
A Reduction Method for the Number of Variables to Represent Index Generation
Functions: s-Min Method

Tsutomu Sasao

Dept. of Computer Science, Meiji University
Kawasaki, Kanagawa 214-8571, Japan

Abstract—Most n-variable incompletely specified index gen-
eration functions with weight k can be represented by fewer
variables than n when k � 2n. Furthermore, with a linear
decomposition, the function can be represented by still fewer
variables. In this paper, we propose an iterative improvement
method, called the s-Min method, to reduce the number of
variables.

Keywords-incompletely specified function, index generation
function, functional decomposition, linear transformation, iter-
ative improvement.

I. INTRODUCTION

Index generation functions [3], [4] are useful for computer

virus scanners and the routing of packets across the internet.

In these applications, functions must be updated frequently.

Thus, index generation functions are often implemented by

memory.

To reduce the total cost of realizing index generation

functions, the linear decomposition shown in Fig. 1.1 is

effective [6]. In Fig. 1.1, L realizes a linear function, while

G realizes a general function. L is implemented by a circuit

consisting of EXOR gates, while G is implemented by a

memory.

General
Function

Linear
Function

pn

X

q

L G �

Figure 1.1. Linear Decomposition.

When a given function f is defined for only k input

combinations and k � 2n, in most cases, p, the number

of variables for G in Fig. 1.1 can be smaller than n. We

assume that the cost of L is proportional to np, while the

cost of G is proportional to q2p, where q ≤ p ≤ n, and

q = �log2(k + 1)�.
In this paper, we try to find a linear decomposition

f(x1, x2, . . . , xn) = g(y1, y2, . . . , yp),

that minimizes p, where yj (j = 1, 2, . . . , p) are linear
functions of xi (i = 1, 2, . . . , n). Since the search space

for the linear functions is very large, to obtain an optimal

solution is hard. So, in this paper, we introduce a local

search method called the s-Min method. The s-Min method

iteratively replaces a set of linear functions with another set

of linear functions to reduce the number of the variables in

the decomposition. A similar method is presented in [5].
The rest of the paper is organized as follows: Section II

introduces index generation functions; Section III introduces

collision degree and shows its properties; Section IV shows

local search algorithms called s-Min methods; Section V

illustrate the algorithms using examples; Section VI shows

experimental results; Section VII compares this method with

other methods; and Section VIII summarizes the paper.

II. INDEX GENERATION FUNCTION

This section introduces an index generation function and

its basic properties.
Definition 2.1: Consider a set of k different vectors of

n bits. These vectors are called registered vectors. For

each registered vector, assign a unique integer from 1 to

k. A registered vector table shows an index for each

registered vector. The value of an incompletely specified
index generation function is a corresponding index when

the input equals to a registered vector, and undefined (d,

don’t care) otherwise. The incompletely specified index

generation function is a mapping M → {1, 2, . . . , k}, where

M ⊂ Bn is a set of registered vectors, and B = {0, 1}. k
is the weight of the function.

Definition 2.2: A compound variable has a form y =
c1x1⊕ c2x2⊕· · ·⊕ cnxn, where ci ∈ {0, 1}, and ⊕ denotes

the mod 2 addition. The compound degree of the variable

y is
∑n

i=1 ci, where
∑

denotes integer addition, and the ci’s
are viewed as integers. When the compound degree is 1, y
is a single variable xi, and is called primitive.

Note that compound variables are linear functions of

x1, x2, . . . , xn.
From here, both primitive variables and compound vari-

ables are often called variables.

III. COLLISION DEGREE AND ITS PROPERTIES

In this section, to find a good linear decomposition, we

introduce a partial vector and a collision degree.

2015 IEEE 45th International Symposium on Multiple-Valued Logic

0195-623X/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMVL.2015.40

164

Table 3.1
INDEX GENERATION FUNCTION.

x1 x2 x3 x4 f
0 0 0 1 1
0 1 0 0 2
1 0 0 0 3
1 1 0 0 4

Definition 3.1: Let f(X) be an incompletely specified

index generation function, where X = {x1, x2, . . . , xn} is

the set of variables in f . Let X1 be a proper subset of X .

Let �X1 be an ordered set of X1. Then, �X1 is a partial
vector of X . Suppose that the values of �X1 are fixed at

�a = (a1, a2, . . . , as), where ai ∈ B. Let N(f, �X1,�a) be the

number of the registered vectors such that the value of f is

non-zero. Then, the collision degree is

CD(f : X1) = max
�a∈Bs

{
N(f : �X1,�a)

}
,

where s denotes the number of variables in X1.

