
On the Inadmissible Class of Multiple-Valued
Faulty-Functions under Stuck-at Faults

Debabani Chowdhury and Debesh K. Das
Computer Sc. & Engg. Dept.

Jadavpur University, Kolkata 700 032, India

Email: debabani.chowdhury@gmail.com;

debeshd@hotmail.com

Bhargab B. Bhattacharya
ACM Unit, Indian Statistical Institute

Kolkata 700 108, India

Email: bhargab.bhatta@gmail.com

Tsutomu Sasao
Dept. of Computer Science

Meiji University, Kawasaki

Kanagawa 214-8571, Japan

Email: sasao@cs.meiji.ac.jp

Abstract— There exists a class of Boolean functions, called root-
functions, which can never appear as faulty response in irredundant two-
level AND-OR combinational circuits even when any arbitrary multiple
stuck-at faults are injected. However, for multi-valued logic circuits, root-
functions are not yet well understood. In this work, we characterize
some of the multiple-valued root-functions in the context of irredundant
two-level AND-OR multiple-valued circuit realizations. As in the case of
binary logic, such a function can never appear as a faulty-function in the
presence of any stuck-at fault. We present here a preliminary study on
multiple-valued root-functions for ternary (3-valued) logic circuits, and
identify a class of n-variable ternary root-functions using a recursive
method called concatenation. Such an approach provides a generalized
mechanism for identifying a class of root-functions for other p-valued
(p > 3), n-variable, two-level AND-OR logic circuits. Furthermore,
we establish an important connection between root-functions and the
classical latin-square functions.
Index Terms- Latin-square functions, multiple-valued logic, stuck-at
faults, ternary functions, root-functions

I. INTRODUCTION AND PRELIMINARIES

In a recent work [1], it has been shown that there exists

a class of Boolean functions, called root-functions, which

never appear as faulty response when an arbitrary single or

multiple stuck-at faults are injected in an irredundant two-

level AND-OR circuit realization of a Boolean function. Root-

functions also play an important role in the characterization of

Impossible Class of Faulty-Functions (ICFF) [3] under various

test models. However, for multiple-valued functions, very little

is known about the existence of such root-functions.

The scope of switching algebra can be extended to the

domain D = {0, 1, ..., (p− 1)} of p discrete levels, p > 2,

to describe the behaviour of Multiple-Valued Logic (MVL)

circuits. We consider here single-output, two-level AND-OR

MVL circuits, and study the properties of multiple-valued root-

functions in such context. As in the case of binary logic, we

define MVL root-functions as those, which can not appear as

faulty-functions when an arbitrary single or multiple stuck-

at faults are injected in irredundant two-level AND-OR MVL

realizations of a multiple-valued function. Some preliminary

concept of ternary-valued root-functions, i.e. for p = 3, were

introduced in an earlier work [1]. Here, we explore, in-depth,

the underlying properties of root-functions for MVL and their

connections to another interesting class of functions known as

latin-square functions [12].

Note that for any multiple-valued logic function of n variables

with the domain D = {0, 1, ..., (p− 1)}, there are N = pn

possible input combinations, and the total number of possible

functions is pN . Thus, for the ternary domain where p = 3,

for n input variables, there are N = 3n possible input com-

binations and the total number of possible functions will be

3N . For example, when n = 2, there are 39 = 19683 possible

functions. Thus, there are at least pN different two-level AND-

OR circuits (some functions may have more than one two-

level irredundant realizations). Assume a two-level irredundant

AND-OR realization for each of these pN (N = pn) functions.

Now consider the presence of single or multiple faults in

the circuits. For each fault, there will be a corresponding

faulty-function (denoting the output function when the fault

is injected). The question is, whether there exists any function

that can never appear as a faulty-function for any possible

fault in any of the two-level realizations. If it exists, then

that function is a root-function. It is conjectured that there

would also exist several root-functions for multiple-valued

logic circuits as in the case of Boolean functions [1]. The

identification of some of these root-functions among the set

of all pN functions may help characterization of impossible

class of multiple-valued faulty-functions, as well. In this paper,

we show that there exists a multitude of MVL functions that

behave as root-functions and hence, establish that the earlier

conjecture [1] is indeed true.

Root-functions in the ternary domain D = {0, 1, 2} are named

as ternary root-functions. In this paper, we show that many

root-functions do exist in the context of two-level implemen-

tation of ternary logic as in the binary B = {0, 1} domain [1].

We also establish an interesting connection of ternary root-

functions with the classical ternary latin-square functions [12]

and show that the latter set is a subset of the set of former

type.

In order to facilitate the identification of ternary root-functions,

we propose a recursive procedure called concatenation that

allows us to construct an n-variable ternary root-function from

three (n − 1)-variable ternary root-functions. We generalize

the method of concatenation in connection to root-functions to

make it suitable for the Boolean, ternary, or for other higher p-

valued functions, i.e., where D = {0, 1, 2, ..., (p− 1)}, p ≥ 2.

