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Abstract—This paper proposes an FFT circuit based on a
residue number system (RNS) using LUT cascades. To reduce
the number of look-up tables (LUTs) in an FPGA, we used
two techniques. The first one is the functional decomposition
of multipliers using RNS. The second one is the increase of the
dynamic range stage by stage. The circuit requires the RNS2RNS
converter which converts a small dynamic range to a large
dynamic range. To compactly realize the RNS2RNS converter, we
decompose it into an RNS2Binary converter and a Binary2RNS
converter. Although the Binary2RNS converter can be realized
by an LUT cascade based on a multi-terminal multi-valued
decision diagram (MTMDD), the RNS2Binary converter tend to
be large for the conventional circuit. Thus, we introduce an LUT
cascade based on a modulo edge-valued multi-valued decision
diagram (mod-EVMDD). The mod-EVMDD is a new type of
a decision diagram that efficiently represents the RNS2Binary
converter. We implemented the proposed RNS FFT on the
Xilinx Corp. Virtex 6 FPGA. Compared with the conventional
binary FFT implementation, although the number of block
RAMs (BRAMs) increased by 11.1-25.0%, the number of LUTs
decreased by 44.2-52.2% and the maximum clock frequency
increased by 9.3-41.7%. With this technique, we successfully
implemented a required FFT on an available FPGA, since the
excessive number of LUTs was the bottleneck of the binary FFT.

I. INTRODUCTION

A. Fast Fourier Transform (FFT)

A fast Fourier transform (FFT) is an algorithm to compute
the discrete Fourier transform (DFT). The basic idea of the
FFT was proposed by Cooley and Tukey in 1965 [2]. In
this paper, we realize a compact FFT circuit on a field-
programmable gate array (FPGA). The FPGA consists of look-
up tables (LUTs) and block RAMs (BRAMs). When a wide-
band and high-resolution FFT is implemented on an FPGA,
the number of LUTs for the complex multipliers becomes
a bottleneck [7], [8]. Thus, the reduction of the number of
LUTs is essential. Generally, the required number of LUTs
is O(2n) to implement an n-bit parallel multiplier. A residue
number system (RNS) represents a large integer using a set
of smaller integers [15], [11]. This means that the RNS can
decompose the arithmetic circuit into a set of smaller ones. In
this paper, we reduce the number of LUTs by decomposing
large multipliers using the RNS.

B. Proposed Method

To reduce the number of LUTs on an FPGA, we used two
techniques. The first one is the functional decomposition [3]
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Fig. 1. Signal flow graph.

for modulo arithmetic circuits. The second one is increase
of the dynamic range stage by stage. The circuit requires
an RNS2RNS converter which converts a small dynamic
range into a large dynamic range. In this paper, to realize
the RNS2RNS converter compactly, we decompose it into
an RNS2Binary converter and a Binary2RNS converter. Al-
though the Binary2RNS converter can be realized the LUT
cascade [10] based on the multi-terminal multi-valued decision
diagram (MTMDD) [5], the RNS2Binary converter tends to
be large for the conventional circuit. We introduce an LUT
cascade based on a modulo edge-valued multi-valued decision
diagram (mod-EVMDD). The mod-EVMDD is a new type of
a decision diagram that efficiently represents the RNS2Binary
converter, which is a hybrid of an edge-valued multi-valued
decision diagram (EVMDD) [6] and a modulo p MDD (Mod-
p MDD) [9].

C. Organization of the Paper

The rest of the paper is organized as follows: Chapter
2 shows the binary FFT circuit; Chapter 3 introduces the
residue number system; Chapter 4 shows the FFT circuit based
on the RNS (RNS FFT); Chapter 5 proposes the functional
decomposition for the butterfly circuits; Chapter 6 proposes
the RNS2RNS converter using an LUT cascade based on a
mod-EVMDD; Chapter 7 shows the experimental results; and
Chapter 8 concludes the paper.