Example 3.1: Consider the index generation function f
shown in Table 3.1. We have:

N(f : (x1, x2), (0, 0)) = |{1}| = 1,

N(f : (x2, x4), (1, 0)) = |{2, 4}| = 2,

N(f : (x2, x4), (0, 1)) = |{1}| = 1,

N(f : (x4), (0)) = |{2, 3, 4}| = 3.

Lemma 3.1: Consider the decomposition chart of f(X),
where X1 denotes the column variables and X−X1 denote

the row variables. Then, the collision degree CD(f : X1)
denotes the maximal number of non-zero elements in the

columns.

Example 3.2: Fig. 3.1 shows a decomposition chart of

the index generation function shown in Table 3.1. In this

chart, the column variables are X1 = {x2, x4}, and blank

elements show don’t cares. The number of non-zero ele-

ments are, from the left to the right, 1,1,0,2. Note that the

rightmost column has the maximum number of non-zero

elements in a column, 2, when (x2, x4) = (1, 0). Thus,

CD(f : {x2, x4}) = 2.
Example 3.3: Consider the index generation function f

shown in Table 3.1. We have:

CD(f : {x1, x2}) = Max{|{1}|, |{2}|, |{3}|, |{4}|} = 1.

CD(f : {x2, x4}) = Max{|{1}|, |{2, 4}|, |{3}|} = 2.

CD(f : {x1}) = Max{|{1, 2}|, |{3, 4}|} = 2.

CD(f : {x2}) = Max{|{1, 3}|, |{2, 4}|} = 2.

CD(f : {x3}) = Max{|{1, 2, 3, 4}|, |φ|} = 4.

CD(f : {x4}) = Max{|{2, 3, 4}|, |{1}|} = 3.

An incompletely specified index generation function

f(X) can be represented by a subset X1 of X if every

1x

4x

2x

3x

2

3 4

1

Figure 3.1. Decomposition Chart of an Index Generation Function.

assignment of values of a registered vector to the variables

X1 uniquely specifies the value of f .

Theorem 3.1: Let f(X) be an incompletely specified

index generation function. f can be represented as a function

of X1, where X1 is a proper subset of X if

CD(f : X1) = 1.

(Proof) Consider the decomposition chart, where X1 denotes

the column variables. If CD(f : X1) = 1, then each column

has at most one non-zero element. In this case, the function

can be represented with only the column variables [4]. �

Example 3.4: Consider the index generation function

shown in Table 3.1. Since If CD(f : {x1, x2}) = 1, the

function can be represented with only x1 and x2. If fact, the

function can be represented as

f = 1 · x̄1x̄2 ∨ 2 · x̄1x2 ∨ 3 · x1x̄2 ∨ 4 · x1x2.

Theorem 3.2: Let f(X) be an incompletely specified

index generation function. Let X1 be a proper subset of X .

Then, to represent f(X), at least �log2 CD(f : X1)� com-

pound variables are necessary in addition to the variables in

X1.

(Proof) When CD(f : X1) = a, a registered vectors are

indistinguishable. To distinguish these vectors, we need at

least �log2 a� variables in addition to the variables in X1. �

Corollary 3.1: Let f(X) be an incompletely specified

index generation function, and let X1 be a proper subset

of X . A necessary condition that f be represented by X1

and one compound variable is

CD(f : X1) = 2.

Corollary 3.2: Let f(X) be an incompletely specified

index generation function, and let X1 be a subset of X .

A necessary condition that f be represented by X1 and a

pair of compound variables is

CD(f : X1) ≤ 4.

165

IV. S-MIN METHOD

A travelling salesman problem (TSP) is a combinatorial

optimization problem whose search space is large. A method

to obtain a locally optimal solution for a TSP, 2-Opt method
is known. In the 2-Opt method, a pair of edges of the current

solution is replaced with an another pair of edges, and a new

network is produced. An improved solution may be found

in a new network, and a locally optimal solution can be

obtained.

In a similar manner, in the s-Min method, an arbitrary

set of s variables in X1 is replaced with a set of s − 1
variables. If the set of variables represents f , perform this

replacement. In this section, we show the s-Min method.

A. Algorithm

For simplicity, we consider only for the cases of s = 2
and s = 3.

Algorithm 4.1: (2-Min)

1) Let X1 be a set of variables that represents f .