We show that an n-variable Boolean (ternary) function can be

2016 IEEE 46th International Symposium on Multiple-Valued Logic

0195-623X/16 $31.00 © 2016 IEEE

DOI 10.1109/ISMVL.2016.55

276

constructed from two (three) (n−1)-variable Boolean (ternary)

functions. We generate all 2-variable and 3-variable ternary

latin-square functions [12], that are ternary root-functions, as

well; also each of them is a max-root-function, i.e., it includes

the maximum number of product terms in its minimal sum-

of-product expression.

II. BACKGROUND

Let X = {x1, x2, ..., xn} be a set of n-variables, where xi

takes on values from D = {0, 1, ..., p− 1}. A function F (X)
is a mapping F : Dn → D. Specifically, F (X) is said to be an

n-variable p-valued function. For p = 3, function F (X) is said

to be a ternary function. A function value F (x) corresponding

to a specific assignment of values x to variables in X is called

a minterm.

Example 1: Fig. 1 shows an example of a 2-variable ternary

function F (x, y) having three minterms with value 1 and five

minterms with value 2.
y0 = 0 y1 = 1 y2 = 2

x0 = 0 2 1 2

x1 = 1 1 2 0

x2 = 2 2 2 1

Fig. 1. An example of a 2-variable ternary function F (x, y) in its map-
representation

Definition 1: The unary operator on the p-valued variable x,

called a literal, is denoted by xb = p−1 when x = b, otherwise

0.

Definition 2: Max operator (∨) returns the maximum of its

two operands. Let a and b be two operands; then max function

a ∨ b = max(a, b).
Definition 3: Min operator (.) returns the minimum of its two

operands. Let a and b be two operands; then min function

a ∧ b = (a.b) = min(a, b).
Definition 4: A sum-of-product expression for function F (X)
is minimal if there is no other expression for F (X) with fewer

product terms or literals.

The minimal sum-of-product expression for a 2-variable

ternary function F in Fig. 1 is F (x, y) = (1.x0.y1) ∨
(1.x1.y0) ∨ (1.x2.y2) ∨ (x0.y2) ∨ (x1.y1) ∨ (x2.y0).
Definition 5: Stuck-at-fault (s-a-f) [5]: A line hi in a network

is said to be stuck-at-q if a fixed logic value q set at this

line, models the effect of the fault at the circuit output, where

q ∈ {0, 1, · · · , p− 1}. This fault is denoted by hi/q. Clearly,

in a circuit with k lines, there are (p+1)k − 1 possible faults

in the network.

Definition 6: [13] A combinational circuit is said to be irre-

dundant if all stuck-at faults, single or multiple, are detectable

by input-output experiments.

Definition 7: [7]: A Boolean root-function is a logic function

that can never appear as a faulty response in any irredundant

two-level AND-OR logic circuit in the presence of any arbi-

trary (single or multiple) stuck-at faults.

Example 2: Fig. 2 shows an example of 4-variable Boolean

root-function f with true vectors (0000,0111,1100,1001,1010).

With respect to stuck-at faults, the root-functions for multiple-

valued logic is defined as follows.

Definition 8: A root-function in multiple-valued logic is a

function that can never appear as a faulty response in any

irredundant two-level multiple-valued AND-OR circuit in the

presence of any arbitrary (single or multiple) stuck-at faults.

x
′
3.x
′
4 = 00 x

′
3.x4 = 01 x3.x4 = 11 x3.x

′
4 = 10

x
′
1.x
′
2 = 00 1 0 0 0

x
′
1.x2 = 01 0 0 1 0

x1.x2 = 11 1 0 0 0

x1.x
′
2 = 10 0 1 0 1

Fig. 2. 4-variable Boolean root-function f(x1, x2, x3, x4) in its map-
representation with five true minterms

Definition 9: The Boolean root-functions that contain the

maximum number of true minterms are called max-root-

functions.

Example 3: Fig. 3 shows an example of a 3-variable Boolean

max-root-function M(x1, x2, x3) with maximum (four) num-

ber of true minterms.

x
′
2.x
′
3 = 00 x

′
2.x3 = 01 x2.x3 = 11 x2.x

′
3 = 10

x
′
1 = 0 1 0 1 0

x1 = 1 0 1 0 1

Fig. 3. 3-variable Boolean max-root-function M(x1, x2, x3) in its map-
representation with maximum (four) number of true minterms

Obviously, a max-root-function contains maximum number of

product terms in their minimal sum of-products expression.

In this light, we can define the max-root-functions for ternary

logic as follows.

Definition 10: An n-variable ternary root-function that has the

maximum number of product terms in their minimal sum-of-

products expression is a ternary max-root-function.

Example 4: Fig. 4 shows 2-variable ternary max-root-function

H(x, y) with maximum (six) number of product terms.

y0 = 0 y1 = 1 y2 = 2

x0 = 0 0 1 2

x1 = 1 1 2 0

x2 = 2 2 0 1

Fig. 4. An example of a 2-variable ternary max-root-function H(x, y) in its
map-representation

Definition 11: [12] A permuter functions P (x) of a p-valued

variable x is a function such that for no two distinct values

of x, the function assumes the same value.