II. BINARY FFT

A. Fast Fourier Transform (FFT)

Let (x0, x1, . . . , xN−1) be an input consisting of N com-
plex numbers. The discrete Fourier Transform (N point
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DFT) for (c0, c1, . . . , cN−1) is

ck =
N−1∑

j=0

ajw
jk
N , (1)

where wjk
N = exp(−2πi jkN ) is a twiddle factor. A time

complexity of a direct computation for Expr. (1) is O(N2).
Let r be a radix of the FFT, and s be the number of stages.
By applying a decomposition to the N point DFT s = �logrN�
times recursively, we have a Cooley-Tukey Fast Fourier
Transform (N point FFT) [2]. Let s = �logrN� be the
number of stages, and r be the radix of the FFT. In the paper,
we assume that r = 2. Fig. 1 shows a signal flow graph
obtained by the FFT algorithm, where N = 8 and r = 2.

B. Pipeline Radix-2 Binary FFT

As shown in Fig. 1, different stages handle points with
different distances. By applying an index swap operation
replacing indices between adjacent stages, we can adjust the
points of the inputs for the butterfly operations. The swap
memory performs an index swap operation. Let w be a
precision of the FFT. Then, the amount of memory for each
swap memory is wN , and the total amount of memory for
the swap memory is wN�logrN�. Fig. 2 shows a radix-2
butterfly operator for r = 2, which consists of two complex
multipliers. Fig. 3 shows a pipeline radix-2 FFT [4], which
allows continuous data processing. The problem in the radix-2
binary FFT is that the multipliers tend to be too large, since
the dynamic range of the latter stages are very large.

III. RESIDUE NUMBER SYSTEM

A residue number system (RNS) [15], [11] is defined by
a set of L integer constants as follows:

(m1,m2, . . . ,mL),

where no pair of modulus have a common factor with any
other. An arbitrary integer Z can be uniquely represented by
the RNS as a tuple of L integers as follows:

(z1, z2, . . . , zL),
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where zi ≡ Z (mod mi).

M =
∏L

i=1 mi is a dynamic range of the RNS. In the
RNS, the addition, the subtraction, and the multiplication can
be performed in digit-wise. Let X and Y be integers, xi and
yi be integers in the RNS defined by mi (1 ≤ i ≤ L), ◦
includes + (addition), − (subtraction), and ∗ (multiplication).
Then Z = X ◦ Y satisfies

Z = (z1, z2, . . . , zL),

where zi = (Xi ◦ Yi) mod mi. Note that, the division is not
included in the operations.

Example 3.1: Let (m1,m2,m3) = (3, 4, 5) be the moduli
set. Consider the multiplication X × Y , where X = 8 and
Y = 2. Since X×Y = 16, it is represented by (1, 0, 1) in the
RNS. X and Y is represented by (2, 0, 3) and (2, 2, 2) in the
RNS, respectively. Thus, X × Y in the RNS is computed as
follows:

X × Y = (4 mod 3, 0 mod 4, 6 mod 5)

= (1, 0, 1).

In the RNS, the arithmetic operation is performed in digit-
wise. This means that we can decompose large multipliers into
smaller ones. Thus, we can reduce the number of LUTs for
the FFT.

IV. RADIX-2 RNS FFT CIRCUIT

As shown in Expr. (1), the FFT operation consists of the
addition, the subtraction, and the multiplication. Thus, we can
apply the RNS to the FFT. Fig. 4 shows the FFT circuit based
on the RNS (RNS FFT). First, we convert the binary input
signal into the RNS by read only memories (ROMs). Typically,
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the input signals from analog-digital converters (ADCs) are 8-
14 bits. The binary to RNS converter can be realized by 18Kb
BRAMs on the FPGA. Next, the RNS FFT circuit computes
each signal in the digit-wise manner. In this paper, we assume
that the conversion from the RNS to the binary is done off-line.