2) Select a pair of variables in X1, and let it be {xi, xj}.
Perform the following operations while the number of

variables can be reduced.

3) Let X2 = X1 − {xi, xj}. When CD(f : X2) > 2,

discard this pair.

4) Let X3 = X2 ∪ {y}, where y = xi ⊕ xj . If CD(f :
X3) = 1, then f can be represented as a function of

X3.

Algorithm 4.2: (3-Min)

1) Let X1 be a set of variables that represents f .

2) Select a triple of variables in X1, and let it be

{xi, xj , xk}. Perform the following operations while

the number of variables can be reduced.

3) Let X2 = X1−{xi, xj , xk}. When CD(f : X2) > 4,

discard this triple.

4) Let X3 = X2 ∪ Y2, where Y2 denotes a pair of com-

pound variables generated by {xi, xj , xk}. If CD(f :
X3) = 1, then X3 represents f .

B. Amount of Memory

Since Algorithms 4.1 and 4.2 use registered vector tables

as a data structure, the necessary memory size is O(nk).

C. Computation Time

The total number combinations to select s variables out

of n variables is
(
n
s

)
. In the computation of the collision

degrees, the register vector table is sorted. Using quick

sort, the average time to sort k object is k log2 k. Thus,

the computation time is proportional to k log2 k
1. Let s

be a small constant (i.e., s = 2 or s = 3). Recall that(
n
s

)
= n(n−1)

2 when s = 2 and
(
n
s

)
= n(n−1)(n−2)

6
when s = 3. Also, we assume that the covering problem

1Here, we assume that each object is represented by one word in the
computer.

Table 5.1
1-OUT-OF-8 FUNCTION IN EXAMPLE 5.1.

x1 x2 x3 x4 x5 x6 x7 x8 f
1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 3
0 0 0 1 0 0 0 0 4
0 0 0 0 1 0 0 0 5
0 0 0 0 0 1 0 0 6
0 0 0 0 0 0 1 0 7
0 0 0 0 0 0 0 1 8

Table 5.2
FUNCTION IN EXAMPLE 5.1 REPRESENTED WITH VARIABLES OF

COMPOUND DEGREE 2.

y1 y2 y3 y4 y5 g
0 0 0 0 0 1
1 0 0 0 0 2
0 1 1 0 0 3
0 0 0 1 0 4
0 0 0 1 1 5
1 1 0 0 0 6
0 0 1 0 0 7
0 0 0 0 1 8

can be solved in time proportional to k log2 k, for each

combination, since the covering can be found among a fixed

number of combinations. Thus, the total computation time

is O(nsk log k).

V. EXAMPLES

This section illustrates algorithms for 2-Min and 3-Min

using examples.

Example 5.1: Consider the 1-out-of-8 code to index con-

verter shown in Table 5.1. By using variables of compound

degree 2, we can represent the function with only 5 variables

[6]. The compound variables are:

y1 = x2 ⊕ x6, y2 = x3 ⊕ x6,

y3 = x3 ⊕ x7, y4 = x4 ⊕ x5,

y5 = x5 ⊕ x8.

We have the index generation function g(y1, y2, . . . , y5)
shown in Table 5.2. Note that variables {y1, y2, y3, y4, y5}
distinguish 8 vectors. Now, we apply Algorithm 4.1. From

{y1, y2, y3, y4, y5}, we remove {y2, y5}. Then, the remain-

ing variables are, �Y1 = (y1, y3, y4). In this case

CD(f : Y1) = Max{|{1, 8}|, |{2, 6}|, |{3, 7}|, |{4, 5}|} = 2.

Table 5.3
FUNCTION IN EXAMPLE 5.1 REPRESENTED BY A VARIABLE OF

COMPOUND DEGREE 4.

y1 z2 y3 y4 h
0 0 0 0 1
1 0 0 0 2
0 1 1 0 3
0 0 0 1 4
0 1 0 1 5
1 1 0 0 6
0 0 1 0 7
0 1 0 0 8

166

Table 5.4
1-OUT-OF-10 FUNCTION IN EXAMPLE 5.2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 f
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 5
0 0 0 0 0 1 0 0 0 0 6
0 0 0 0 0 0 1 0 0 0 7
0 0 0 0 0 0 0 1 0 0 8
0 0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 0 1 10

Table 5.5
FUNCTION IN EXAMPLE 5.2 REPRESENTED BY VARIABLES OF

COMPOUND DEGREE 2.

y1 y2 y3 y4 y5 y6 g
1 0 0 0 0 0 1
0 0 0 0 0 0 2
0 1 1 0 0 0 3
0 0 0 1 1 0 4
0 0 0 0 0 1 5
1 0 0 0 0 1 6
0 1 0 0 0 0 7
0 0 0 1 0 0 8
0 0 1 0 0 0 9
0 0 0 0 1 0 10

Thus, it may be possible to reduce the number of variables.