Definition 12: [12] A latin-square function f(x1, x2, ..., xn)
is a function that satisfies the following property:

∀i = 0, 1, · · · , n, f(a1, a2, ..., ai−1, xi, ai+1, ..., an) = g(xi)
is a permuter function on xi for any assign-

ment of values (a1, a2, ..., ai−1, ai+1, ..., an) to

(x1, x2, ..., xi−1, ..., xi+1, ..., xn).
Example 5: Fig. 4 shows an example of a 2-variable ternary

latin-square function H(x, y) in its map-representation.

III. METHOD OF CONCATENATION IN BINARY LOGIC

The concatenation operation on Boolean functions can be

used recursively to construct new functions with a larger

number of variables [9], [10]. The method of concatenation

was used earlier for the construction of resilient Boolean

functions in a different context [9], [10]. In fact, for binary

logic, an n-variable (for even n) Maiorana-McFarland type of

bent function can be constructed by concatenating 2
n
2 distinct

affine functions on n
2 variables. Later, such ideas were used

to construct Boolean functions with versatile cryptographic

properties [9], [10]. For an illustration of this method, let us

277

consider two (n− 1)-variable Boolean functions, g, h. For an

instance, an n-variable Boolean function f1 can be generated

from g, h by appending 0 with every true vector of g and

appending 1 with every true vector of h, and then selecting

those appended vectors as true vectors of f1. Again another

n-variable Boolean function f2 can be generated from g, h
by appending 1 with every true vector of g and appending 0
with every true vector of h, and then selecting those appended

vectors as true vectors of f2. Thus, the concatenation between

g and h can be expressed as: f1 = x
′
ng∨xnh, f2 = x

′
nh∨xng.

We use this concatenation technique to construct larger root-

functions from basic root-functions as follows.

Procedure Root-through-Concatenate(n)
1. Consider two root-functions R1 and R2 of (n−1)-variables

(xn−1, xn−2, ..., x2, x1) where R1 ∩R2 = ∅.

2. Append xn with each of R1 and R2 with values 0(1) and

1(0) respectively to construct functions f1(f2) of n-variables.

Let appended xn with 0(1) be represented as x0
n(x

1
n). Then,

f1 = x0
nR1 ∨ x1

nR2 and f2 = x1
nR1 ∨ x0

nR2.

Example 6: Figures 5(a) and 5(b) show 3-variable Boolean

root-functions g and h with true vectors 000, 111 and 001, 110
in their map-representations, respectively. The function f1 can

be generated from g and h by the method of concatenation by

appending 0 with every true vector of g as shown in Fig. 6,

and that obtained by appending 1 with every true vector of h
is shown in Fig. 7. The root-function obtained in this manner

for n = 4 is shown in Fig. 5(c).

1 0 0 0

0 0 1 0

(a) g(000, 111)

0 1 0 0

0 0 0 1

(b) h(001, 110)

1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0

(c)
f1(0000, 0011, 1101, 1110)

Fig. 5. 4-variable Boolean root-functions f1 generated by concatenation

between two 3-variable root-functions g and h, where f1 = x
′
ng ∨ xnh

vectors of g vectors of g vectors in g vectors in f1
before after with values with values

appending 0 appending 0
000 0000 g(000) = 1 f1(0000) = 1
001 0010 g(001) = 0 f1(0010) = 0
011 0110 g(011) = 0 f1(0110) = 0
010 0100 g(010) = 0 f1(0100) = 0
100 1000 g(100) = 0 f1(1000) = 0
101 1010 g(101) = 0 f1(1010) = 0
111 1110 g(111) = 1 f1(1110) = 1
110 1100 g(110) = 0 f1(1100) = 0

Fig. 6. Vectors in f1 with values produced from true vectors in g

vectors of h vectors of h vectors in h vectors in f2
before after with values with values

appending 1 appending 1
000 0001 h(000) = 0 f1(0001) = 0
001 0011 h(001) = 1 f1(0011) = 1
011 0111 h(011) = 0 f1(0111) = 0
010 0101 h(010) = 0 f1(0101) = 0
100 1001 h(100) = 0 f1(1001) = 0
101 1011 h(101) = 0 f1(1011) = 0
111 1111 h(111) = 0 f1(1111) = 0
110 1101 h(110) = 1 f1(1101) = 1

Fig. 7. vectors in f1 with values produced from vectors in h

IV. ROOT-FUNCTIONS IN TERNARY LOGIC

We adopt the concatenation technique to produce ternary

root-functions. The method is also applicable for a general

multiple-valued logic system with a slight modification. Here,

we identify only those root-functions that satisfy the conditions

for being max-root as well as latin-square.

