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Abstract—Given an incompletely specified index generation
function, the number of variables to represent the function
can often be reduced by properly assigning don’t care values.
In this paper, we derive a lower bound on the number of
variables necessary to represent a given incompletely specified
index generation function. We also derive three properties of
incompletely specified index generation functions. We confirm
these properties by experiments using random index generation
functions.
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I. INTRODUCTION

Index generation functions have wide applications for
pattern matching in the internet [4][5][11]. In an incom-
pletely specified function f , the number of variables to
represent f can often be reduced by properly assigning
don’t care values [1][2][3][7-16]. With this property, we can
represent incompletely specified index generation functions
more compactly than original specifications.

In this paper, we consider lower bounds on the number
of variables necessary to represent incompletely specified
index generation functions. We show that a lower bound for
n variable index generation functions with weight k, can be
obtained by numerical calculation.

The rest of the paper is organized as follows: Section II
defines terminology; Section III derives a lower bound on the
number of variables necessary to represent an incompletely
specified index generation function with weight k; Section
IV considers statistical properties of uniformly distributed
incompletely specified index generation functions; Section
V shows experimental results; and finally, Section VI sum-
marizes the paper and presents future problems.

II. INCOMPLETELY SPECIFIED INDEX GENERATION
FUNCTION

Definition 2.1: Consider a set of k different vectors of
n bits. These vectors are registered vectors. For each
registered vector, assign an index, a unique integer from
1 to k. A registered vector table maps an index to each
registered vector.

Definition 2.2: An incompletely specified index gener-
ation function f represents a mapping D → {1, 2, . . . , k},

Table 2.1
REGISTERED VECTOR TABLE.

x1 x2 x3 x4 f
0 0 0 1 1
1 0 1 1 2
1 1 0 0 3
0 1 1 1 4

where D denotes the set of the registered vectors, D ⊆ Bn;
B = {0, 1}; |D| = k; and |D| denotes the number
of the elements in the set D. An incompletely specified
index generation function represents the corresponding
index when the input vector matches a registered vector.
Otherwise, the value of the function is undefined. k is called
the weight of the index generation function.

Example 2.1: Consider the registered vectors shown in
Table 2.1. It shows an incompletely specified index genera-
tion function with weight k = 4.

Definition 2.3: A completely specified index generation
function f represents a mapping Bn → {0, 1, 2, . . . , k}. Let
D be the set of registered vectors. When a⃗ ∈ D, the value of
f (⃗a) is the same as that of the corresponding incompletely
specified index generation function. When a⃗ ∈ Bn − D,
f (⃗a) = 0.

A circuit for a completely specified index generation
function can be easily implemented from a circuit for an
incompletely specified index generation function [11]. Thus,
the problem is to find an economical realization of a given
incompletely specified index generation function.

In this paper, incompletely specified index generation
functions are often called index generation function, for
short. The number of variables needed to represent incom-
pletely specified index generation functions can often be
reduced [11].

Theorem 2.1: [10] Suppose that an incompletely specified
index generation function is represented by a decomposition
chart [6]. When the decomposition chart has at most one
non-zero element in each column, the function can be
represented with only column variables.
(Proof) For each column, set the values of don’t cares to
the value of the care element, and the function depends on
only the column variables. 2



Table 2.2
DECOMPOSITION CHART.

0 0 1 1 x1

0 1 1 0 x2

0 0 3
0 1 1
1 1 4 2
1 0
x3 x4

Example 2.2: Table 2.2 is the decomposition chart cor-
responding to the registered vector table in Table 2.1. x1

and x2 are column variables, while x3 and x4 are row
variables. In the table, blank cells denote don’t cares. In the
decomposition chart shown in Table 2.2, each column has
at most one non-zero element. In this case, the incompletely
specified index generation function can be represented with
only x1, and x2:

f = 1 · x̄1x̄2 ∨ 4x̄1x2 ∨ 3 · x1x2 ∨ 2 · x1x̄2

III. NUMBER OF VARIABLES NECESSARY TO
REPRESENT INDEX GENERATION FUNCTIONS

For a given n variable index generation function f , if
we can estimate the number of variables to represent f ,
then we can estimate the size of hardware to realize it.
We assume that index generation functions are implemented
by memories. Thus, the number of the variables is vitally
important.

A lower bound on the number of variables has been
obtained as ⌈log2k⌉ in [12], and an upper bound has been
obtained as 2⌈log2k⌉ − 3 [11]. Unfortunately, when k is
large, the difference between these bounds is rather large.

Definition 3.1: Let a and b be integers such that a ≥ b.
Then, aPb denotes the number of sequences of length b of
elements taken from a set of a distinct elements. That is,

aPb =
a!

(a − b)!
.

The probability η(p, n,m, k) that p-valued input n vari-
able index generation functions with weight k can be repre-
sented with only the first m variables is derived in [14]. By
setting p = 2, we have the following:

Theorem 3.1: Given an n variable incompletely specified
index generation function f with weight k, the probability
η(n,m, k) that f can be represented with only the first m
variables is given by

η(n,m, k) = 2mPk · 2(n−m)k

2nPk

=
∏k−1

i=1 (1 − i
2m )∏k−1

i=1 (1 − i
2n )

.