Let �Y2 = (y1, z2, y3, y4), where

z2 = y2 ⊕ y5 = x3 ⊕ x5 ⊕ x6 ⊕ x8.

In this case, we have CD(f : Y2) = 1. This shows that the

function can be represented with only 4 variables. However,

after this, we cannot further reduce the number of variables

by Algorithm 4.1 .

Example 5.2: Consider the 1-out-of-10 to index converter

shown in Table 5.4. By using variables with compound

degree 2, we can represent the function with only 6 variables

[6]. The compound variables are

y1 = x1 ⊕ x6, y2 = x3 ⊕ x7,

y3 = x3 ⊕ x9, y4 = x4 ⊕ x8,

y5 = x4 ⊕ x10, y6 = x5 ⊕ x6.

We have the index generation function g(y1, y2, . . . , y6)
shown in Table 5.5. Note that 10 vectors can be distinguished

with 6 variables.

Table 5.6
FUNCTION IN EXAMPLE 5.2 REPRESENTED WITH VARIABLES OF

COMPOUND DEGREE 4.

y1 y2 z3 y4 z5 h
1 0 0 0 0 1
0 0 0 0 0 2
0 1 1 0 1 3
0 0 1 1 0 4
0 0 0 0 1 5
1 0 0 0 1 6
0 1 0 0 0 7
0 0 0 1 0 8
0 0 1 0 1 9
0 0 1 0 0 10

Table 6.1
NUMBER OF VARIABLES TO REPRESENT M-OUT-OF-16 FUNCTIONS.

Function Compound degree
t = 1 t = 2 t = 3 t = 4

m = 1 15 11 8 6
m = 2 15 12 9 8
m = 3 15 14 11 10
m = 4 15 14 13 13

First, we try to apply Algorithm 4.1. If we remove any

pair of variables from {y1, y2, y3, . . . , y6}, then the collision

degree will be 3 or greater. Thus, Algorithm 4.1 cannot be

applied. Next, we try to apply Algorithm 4.2. If we remove

three variables {y3, y5, y6}, then the collision degree will be

4. That is, let �Y1 = (y1, y2, y4), then we have CD(f : Y1) =
4. We have a chance to reduce the number of variables. Next,

consider �Y2 = (y1, y2, z3, y4, z5), where

z3 = y3 ⊕ y5 = x3 ⊕ x9 ⊕ x4 ⊕ x10,

z5 = y3 ⊕ y6 = x3 ⊕ x9 ⊕ x5 ⊕ x6.

In this case, we have the index generation function shown

in Table 5.6. Since CD(f : Y2) = 1, f can be represented

with only 5 variables.

VI. EXPERIMENTAL RESULTS

A. m-out-of-n Code to Index Converters

Table 6.1 shows the number of variables needed to rep-

resent m-out-of-16 functions. These values are taken from

[6]. Bold numbers denote minimum values. When only the

primitive variables are used (t = 1), all functions shown

require 15 variables. However, with the increase of the

compound degree t, the functions can be represented with

fewer variables.

Table 6.2 shows the number of variables when Algorithm

4.1 (2-Min), and Algorithm 4.2 (3-Min) were applied. To

obtain these results, we first represent the function by

variables with compound degree two (t = 2), and then

applied 2-Min or 3-Min. Except for the case of m = 4, 3-

Min reduced more variables than 2-Min. When the functions

were represented with only primitive variables (t = 1), we

could not apply 2-Min.

Similarly, Table 6.3 shows the number of variables to

represent m-out-of-20 functions [6]. When only primitive

variables were used (t = 1), the functions required 19

variables. However, with the increase of compound degree

t, functions can be represented with fewer variables.

Table 6.4 shows the number of variables to represent the

function when 2-Min and 3-Min were used. To obtain these

results, we first represent the function by variables with

compound degree two (t = 2), and then applied 2-Min or 3-

Min. In two of the five cases, 3-Min yielded fewer variables

than 2-Min. Again, when the functions were represented

with only primitive variables (t = 1), we could apply neither

2-Min nor 3-Min.