Fig. 5 shows the modulo mi RNS butterfly, which is
derived from the binary butterfly operatior shown in Fig. 2. In
Fig. 5, A = (AR, AI) and B = (BR, BI) denote the complex
input, W = (WR,WI) denotes the complex twiddle factor,
R denotes the real part, and I denotes the imaginary part.
The module mi RNS butterfly can be ralized by the look-
up table (LUT) with a small amount of memory [13]. Let
mi be the modulo in the RNS. Then, the amount of memory
for the modulo mi butterfly is 10× (mi)

2�log2mi�, since the
butterfly operator uses 10 arithmetic circuits. From Fig. 6, as
for the N points RNS FFT, the necessary mount of memory
is 10 × (mi)

2�log2mi� × log2N . In other word, the number
of LUTs becomes O((mi)

2logmilogN). Therefore, we can
decreases the number of LUTs by decreasing mi .

Fig. 6 shows the swap memory on the radix-2 RNS FFT.
As shown in Fig. 4, the RNS FFT consists of L moduli FFTs.
Swap values for L butterfly operators are stored in the swap
memory. When r = 2, the RNS butterfly operator swaps N

2
signals. Also, each RNS butterfly operator produces �log2mi�
bits. Thus, the amount of swap memory Mem for each stage
is

Mem =
N

2
× (

L∑

i=1

�log2mi�).

Since the number of stages is �log2N�, the total amount of
swap memories is Mem�log2N� bits.
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V. REDUCTION OF THE NUMBER OF LUTS BY

FUNCTIONAL DECOMPOSITIONS

A. Functional Decomposition

In the paper, we realize modulo arithmetic circuits by
LUTs. By applying functional decompositions [3], we can
reduce the number of LUTs.

Consider a function F ( �X) : Bn → {0, 1, . . .m−1}, where

B = {0, 1} and �X = (x1, x2, . . . , xn). Let ( �XL, �XH) be a

partition of �X into two parts. A decomposition chart of F
is the two-dimensional matrix, where each column label has
distinct assignment of elements in �XL, and each row label has

distinct assignment of elements in �XH , and the corresponding

matrix value is F ( �XL, �XH). The number of different column
patterns in the decomposition chart is the column multiplicity.
�XL denotes the bound variables, and �XH denotes the free
variables.

Fig. 7 shows the functional decomposition. When f(X) is
realized by a single memory, its amount of memory is 2n bits.
Let r1 = �log2μ�, |XL| = n1, and |XH | = n2. By applying
the functional decomposition, its amount of memory is reduced
to 2n1 × r1 + 2r1+n2 bits.

B. Functional Decomposition for Modulo Addition

Let the modulo be m = 5. Fig. 8 shows an example
of a conventional addition, and Fig. 9 shows an example
of the modulo addition. In the modulo addition, the column
multiplicity is at most m. Fig. 10 shows an example of the
functional decomposition of the modulo 5 addition. In this
case, when it is realized by a single memory, its amount of
memory is 23+3×3 = 192 bits. On the other hand, by applying
the functional decomposition, its amount of memory is reduced
to 25 × 3 + 24 × 3 = 144. This means that we can reduce the
number of LUTs by the functional decomposition.
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Fig. 13. Explain of Corollary 5.1.

C. Functional Decomposition for the Modulo Multiplication

Let the modulo be m = 5. Fig. 11 shows an example of a
conventional multiplication, and Fig. 12 shows an example of
the modulo 5 multiplication. In a similar manner to the modulo
addition, we have the upper bound of the column multiplicity
for any modulo operation.

Corollary 5.1: Let X and Y be k bits integers in the RNS.
Then, the function Z = X ◦ Y (mod m) takes at most m
unique values, where k = �log2m�.

(Proof) As shown in Fig. 13, from the property of the
modulo operation, Z takes at most m unique values (Q.E.D).

Theorem 5.1: Let X = (xk−1, xk−2, . . . , x0), and Y =
(yk−1, yk−2, . . . , y0), where X and Y are the integers
in the RNS. Let Y1 = (yt−1, yt−2, . . . , y0) and Y2 =
(yk−1, yk−2, . . . , yt) be a partition of Y , where 1 < t < k−1.
Then, the circuit shown in Fig. 14 realizes the function
Z = X ◦ Y (modm), where k = �log2m�. And the output of
G takes at most m unique values.