A. 1-Variable Ternary Root-Functions
The total number of 1-variable ternary logic functions is 33

1

= 27. Among them, we show functions g(1,1), g(1,2), g(1,3),
g(1,4), g(1,5), g(1,6), g(1,7), g(1,8), g(1,9) in Fig. 8; each of these

nine functions is also a root-function.
0 1 2

(a) g(1,1)
1 2 0

(b) g(1,2)
2 0 1

(c) g(1,3)
0 2 1

(d) g(1,4)
1 0 2

(e) g(1,5)

2 1 0

(f) g(1,6)
1 2 2

(g) g(1,7)
2 1 2

(h) g(1,8)
2 2 1

(i) g(1,9)
Fig. 8. All 1-variable ternary root-functions g(1,1), g(1,2), g(1,3), g(1,4),
g(1,5), g(1,6), g(1,7), g(1,8), g(1,9) in their map- representation

All 1-variable ternary constant functions f000 = 0, f111 = 1
and f222 = 2 are reachable from these nine functions. Besides

that, table 1 shows all other faulty-functions reachable from

these nine functions. Thus, all other functions are reachable

from these nine functions when suitable stuck-at faults are

injected in their two-level irredundant AND-OR MVL circuit

realization. It can be also shown that none of these nine func-

tions are reachable from any function under a faulty-condition.

Hence, these nine functions are root-functions. Moreover, each

of these functions has two product terms in their minimal sum-

of-product expression. For n = 1, the number of maximum

product terms in minimal sum-of-product expression of a

ternary function is also two. Thus, for n = 1, there does

not exist any other root-function other than the max-root-

functions. Among these nine functions, six functions g(1,1),
g(1,2), g(1,3), g(1,4), g(1,5), g(1,6) are latin-square functions.

Root-Functions (R) Faulty-Functions Reachable From Corresponding R

0 1 2 0 0 2 1 1 2 1 1 0 0 1 0

0 2 1 0 2 0 1 2 1 1 0 1 0 0 1

1 0 2 0 0 2 1 1 2 1 1 0 0 0 0

1 2 0 0 2 0 1 2 1 1 0 1 1 0 0

2 0 1 2 0 0 2 1 1 0 1 1 0 0 1

2 1 0 2 0 0 2 1 1 0 1 1 0 1 0

1 2 2 2 0 0 2 1 1 0 2 2 1 0 0

2 1 2 0 2 0 1 2 1 2 0 2 0 1 0

2 2 1 0 0 2 1 1 2 2 2 0 0 0 1

TABLE I
REACHABILITY FROM 1-VARIABLE ROOT-FUNCTIONS TO FAULTY-FUNCTIONS

B. Construction of Root-Function in Ternary Logic
We use the concatenation procedure to construct root-functions

when n > 1. In binary logic, two binary root-functions

are required for every concatenation. In the case of ternary

logic, three ternary max-root-functions are required for every

concatenation. In general, for p-valued logic, p different logic

functions are required for every concatenation.

For an illustration, let g(n−1,1), g(n−1,2), g(n−1,3) be three

(n− 1)-variable ternary functions. Now, an n-variable ternary

function f(n,1) can be generated by appending 0 with every

true vector of g(n−1,1), and appending 1 with every true

vector of g(n−1,2) and similarly, by appending 2 with ev-

ery true vector of g(n−1,3), and finally, by selecting those

appended vectors as vectors of f(n,1) with the same value

278

as in g(n−1,1), g(n−1,2) and g(n−1,3). Such a concatenation

operation with g(n−1,1), g(n−1,2) and g(n−1,3) is denoted by

f(n,1) = x0g(n−1,1)∨x1g(n−1,2)∨x2g(n−1,3). In ternary logic,

three (n − 1)-variable ternary root-functions are required for

performing concatenation. A set of such triple functions is

called a concatenable triplet.
Definition 13: The concatenable triplet is formed by three

distinct ternary latin-square functions {g(n−1,1), g(n−1,2),

g(n−1,3)}, where for every (n − 1)-variable minterm x,

g(n−1,i)(x) ∩ g(n−1,j)(x) = ∅ for ∀ (i, j), 1 ≤ (i, j) ≤ 3
and i
= j.

The number of n-variable ternary functions that can be gener-

ated from each concatenable triplet is 3! = 6. For example, a

concatenable triplet {g(n−1,1), g(n−1,2), g(n−1,3)} can generate

six functions f(n,1), f(n,2), f(n,3), f(n,4), f(n,5), f(n,6) as given

below:

f(n,1) = x0g(n−1,1) ∨ x1g(n−1,2) ∨ x2g(n−1,3)

f(n,2) = x0g(n−1,1) ∨ x2g(n−1,2) ∨ x1g(n−1,3)

f(n,3) = x1g(n−1,1) ∨ x0g(n−1,2) ∨ x2g(n−1,3)

f(n,4) = x1g(n−1,1) ∨ x2g(n−1,2) ∨ x0g(n−1,3)

f(n,5) = x2g(n−1,1) ∨ x0g(n−1,2) ∨ x1g(n−1,3)

f(n,6) = x2g(n−1,1) ∨ x1g(n−1,2) ∨ x0g(n−1,3).