167

Table 6.2
NUMBER OF VARIABLES TO REPRESENT M-OUT-OF-16 FUNCTION

REDUCED BY 2-MIN AND 3-MIN.

Function 2-Min 3-Min
m = 1 8 5
m = 2 12 11
m = 3 13 12
m = 4 14 14

Table 6.3
NUMBERS OF VARIABLES TO REPRESENT M-OUT-OF-20 FUNCTIONS.

Function Compound degree
t = 1 t = 2 t = 3 t = 4

m = 1 19 14 10 8
m = 2 19 15 12 11
m = 3 19 17 14 12
m = 4 19 17 15 15
m = 5 19 18 17 17

B. Lists of English Words

To compress English text, we can use a list of frequently

used words. We made three lists of English words: List1730,

List3366, and List4705. The maximum number of characters

in the word lists is 13, but we only consider the first 8

characters. For English words consisting of fewer than 8

letters, we append blanks to make the word length 8. We

represent each alphabetic character by 5 bits. So, in the

lists, all the words are represented by 40 bits. List1730,

List3363, and List4705 contain 1730, 3366, and 4705 words,

respectively. Within each word list, each English word has

a unique index, an integer from 1 to k, where k = 1730 or

3360 or 4705. The number of bits for the indices are 11, 12,

and 13, respectively. Table 6.5 shows number of variables

to represent the list. These results are taken from [6].

Table 6.6 shows the results using 2-Min, and 3-Min. It

shows 3-Min obtained better solutions than 2-Min.

C. IP Address Tables

In this experiment, we used distinct IP addresses of com-

puters that accessed our web site over a period of one month.

List1670, List3288, List4591, and List7903 contain 1670,

Table 6.4
NUMBER OF VARIABLES TO REPRESENT M-OUT-OF-20 FUNCTIONS

THAT WERE OBTAINED BY 2-MIN AND 3-MIN.

Function 2-Min 3-Min
m = 1 10 5
m = 2 14 14
m = 3 15 15
m = 4 17 16
m = 5 18 18

Table 6.5
NUMBER OF VARIABLES TO REPRESENT LISTS OF ENGLISH WORDS

Function Compound Degree:t
Name k 1 2 3 4

List1730 1730 31 19 17 16
List3366 3366 31 21 19 17
List4705 4705 37 24 20 19

Table 6.6
NUMBER OF VARIABLES TO REPRESENT LISTS OF ENGLISH WORDS

THAT WERE OBTAINED BY 2-MIN AND 3-MIN.

Function 2-Min 3-Min
List1730 18 17
List3366 20 19
List4705 21 20

Table 6.7
NUMBER OF VARIABLES TO REPRESENT IP ADDRESS TABLE.

Function Compound Degree:t
Name k 1 2 3 4 5 6
IP1670 1670 18 17 16 16 15 15
IP3288 3288 20 19 18 17 17 17
IP4591 4591 21 20 19 18 18 18
IP7903 7903 23 21 20 20 20 20

3288, 4591, and 7903 IP addresses, respectively. Table 6.7

shows the results, which are taken from [6]. Note that the

original number of variables is 32. The first column shows

the function names. The second column shows the number of

registered vectors: k. The third column shows the number of

variables to represent the function, when only the primitive

variables are used (i.e. t = 1). The fourth column shows

the number of variables to represent the function, when the

variables with compound degrees up to two are used. Other

columns show the number of variables for different values of

t. As shown in Table 6.7, the memory size can be reduced

when we use compound variables with t = 3 or t = 4.

These results were obtained by the algorithm in [6]. Table

6.8 shows the results using 2-Min, and 3-Min. In these cases,

2-Min and 3-Min could not improve the results of t = 2,

since the initial solutions for 2-Min and 3-Min were results

of t = 2. This shows that the qualities of solutions for 2-

Min and 3-Min are not so good as that of [6]. But, the

computation times are much shorter than that of [6].

VII. COMPARISON WITH OTHER METHODS

Various methods exist to reduce the number of variables

for incompletely specified index generation functions using

linear decompositions [4], [5], [6], [7]. Since the number of

compound variables to consider is 2n−1, to obtain an exact

minimum solution is difficult when n is large. In fact, we

have to solve a minimum row cover problem for a table with

O(2n) rows, and O(k2) columns [7].

Also, to implement the linear part in Fig. 1.1, the circuit

cost is low when the compound degree is small. In address

Table 6.8
NUMBER OF VARIABLES TO REPRESENT IP ADDRESS TABLE THAT

WERE OBTAINED BY 2-MIN AND 3-MIN.