(Proof) Since Y1 is derived from the lower t bits part of
the Y , Y1 represents a part of m unique values. Thus, G takes
at most m unique values (Q.E.D).

In particular, for the modulo multiplier, we can reduce the
number of LUTs by the functional decomposition.

VI. REDUCTION OF THE NUMBER OF LUTS BY THE

RNS2RNS CONVERTER

A. RNS FFT using the RNS2RNS Converter

When the RNS FFT shown in Fig. 4 is directly realized,
since the dynamic range is too large for the first half stages
of the RNS butterflies, the number of LUTs tends to be large.
In this paper, we increase the dynamic range stage by stage.
Fig. 15 shows the RNS FFT inserted the RNS2RNS converter

⎡ ⎤m
2

logG

X

Y1 H Z

Y2

⎡ ⎤m
2

log

Fig. 14. Explain of Theorem 5.1.
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Fig. 15. RNS FFT inserting the RNS2RNS converter.

which converts a small dynamic range to a large dynamic
range. As shown in Fig. 6, in the first part of the RNS FFT,
since large moduli are removed, the number of LUTs for
the first parts is reduced. However, it requires the RNS2RNS
converter. In this paper, we use a compact realization of the
RNS2RNS converter.

Fig. 16 shows the truth table for the RNS2RNS converter
which converts (m1,m2) = (2, 3) to (m1,m2,m3) = (2, 3, 5).
Generally, we can use an arbitrary moduli set in the RNS2RNS
converter. In this paper, to reduce the amount of hardware,
we use g(m1,m2, . . . ,mL) = (m1,m2, . . . ,mL,mL+1) as
the RNS2RNS converter. In this case, as shown in Fig. 17,
we can realize the RNS2RNS converter by realizing only the

function g′(m1,m2, . . . ,mL) = mL+1. Let M =
∏L

i=1 mi be
the dynamic range. When the RNS2RNS converter is realized
by a single memory, its amount of memory is M�log2mL+1�
bits. In this paper, as shown in Fig. 18, we decompose the
RNS2RNS converter into the RNS2Bin converter and the
Bin2RNS converter. Let mL+1 be the modulo in the Bin2RNS
converter, then its column multiplicity is at most mL+1. In the
same manner as the modulo addition/multiplication, we can
reduce the number of LUTs by the functional decomposition.

Fig. 19 shows an example of the MTMDD (Multi-Terminal
Multi-Valued Decision Diagram) [5] for the RNS2Bin con-
verter. As shown in Fig. 19, the column multiplicity is up to
M , which is too large to apply the functional decomposition.

B. LUT Cascade for the RNS2RNS Converter

As shown in Fig. 19, all the adjacent terminal values can
be calculated by +4 mod 6. In this example, the dynamic
range is 2 × 3 = 6. Similarly, the upper index values can
be calculated by +3 mod 6. This example shows that the
MTMDD representing the RNS2Bin converter has a regularity.
We propose a new type of decision diagram that compactly
represents the RNS2Bin converter. Fig. 20 shows the modulo
edge-valued MDD (mod-EVMDD) which is a hybrid of the
edge-valued multi-valued decision diagram (EVMDD) [6] and
the module p MDD (Mod-p MDD) [9]. In the mod-EVMDD,
by adding the integer weights mod M , we have the function
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Fig. 16. Example of the truth table
of the RNS2RNS converter.

R
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M

m1

m2

m1

m2

m3

RNS2RNS Converter

Fig. 17. Example of the
RNS2RNS converter.

Fig. 18. Decomposition the RNS2RNS converter.

value. When (m1,m2) = (1, 1), by traversing the MTMDD
shown in Fig. 19, we have 1. By traversing the mod-EVMDD
as shown in Fig. 20, we have weights 3 and 4. In this example,
since the dynamic range is M = 6, we have 3+4 ≡ 1(mod 6).