(Proof) The probability that a function can be represented
with only the first m variables is given by η(n,m, k) = A

B ,

where A denotes the number of incompletely specified index
generation functions with weight k that can be represented
with x1,x2,..., and xm. B denotes the total number of in-
completely specified index generation functions with weight
k.

1) A denotes the number of the incompletely specified
index generation functions with weight k, where each
column has at most one non-zero element in the
decomposition chart. First, enumerate the ways to
specify the columns that have non-zero elements.
This is equal to the number of ways to distribute k
distinct elements into 2m distinct bins: 2mPk. Second,
enumerate the ways to specify the row for each
element. This is equal to the number of ways to
select one row out of 2n−m rows, and there are k
elements. Thus, the total number of ways to select
the rows is (2n−m)k = 2(n−m)k. Thus, we have
A =2m Pk · 2(n−m)k.

2) B denotes the total number of n variable incompletely
specified index generation functions with weight k.
This is equal to the number of ways to distribute k
distinct elements into 2ndistinct bins:2nPk.

From these, we have theorem. 2

Lemma 3.1: [11] If 0 < x ≪ 1, then 1 − x can be
approximated by e−x, where e denotes the base of the
natural logarithm, and ≪ means much less than.

Assume that k ≪ 2m. From Lemma 3.1, we have the
following:

η(n,m, k) ≅
∏k−1

i=1 (exp(− i
2m ))∏k−1

i=1 (exp(− i
2n ))

=
exp(−

∑k−1
i=1 (− i

2m ))

exp(−
∑k−1

i=1 (− i
2n ))

≅
exp(−k(k−1)

2·2m )

exp(−k(k−1)
2·2n )

≅
exp(− k2

2m+1 )

exp(− k2

2n+1 )
.

From this, we have the following:
Corollary 3.1:

η(n,m, k) ≅ exp(
k2

2n+1
(1 − 2n−m)). (3.1)

Theorem 3.2: Assume that n is sufficiently large. Given
an n variable index generation function f with weight k,
the probability PR that f can be represented with only m
variables is

PR(n,m, k) = 1 − (1 − η(n,m, k))(
n
m). (3.2)

(Proof) The probability that the function cannot be repre-
sented with only x1, x2, . . . xm−1, and xm is 1−η(n,m, k).
Note that the number of combinations to select m variables



out of n variables is
(

n
m

)
. Thus, the probability that at least

one combination can represent the function with m variables
is given by

PR(n,m, k) = 1 − (1 − η(n,m, k))(
n
m).

2

In the above proof, we assumed that n and m are
sufficiently large, and the logic functions can be treated
statistically.

IV. STATISTICAL PROPERTIES OF INDEX GENERATION
FUNCTIONS

A. When the Values of k Are Changed

Fig. 4.1 shows the relations among m, k, and PR for
n = 20. In Fig. 4.1, the probability PR that a function can
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Figure 4.1. Relation among m, k, and PR for n = 20.

be represented with m variables suddenly decreases with the
increase of k. This can be explained with Equations (3.1)
and (3.2).

• When k2

2m+1 → 0, we have

η(n,m, k) ≅ exp(
k2

2n+1
(1 − 2n−m))

≅ exp(− k2

2m+1
) → 1

Thus, we have

PR(n,m, k) → 1 − (1 − 1)(
n
m) = 1.

• When k2

2m+1 → ∞, we have

η(n,m, k) ≅ exp(− k2

2m+1
) → 0

Thus, we have

PR(n,m, k) → 1 − (1 − 0)(
n
m) = 0.

B. When the Values of m Are Changed

Figures 4.2, 4.3, and 4.4 show the relations among n, m,
and PR, for k = 63, k = 255, and k = 1023, respectively.
For example, when k = 63 and n = 12, the probabilities
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Figure 4.2. Relation among n, m, and PR for k = 63.
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Figure 4.3. Relation among n, m, and PR for k = 255.

are almost 0.0 for m = 7; about 0.2 for m = 8; and almost
1.0 for m = 9.

In Figures 4.2, 4.3, and 4.4, note that the difference of
m are at most 2 when the values of PR are changed from
0.00 to 1.00.

In Fig. 4.4, the line for n = 12 is shown up to m = 12,
since m ≤ n.

Definition 4.1: Let M50 be the minimum real number that
satisfies the following relation in Equation (3.2):

PR(n,M50, k) = 0.5.

Note that, the values of
(

n
m

)
are normally defined only when

both n and m are integers. However, in this case, we extend
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Figure 4.4. Relation among n, m, and PR for k = 1023.

the function so that n and m can take any positive real values
as follows: (

n

m

)
=

Γ(n + 1)
Γ(n − m + 1) · Γ(m + 1)

,

where Γ(n) is the gamma function1.
Then, we have the following:
Property 4.1: To represent most incompletely specified

index generation functions, at least ⌊M50⌋ variables are
necessary, where ⌊a⌋ denotes the integer part of the positive
real number a.