C. Concatenation Procedure for Ternary Logic
Procedure 1: Multi-valued-root(number of variables n)
1. Identify the set of all concatenable triplets for (n − 1)-
variable (xn−1, xn−2, ..., x1).
2. For each triplet {g(n − 1, 1), g(n − 1, 2), g(n − 1, 3)}, do

the following:

3. Consider a triplet {g(n−1,1), g(n−1,2), g(n−1,3)}. Execute

Step 4 for each possible combination of {pi, pj , pk} where

pi, pj , pk ∈ {0, 1, 2} and pi
= pj
= pk.

4. Append xn with each of {g(n−1,1), g(n−1,2), g(n−1,3)} with

values pi, pj , pk, respectively and construct the function f(n).
Let xn appended with pi be denoted as xpi

n . Hence, fn =
xpi
n g(n−1,1)∨xpj

n g(n−1,2)∨xpk
n g(n−1,3), which is an n-variable

ternary root-function.

5. return.

Procedure 2: Generate-root(number of variables n)
1. for (variable = 2; variable ≤ n; variable++)

Call Procedure 1 Multi-valued-root(variable).

2. end.
D. 2-Variable Ternary Root-Function

1) Generation of All 2-variable Ternary Latin-Square Max-
root-Functions: Starting from the set of 1-variable ternary

latin-square functions, we construct 2-variable ternary root-

functions as follows. We know that there are six ternary 1-

variable latin-square max-root-functions g(1,1), g(1,2), g(1,3),
g(1,4), g(1,5), g(1,6) shown in Fig. 8. We find two concatenable

triplets {g(1,1), g(1,2), g(1,3)} and {g(1,4), g(1,5), g(1,6)} where

each of concatenable triplet can generate 3! = 6 different 2-

variable ternary latin-square max-root-functions. Thus, a total

of twelve 2-variable ternary latin-square max-root-functions

can be constructed.

Example 7 : Let us choose {g(1,1), g(1,2), g(1,3)} as a

concatenable triplet. Function g(2,1) is 2-variable ternary root-

function generated from {g(1,1), g(1,2), g(1,3)}, i.e. g(2,1) =

x0g(1,1) ∨ x1g(1,2) ∨ x2g(1,3) where 10, 01, 22 are 1-valued

vectors, 20, 11, 02 are 2-valued vectors and 00, 21, 12 are

0-valued vectors. Fig. 9, Fig. 10, and Fig. 11 illustrate the

method for generating vectors of g(2,1) from vectors of g(1,1),
g(1,2) and g(1,3), respectively, by appending 0 with vectors of

g(1,1), appending 1 with vectors of g(1,2) and appending 2

with vectors of g(1,3). Notice that g(1,1) is also a latin-square

function. Similary, other 2-variable ternary latin-square max-

root-functions can be generated from 1-variable latin-square

max-root-functions g(1,1), g(1,2), g(1,3), g(1,4), g(1,5), g(1,6) as

in Fig. 8 by the method of concatenation:

g(2,2) = x0g(1,3) ∨ x1g(1,1) ∨ x2g(1,2)

g(2,3) = x0g(1,2) ∨ x1g(1,3) ∨ x2g(1,1)

g(2,4) = x0g(1,1) ∨ x1g(1,3) ∨ x2g(1,2)

g(2,5) = x0g(1,2) ∨ x1g(1,1) ∨ x2g(1,3)

g(2,6) = x0g(1,3) ∨ x1g(1,2) ∨ x2g(1,1)

g(2,7) = x0g(1,4) ∨ x1g(1,5) ∨ x2g(1,6)

g(2,8) = x0g(1,6) ∨ x1g(1,4) ∨ x2g(1,5)

g(2,9) = x0g(1,5) ∨ x1g(1,6) ∨ x2g(1,4)

g(2,10) = x0g(1,4) ∨ x1g(1,6) ∨ x2g(1,5)

g(2,11) = x0g(1,5) ∨ x1g(1,4) ∨ x2g(1,6)

g(2,12) = x0g(1,6) ∨ x1g(1,5) ∨ x2g(1,4).

These functions are shown in Fig. 12.

Vectors of g
′
1 Vectors of g

′
1 Vectors in g

′
1 Vectors in g1

before after with values with values
appending 0 appending 0

0 00 g
′
1(0) = 0 g1(00) = 0

1 10 g
′
1(1) = 1 g1(10) = 1

2 20 g
′
1(2) = 2 g1(20) = 2

Fig. 9. Vectors in g1 with values produced from vectors in g
′
1

Vectors of g
′
2 Vectors of g

′
2 Vectors in g

′
2 Vectors in g1

before after with values with values
appending 1 appending 1

0 01 g
′
2(0) = 1 g1(01) = 1

1 11 g
′
2(1) = 2 g1(11) = 2

2 21 g
′
2(2) = 0 g1(21) = 0

Fig. 10. Vectors in g1 with values produced from vectors in g
′
2

Vectors of g
′
3 Vectors of g

′
3 Vectors in g

′
3 Vectors in g1

before after with values with values
appending 2 appending 2

0 01 g
′
3(0) = 2 g1(02) = 2

1 11 g
′
3(1) = 0 g1(12) = 0

2 21 g
′
3(2) = 1 g1(22) = 1

Fig. 11. Vectors in g1 with values produced from vectors in g
′
3

y0 = 0 y1 = 1 y2 = 2

x0 = 0 00 01 02

x1 = 1 10 11 12

x2 = 2 20 21 22

(a) Map-representation of 2-variable
ternary function

0 1 2

1 2 0

2 0 1

(b) g(2,1)