The RNS2Bin converter is efficiently realized by an LUT
cascade [10] with modulo adders shown in Fig. 21. In this case,
since the width of the mod-EVMDD is at most one, no rail
is necessary. The output from each LUT represet the weights
of edges. We call such outputs Arailsai. By connecting the
Arails ai through modulo adders, we have the LUT cascade
based on the mod-EVMDD.

Fig. 22 shows the RNS2RNS converter using LUT cas-
cades. The RNS2Bin converter is realized by the LUT cascade
based on the mod-EVMDD, while the Bin2RNS converter is
realized by one based on the MTMDD. Let M =

∏L
i=1 mi be

the dynamic range. Since the proposed cascade decomposes
the memory of O(2M ) bits into O(2mi) bits, it drastically
reduces the number of LUTs.

VII. EXPERIMENTAL RESULTS

A. Comparision with Binary FFT

We implemented the proposed RNS FFT on the Xilinx
Corp. Virtex 6 FPGA, and we compared it with the binary
FFT (Xilinx Corp. FFT library [14]). Table I shows the
synthesis options for the Xilinx FFT library. As for the RNS
FFT, we chose moduli set as shown in Table II. Note that, for
both FFTs, the input signal is represented by 8 bits, and the
twiddle factor is represented by 18 bits.

Fig. 23 (a) compares the number of 6-input LUTs in
the Virtex 6 FPGA, while Fig. 23 (b) compares the number
of 18Kb BRAMs. Since the RNS FFT decompose butterfly
operators into smaller ones, it reduced the number of LUTs
by 44.2-52.2%. Typically, the dynamic range exceeds the bit
range of the binary FFT, the amount of swap memory for
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Fig. 19. Example of MTMDD representing the RNS2Bin converter.
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Fig. 21. Example of the LUT cas-
cade based on the mod-EVMDD.

the RNS FFT tends to be larger than that for the binary
FFT. From Fig. 23 (b), the number of BRAMs is increased
by 11.1-25%. However, for large N , the number of LUTs
becomes a bottleneck [7], [8], however, that of the BRAMs
is not a bottleneck. Fig. 23 (c) compares the maximum
clock frequency. Since the proposed RNS FFT has a smaller
realization, it has a shorter critical path. Thus, the proposed
one has a higher clock frequency by 9.3-41.7%.

VIII. CONCLUSION

In this paper, we reduced the number of LUTs for the RNS
FFT. To reduce the number of LUTs, we used two techniques.
First, we applied the functional decomposition to modulo
butterfly operators. Second, we increase the dynamic range
stage by stage. To compactly realize the RNS2RNS converter,
we decomposed the RNS2RNS converter into the RNS2Bin
converter and the Binary2RNS converter. We proposed the
mod-EVMDD representing the RNS2Bin converter compactly.
The RNS2Bin converter was realized by the LUT cascade
based on the mod-EVMDD, while Bin2RNS converter was
realized by one based on the MTMDD. We implemented
the proposed RNS FFT on the Xilinx Corp. Virtex 6 FPGA.
Compared with the binary FFT, although the proposed RNS
FFT requires 11.1-25.0% more BRAMs, it requires 44.2-52.2%
fewer LUTs and has 9.3-41.7% higher clock frequency.

The future projects are an error analysis [12]; and compar-
ison with existing RNS FFT circuits [1], [13].

IX. ACKNOWLEDGMENTS

This research is supported in part by the Grants in Aid for
Scientistic Research of JSPS.

101



(a) 6-input LUTs (b) BRAMs (c) Maximum Clock Frequency

Fig. 23. Comparison with the binary FFT.
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TABLE I. SYNTHESIS OPTIONS FOR THE BINARY FFT.

Option Parameter

Implementation Pipelined, Streaming I/O
Data Format Fixed Point
Input Data Width 8bit
Phase Factor Width 18bit
Scaling Options Unscaled
Output Ordering Bit/Digit Reversed
Complex Multipliers Use CLB Logic
Butterfly Arithmetic Use CLB Logic
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