C. When the Values of n Are Changed.

Equation (3.2) implies that, when the value of
PR(n,m, k) is small, the representation of the functions
with only m variables is unlikely. Since the value of
η(n,m, k) is sufficiently small, 1 − η(n,m, k) can be ap-
proximated by e−η(n,m,k). Thus, the condition that makes
PR(n,m, k) = 0.5 in Equation (3.2) can be represented as

PR(n, m, k) ≅ 1 − exp(−η(n,m, k)s(n,m)) = 0.5,

where

s(n,m) =
Γ(n + 1)

Γ(n − m + 1) · Γ(m + 1)
.

In other words, we have the following:

η(n,m, k)s(n,m) = loge 2 ≅ 0.6931. (4.1)

Given the values of n and k, the numerical values of
M50 can be easily calculated by Equations (3.1) and (4.1)
using a computer. Fig. 4.5 shows the relation among n, m,
and k when PR(n, M50, k) = 0.5. Fig. 4.5 shows that,

1The gamma function is defined as

Γ(t) =

Z ∞

0
xt−1e−xdx.
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Figure 4.5. Relation among n, m, and k for PR = 0.5.

for example, 14 variable index generation functions with
weight k = 127 can be represented by m = 10 variables,
with probability 0.5. Here, we consider the region for
n ≤ 2⌈log2(k + 1)⌉ − 4. In this region, the relation n ≅ m
holds.

From this, we have the following:
Property 4.2: For most n variable incompletely specified

index generation functions with weight k, the reduction of
variables is difficult when n ≤ L, where L = 2⌈log2(k +
1)⌉ − 4.
Also, from the observation before Definition 4.1, we have:

Property 4.3: When n is sufficiently large and k ≪ 2n,
most incompletely specified index generation functions with
weight k can be represented by L−1, L, or L+1 variables,
where L = 2⌈log2(k + 1)⌉ − 4.

V. EXPERIMENTAL RESULTS

To test the properties obtained in the previous section,
we produced many random index generation functions, and
obtained the numbers of variables to represent the functions.

A. Test for Property 4.1

To test Property 4.1, we produced 1,000 random index
generation functions for various pairs of (n, k). Table 5.1
shows the minimum values to represent n variable incom-
pletely specified index generation functions with weight k.
We used the algorithm in [9] to obtain exact minimum
number of variables. In the table, Min denotes the minimum
value, and Count denotes the number of functions that gives
the minimum value. M50 denotes the value of m that makes
PR(n,M50, k) = 0.5.

In Table 5.1, except for the case of n = 24 and k = 8191,
the relation Min ≥ ⌊M50⌋ holds. When n = 24 and k =
8191, the number of functions that require the minimum
value 21 is only one out of 1,000. Thus, M50 ≅ 22. In other
words, Property 4.1 holds.



Note that in the columns for n = 12, entries for k = 8191
are shown by ’-’. This is due to the constraint k ≤ 2n.

B. Test for Property 4.2

To test Property 4.2, we produced 1,000 random index
generation functions for various pairs of (n, k). Table 5.2
shows the average numbers of variables necessary to repre-
sent n variable incompletely specified index generation func-
tions with weight k. The values in the table are the average
of 1,000 randomly generated functions. The numbers written
in boldface denote the average when n = L holds, where
L = 2⌈log2(k + 1)⌉ − 4.

Note that for the entries that are below the boldface
numbers, virtually no variables could be removed. In other
words, Property 4.2 holds.

C. Test for Property 4.3

To test Property 4.3, we produced 1,000 random index
generation functions for n = 22, 24, 26, 28 and 30. In
Table 5.3, the columns headed by L − 1, L, and L + 1
denote the number of functions that require L − 1, L, and
L+1 variables, respectively, where L = 2⌈log2(k+1)⌉−4.
Note that most functions can be represented with L− 1, L,
or L + 1 variables.

In the table, in some rows, the sums of the numbers in
the three columns are less than the total number of sample
functions. Such rows are denoted by boldface. For example,
when n = 22 and k = 2047, only one function required
L + 2 = 20 variables. However, when n = 26, n = 28 and
n = 30, Property 4.3 holds for all the samples.

VI. SUMMARY AND FUTURE PROBLEMS

In this paper, we derived lower bounds on the number of
variables necessary to represent incompletely specified index
generation functions. Also, given the values for n and k, we
derived a method to predict whether the number of variables
can be reduced or not.

In this paper, we assumed that 0’s and 1’s are equally
likely to occur in registered vector tables. However, in
practical applications, distributions of 0’s and 1’s are not
always equal. Future problems include the case where the
distribution of 0’s and 1’s are different. Also, we should
obtain lower bounds on the numbers of compound variables
[13] to represent incompletely specified index generation
functions, when linear transformations can be used.
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