2 0 1

0 1 2

1 2 0

(c) g(2,2)

1 2 0

2 0 1

0 1 2

(d) g(2,3)

0 2 1

1 0 2

2 1 0

(e) g(2,4)

1 0 2

2 1 0

0 2 1

(f) g(2,5)

2 1 0

0 2 1

1 0 2

(g) g(2,6)

0 1 2

2 0 1

1 2 0

(h) g(2,7)

2 0 1

1 2 0

0 1 2

(i) g(2,8)

1 2 0

0 1 2

2 0 1

(j) g(2,9)

0 2 1

2 1 0

1 0 2

(k) g(2,10)

1 0 2

0 2 1

2 1 0

(l) g(2,11)

2 1 0

1 0 2

0 2 1

(m) g(2,12)
Fig. 12. All 2-variable ternary latin-square max-root-functions

The total number of 2-variable ternary logic functions is 33
2

= 19683. Among them, we could construct only twelve root-

functions by the method of concatenation. These functions are

279

latin-square functions as well [12]. Moreover, these twelve

functions satisfy the properties of max-root-functions, where

number of product terms is maximum, i.e. 6 = (2.3n−1, n = 2)
[12].

E. 3-Variable Ternary Root-Function
From Fig. 12, notice that the number of 2-

variable concatenable triplets is four, and these

triplets are {g(2,1), g(2,2), g(2,3)}, {g(2,4), g(2,5), g(2,6)},
{g(2,7), g(2,8), g(2,9)}, {g(2,10), g(2,11), g(2,12)}. From each

of this triplet, we obtain 3! = 6 different 3-variable ternary

max-root-functions. Hence, the number of 3-variable ternary

latin-square max-root-functions generated by concatenation

is 24. The total number of 3-variable ternary logic functions

is 33
3

. Among them, we could identify only these 24

functions as root-functions. Again for each of them, the

number of product terms are 2.3n−1, n = 3. Hence, all

of these are ternary 3-variable max-root-functions. Fig. 13

shows the map-representation for 3-variable ternary functions.

All 3-variable ternary latin-square max-root-functions

R(3,1), R(3,2), ..., R(3,24) have been identified and shown in

Appendix.

F. Number of Latin-square Max-root-Functions

In ternary logic, we have 6, 12, or 24 latin-square, max-

root-functions for 1-variable, 2-variable, or for 3-variable,

respectively. In ternary, the number of n-variable latin-square

max-root-functions = 2 × number of (n − 1)-variable latin-

square max-root-functions.

G. Number of Product Terms in Max-Root-Functions

For each 1-variable or 2-variable ternary max-root-function,

the number of product terms in its minimal sum-of-products

expression is 3 and 6, respectively. All max-root-functions

have the maximum number of product terms in their minimal

sum-of-product expressions. For n-variable ternary max-root-

functions, the number of product terms will be equal to

2.3n−1. In general, for p-valued system, an n-variable max-

root-function will have (p−1).pn−1 number of product terms

in its minimal sum-of-product expression.

H. Relation Among Root, Max-Root, and Latin-Square Func-
tions
We have observed earlier that all max-root-functions con-

structed by the concatenation method are also latin-square

functions. The question is: Whether there exists any other

max-root-functions, which are not latin-square functions. For

n = 1, we have seen that there are nine max-root-functions

among which three (g(1,7), g(1,8) and g(1,9) in Fig. 8) are not

latin-square functions. Therefore, in general, the set of latin-

square functions is a subset of the set of max-root-functions.

However, for n = 2 and 3, we could not identify any max-root-

function that is not a latin-square function. Nevertheless, we

believe such functions indeed exist. Also, for n = 1, we have

identified nine root-functions, and all of them are max-root-

functions. In binary logic, for n = 1 and 2, every root-function

is a max-root-function. Note that in binary logic, for n > 2,

there exist root-functions, which are not max-root-functions.

Fig. 2 shows an example of a 4-variable root-function, which

is not a max-root-function. Unfortunately, in ternary logic, we

could not construct any such root-function for n = 2 or 3. We,

however, believe that such functions do exist. This discussion

leads to the following observation.

Observation: For any n, SL ⊂ SM ⊂ SR where SL, SM and

SR denote the set of all ternary latin-square functions, ternary

max-root-functions, and ternary root-functions, respectively.

V. CONCLUSION

We have identified a few multiple-valued root-functions and

studied some of their attributes. Some special root-functions

are classified as being max-root, and a subset of the lat-

ter consists of as latin-square functions. We have described

a concatenation-based procedure for constructing n-variable

latin-square functions recursively from (n− 1)-variable func-

tions for multiple-valued logic. We have identified all 1-

variable ternary max-root-functions, and among them, six are

observed to be latin-square functions. We have also identi-

fied all ternary 2- and 3-variable latin-square functions by

the method of concatenation. We noticed that such ternary

latin-square functions exhibit certain regular patterns in their

map-representations. However, the mechanism for identifying

ternary root-functions that are not max-root-functions, is yet to

be investigated. Also, exploring the attributes of other ternary

non-max-root-functions requires further study.