Function 2-Min 3-Min
IP1670 17 17
IP3288 19 19
IP4591 20 20
IP7903 21 21

168

Table 7.1
COMPARISON WITH EXISTING METHODS

Exhaustive method [4] Heuristic method [6] Heuristic method [7] Iterative Improvement [5] Iterative Improvement
ISMVL2011 ASPDAC2012 IEICE2014 RM2011 This paper

Amount of Memory O(k22n) O(knt) O(nk2) O(nk) O(nk)
Computation Time Too Long O(ntk log2 k) Short O(n5k) O(nsk log2 k)

Quality of Solutions Optimal Fairly Good Locally Optimal Locally Optimal Locally Optimal

tables of the internet, in many cases, variables with com-

pound degree 2 are sufficient [6].

As for heuristic methods to obtain the compound vari-

ables, we have three different methods:

1) Applying the information gain method [2] or reducing

ambiguity [6] to the registered vector table.

2) Obtaining the minimum cover of the difference matrix

[7], [8].

3) Applying an iterative improvement method [5] to the

registered vector table.

In 1), first, we generate all the variables up to compound

degree t. The necessary amount of memory is proportional

to

k

[
t∑

i=1

(
n

i

)]
,

where t is the maximum value of compound degree, k is

the number of registered vectors, and n is the number of

variables before reduction.

In 2), the necessary amount of memory is proportional to

n

(
k

2

)
= n

k(k − 1)

2
.

In 1) and 2), when the values of n or k are large, the

necessary amount of memory or computation time becomes

too large.

In 3), the method [5] uses memory of size O(nk). To find

good linear transformations, seven different transformation

rules are used to reduce the number of variables. TYPE1

transformation replaces a pair of variables with another pair

of variables. TYPE2 and TYPE3 transformations replace a

triple of variables with another triple of variables. TYPE4

to TYPE7 transformations replace a quadruple of variables

with another quadruple of variables. However, in the method

[5], to find the best order of rules to apply is difficult. On

the other hand, the s-Min method uses only one rule, and

the algorithm is simple.

VIII. SUMMARY

In this paper, we

1) proposed an iterative improvement method (s-Min

method) that replace s variables with (s−1) variables.

2) showed that the amount of memory to reduce the

number of variables of an n-variable index generation

function with weight k is O(nk). Also we showed that

the computation time is O(nsk log2 k), when s = 2
or s = 3.

3) developed computer programs for s = 2 and s = 3,

and showed experimental results.

ACKNOWLEDGMENTS

This research is supported in part by the Grant in Aid for

Scientific Research of the Japan Society for the Promotion

of Science (JSPS). Prof. Jon T. Butler’s comments improved

English presentation.

REFERENCES

[1] T. Sasao, “On the number of variables to represent sparse
logic functions,”ICCAD-2008, San Jose, California, USA,
Nov. 10-13, 2008, pp. 45-51.

[2] T. Sasao, T. Nakamura, and M. Matsuura, “Representation
of incompletely specified index generation functions using
minimal number of compound variables,” 12th EUROMICRO
Conference on Digital System Design, Architectures, Methods
and Tools (DSD 2009), Patras, Greece, Aug. 27-29, 2009,
pp. 765-772.

[3] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[4] T. Sasao, “Index generation functions: Recent develop-

ments,”(invited paper), International Symposium on Multiple-
Valued Logic (ISMVL-2011), Tuusula, Finland, May 23-25,
2011, pp.1-9.

[5] T. Sasao, ”Linear transformations for variable reduction,”
Reed-Muller 2011 Workshop, Tuusula, Finland, May 25-26,
2011.

[6] T. Sasao, “Linear decomposition of index generation func-
tions,” 17th Asia and South Pacific Design Automation Con-
ference (ASPDAC-2012), Jan. 30- Feb. 2, 2012, Sydney,
Australia, pp. 781-788.

[7] T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear
decompositions for incompletely specified index generation
functions using difference matrix,” IEICE Transactions on
Fundamentals of Electronics, Communication and Computer
Sciences,Vol. E-97A, No. 12, Dec. 2014.

[8] D. A. Simovici, M. Zimand, and D. Pletea,“Several remarks
on index generation functions,”International Symposium on
Multiple-Valued Logic (ISMVL-2012), Victoria, Canada, May
2012, pp. 179-184.

169

