}$	$x^3g_{(2,8)} \ {floorangle 0 \ 2 \ 1 \ 1 \ 0 \ 2 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
$\begin{array}{c c} \text{Map-representation of } R_{(3,18)} = x^0 g_{(2,9)} \lor x^1 g_{(2,8)} \lor \\ \hline \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline \end{array} \qquad \qquad$	$x^3g_{(2,7)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c cccc} \text{Map-representation of } R_{(3,19)} &= x^0 g_{(2,10)} \lor x^1 g_{(2,11)} \\ \hline \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \end{array} \qquad \qquad$	$igvee x^3 g_{(2,12)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c} \text{Map-representation of } R_{(3,20)} = x^0 g_{(2,10)} \lor x^1 g_{(2,12)} \\ \hline \hline 0 & 2 & 1 \\ \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline \end{array} \qquad \qquad$	$igvee x^3 g_{(2,11)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c} \text{Map representation of } R_{(3,21)} = x^0 g_{(2,11)} \lor x^1 g_{(2,10)} \\ \hline \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline \end{array}$	$igvee x^3 g_{(2,12)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c c} \text{Map-representation of } R_{(3,22)} = x^0 g_{(2,10)} \lor x^1 g_{(2,12)} \\ \hline 1 & 0 & 2 \\ \hline 2 & 2 & 1 \\ \hline 2 & 1 & 0 \\ \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline \end{array}$	$\begin{array}{c cccc} & & & & \\ & & & \\ \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline \end{array}$
$\begin{array}{c c} \text{Map-representation of } R_{(3,23)} = x^0 g_{(2,12)} \lor x^1 g_{(2,10)} \\ \hline \hline 1 & 0 & 2 \\ \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline 2 & 1 & 0 \\ \hline \end{array}$	$igvee x^3 g_{(2,11)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Map-representation of $R_{(3,24)} = x^0 g_{(2,12)} \vee x^1 g_{(2,11)} \vee x^3 g_{(2,10)}$											
	1	0	2		2	1	0		0	2	1
	0	2	1		1	0	2	1	2	1	0
	2	1	0		0	2	1	1	1	0	2