REFERENCES

[1] D. K. Das, D. Chowdhury, B. B. Bhattacharya, T. Sasao, “Inadmissible class
of Boolean Functions under Stuck-at Faults,” in Proc., IEEE 44th International
Symposium on Multiple-Valued Logic (ISMVL 2014, 19-21 May), vol. 1, pp. 237-
242, 2014.

[2] M. E. R. Romero, E. M. Martins, and R. R. Santos, “Multiple-valued logic algebra
for the synthesis of digital circuits,” In Proceedings, 39th International Symposium
on Multiple-Valued Logic, pp. 262-267, 2009.

[3] B. B. Bhattacharya and B. Gupta, “On the impossible class of faulty-functions in
logic networks under short circuit faults,” IEEE Trans. Comput., vol. C-35, no. 1, pp.
85-90, Jan. 1986.

[4] G. Epstein, G. Frieder, and D. C. Rine, “The Development of Multiple-Valued
Logic as Related to Computer Science,” In D. C. Rine, editor, Computer Science
and Multiple-Valued Logic: Theory and Applications, pages 81-101, North-Holland,
Amsterdam, 1977.

[5] T. Raju Damarla, “Fault detection in multiple-valued logic circuits,” In Proceedings,
Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.

[6] Z. Kohavi, “Switching and Finite Automata Theory,” McGraw-Hill, Inc., 1970.

[7] D. K. Das, S. Chakraborty and B. B. Bhattacharya, “Boolean algebraic properties
of fault behavior in logic circuits,” In Proc., Int. Workshop on Boolean Problems, pp.
143-150, Sept., 2000.

[8] D. K. Das, S. Chakraborty, and B. B. Bhattacharya, “Interchangeable Boolean
functions and their effects on redundancy in logic circuits,” In Proc., ASP-DAC,
pp. 469-474, 1998.

[9] S. Maitra and E. Pasalic, “A Maiorana-McFarland type construction for resilient

Boolean functions on n-variables (n even) with nonlinearity > 2n−1 − 2n/2 +
2n/2−2,” Discrete Applied Mathematics, 154(2): 357-369 (2006).

[10] P. Sarkar and S. Maitra, “Construction of Nonlinear Resilient Boolean Functions
using ”Small” Affine Functions,” IEEE Transactions on Information Theory, vol. 50,
no. 9, pp. 2185-2193, 2004.

[11] Damarla, T.R., “Fault detection in multiple valued logic circuits,” In Proceedings,
Twentieth International Symposium on Multiple-Valued Logic, pp. 69-74, 1990.

[12] P. Tirumalai and J. T. Butler, “On the Realization of Multiple-valued Logic
Functions Using CCD PLA’s,” In Proc., IEEE International Symposium on Multiple-
Valued Logic, pp. 33-42, 1984.

[13] S. Chakraborty, D. K. Das, B. B. Bhattacharya, “Logical Redundancies in Ir-

redundant Combinational Circuits,” Journal of Electronic Testing : Theory and
Applications,4(2):125-130, May 1993.

280

x0
1 = 0 x1

1 = 1 x2
1 = 2

x0
2 = 0 000 100 200

x1
2 = 1 010 110 210

x2
2 = 2 020 120 220

(a) x0
3 = 0

x0
1 = 0 x1

1 = 1 x2
1 = 2

x0
2 = 0 001 101 201

x1
2 = 1 011 111 211

x2
2 = 2 021 121 221

(b) x1
3 = 1

x0
1 = 0 x1

1 = 1 x2
1 = 2

x0
2 = 0 002 102 202

x1
2 = 1 012 112 212

x2
2 = 2 022 122 222

(c) x2
3 = 2

Fig. 13. Map-representation for 3-variable ternary function with variables
(x1, x2, x3).

Appendix

Map-representation of R(3,1) = x0g(2,1) ∨ x1g(2,2) ∨ x3g(2,3)
0 1 2

1 2 0

2 0 1

2 0 1

0 1 2

1 2 0

1 2 0

2 0 1

0 1 2

Map-representation of R(3,2) = x0g(2,1) ∨ x1g(2,3) ∨ x3g(2,2)
0 1 2

1 2 0

2 0 1

1 2 0

2 0 1

0 1 2

2 0 1

0 1 2

1 2 0

Map-representation of R(3,3) = x0g(2,2) ∨ x1g(2,1) ∨ x3g(2,3)
2 0 1

0 1 2

1 2 0

0 1 2

1 2 0

2 0 1

1 2 0

2 0 1

0 1 2

Map-representation of R(3,4) = x0g(2,2) ∨ x1g(2,3) ∨ x3g(2,1)
1 2 0

2 0 1

0 1 2

0 1 2

1 2 0

2 0 1

2 0 1

0 1 2

1 2 0

Map-representation of R(3,5) = x0g(2,3) ∨ x1g(2,1) ∨ x3g(2,2)
1 2 0

2 0 1

0 1 2

2 0 1

0 1 2

1 2 0

0 1 2

1 2 0

2 0 1

Map representation of R(3,6) = x0g(2,3) ∨ x1g(2,2) ∨ x3g(2,1)
2 0 1

0 1 2

1 2 0

1 2 0

2 0 1

0 1 2

0 1 2

1 2 0

2 0 1

Map-representation of R(3,7) = x0g(2,4) ∨ x1g(2,5) ∨ x3g(2,6)
0 2 1

1 0 2

2 1 0

1 0 2

2 1 0

0 2 1

2 1 0

0 2 1

1 0 2

Map-representation of R(3,8) = x0g(2,4) ∨ x1g(2,6) ∨ x3g(2,5)
0 2 1

1 0 2

2 1 0

2 1 0

0 2 1

1 0 2

1 0 2

2 1 0

0 2 1

Map-representation of R(3,9) = x0g(2,5) ∨ x1g(2,4) ∨ x3g(2,6)
2 1 0

0 2 1

1 0 2

0 2 1

1 0 2

2 1 0

1 0 2

2 1 0

0 2 1

Map-representation of R(3,10) = x0g(2,5) ∨ x1g(2,6) ∨ x3g(2,4)
1 0 2

2 1 0

0 2 1

0 2 1

1 0 2

2 1 0

2 1 0

0 2 1

1 0 2

Map-representation of R(3,11) = x0g(2,6) ∨ x1g(2,4) ∨ x3g(2,5)
1 0 2

2 1 0

0 2 1

2 1 0

0 2 1

1 0 2

0 2 1

1 0 2

2 1 0

Map-representation of R(3,12) = x0g(2,6) ∨ x1g(2,5) ∨ x3g(2,4)
2 1 0

0 2 1

1 0 2

1 0 2

2 1 0

0 2 1

0 2 1

1 0 2

2 1 0

Map-representation of R(3,13) = x0g(2,7) ∨ x1g(2,8) ∨ x3g(2,9)
0 2 1

1 0 2

2 1 0

1 0 2

2 1 0

0 2 1

2 1 0

0 2 1

1 0 2

Map-representation of R(3,14) = x0g(2,7) ∨ x1g(2,9) ∨ x3g(2,8)
0 2 1

1 0 2

2 1 0

2 1 0

0 2 1

1 0 2

1 0 2

2 1 0

0 2 1

Map-representation of R(3,15) = x0g(2,8) ∨ x1g(2,7) ∨ x3g(2,9)
2 1 0

0 2 1

1 0 2

0 2 1

1 0 2

2 1 0

1 0 2

2 1 0

0 2 1

Map-representation of R(3,16) = x0g(2,8) ∨ x1g(2,9) ∨ x3g(2,7)
1 0 2

2 1 0

0 2 1

0 2 1

1 0 2

2 1 0

2 1 0

0 2 1

1 0 2

Map-representation of R(3,17) = x0g(2,9) ∨ x1g(2,7) ∨ x3g(2,8)
1 0 2

2 1 0

0 2 1

2 1 0

0 2 1

1 0 2

0 2 1

1 0 2

2 1 0

Map-representation of R(3,18) = x0g(2,9) ∨ x1g(2,8) ∨ x3g(2,7)
2 1 0

0 2 1

1 0 2

1 0 2

2 1 0

0 2 1

0 2 1

1 0 2

2 1 0

Map-representation of R(3,19) = x0g(2,10) ∨ x1g(2,11) ∨ x3g(2,12)
0 2 1

2 1 0

1 0 2

1 0 2

0 2 1

2 1 0

2 1 0

1 0 2

0 2 1

Map-representation of R(3,20) = x0g(2,10) ∨ x1g(2,12) ∨ x3g(2,11)
0 2 1

2 1 0

1 0 2

2 1 0

1 0 2

0 2 1

1 0 2

0 2 1

2 1 0

Map representation of R(3,21) = x0g(2,11) ∨ x1g(2,10) ∨ x3g(2,12)
2 1 0

1 0 2

0 2 1

0 2 1

2 1 0

1 0 2

1 0 2

0 2 1

2 1 0

Map-representation of R(3,22) = x0g(2,10) ∨ x1g(2,12) ∨ x3g(2,10)
1 0 2

0 2 1

2 1 0

0 2 1

2 1 0

1 0 2

2 1 0

1 0 2

0 2 1

Map-representation of R(3,23) = x0g(2,12) ∨ x1g(2,10) ∨ x3g(2,11)
2 1 0

1 0 2

0 2 1

1 0 2

0 2 1

2 1 0

0 2 1

2 1 0

1 0 2

Map-representation of R(3,24) = x0g(2,12) ∨ x1g(2,11) ∨ x3g(2,10)
1 0 2

0 2 1

2 1 0

2 1 0

1 0 2

0 2 1

0 2 1

2 1 0

1 0 2

281

