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ABSTRACT

Core routers perform longest prefix matching (LPM) us-

ing content addressable memories (CAMs). With the rapid

growth of the Internet, LPM has become the bottleneck in

network traffic management. In a previous publication, we

have proposed an area-efficient and high-performance CAM

emulator using an LUT cascade based on an edge-valued

multi-valued decision diagram (EVMDD (k)). In the inter-

net, registered vectors must be updated frequently. In this

paper, we propose an algorithm to update an LUT cascade.

We implemented the proposed algorithm on the ARM pro-

cessor. Its update time is shorter than the peak update time

of the BGP protocol. Experimental results show that, as for

the lookup speed per area, our architecture outperforms ex-

isting CAM realizations on FPGAs.

1. INTRODUCTION

1.1. Demands of LPM Architecture

Routers forward packets in IP address lookups using longest
prefix matching (LPM). With the rapid growth of the Inter-

net, LPM has become the bottleneck in the network traffic

management. Previously, ternary content addressable mem-

ories (TCAMs) were widely used in routers to realize LPM.

With the rapid increase of traffic, core routers dissipate the

major part of the total network power [17]. Thus, we cannot

use TCAMs any more, since they dissipate too much power.

Le and Prassana [7] proposed a memory-based IP lookup

architecture on a field programmable gate arrays (FPGAs),

which dissipate lower power than TCAMs.

In this paper, we consider a CAM emulator using an

LUT cascade on the FPGA, which has the following fea-

tures:

High throughput per area: Recently, core routers work

at the 100 Gbps link speed for the minimum packet size (40

bytes). A parallel processing is an effective method to in-

crease the system throughput. In this case, the throughput

per area is an important measure [4]. A modern FPGA con-

sists of lookup-tables (Slices), on-chip memories (BRAMs),

arithmetic circuits (DSP48Es), and so on. Thus, a balanced

usage of hardware resources in FPGAs is the key to achieve

a high throughput per area.

High-speed updatable: The IP addresses on routers are

frequently updated (added and deleted). For a border gate-

way protocol (BGP), its peak number of updates per second

is about 10,000 [1]. The simplest method to update the LPM

architecture on an FPGA is direct rewriting of its intercon-

nections using the new configuration data. However, since

the time to generate the new configuration is very long, it is

infeasible. Thus, the high-speed update on the LPM archi-

tecture is essential.

1.2. Proposed Method

In the previous publications, we proposed CAM emulators

based on the edge-valued multi-valued decision diagrams

(EVMDD (k)s) [10] for the IP address matching [12] and

the packet classification [11]. They are more efficient than

other FPGA implementations. However, they did not con-

sider the update method.

Previous work showed that the LUT cascade based on

the EVMDD (k) is smaller than one based on the MTMDD (k).

The addition and deletion can be done in time that is propor-

tional to the number of cells in the LUT cascade based on

the multi-terminal MDD (MTMDD (k)) [12]. In this pa-

per, we apply its method into the LUT cascade based on the

EVMDD (k). Thus, the proposed LUT cascade based on the

EVMDD (k) satisfies above conditions.

1.3. Organization of the Paper

The rest of the paper is organized as follows: Chapter 2 de-

fines an LPM function; Chapter 3 introduces the LUT cas-

cade based on an EVMDD (k); Chapter 4 shows the up-

date method for the LUT cascade based on an EVMDD (k);

Chapter 5 shows experimental results; and Chapter 6 con-

cludes the paper.

2. DEFINITION OF A LONGEST PREFIX
MATCHING (LPM) FUNCTION

Definition 2.1 The LPM table stores ternary vectors of the
form V EC1 · V EC2, where V EC1 consists of 0′s and 1′s,
and V EC2 consists of ∗′s (don’t cares). The length of pre-
fix is the number of bits in V EC1. To assure that the longest
prefix address is produced, entries are stored in the descend-
ing prefix length. Let B ∈ {0, 1}. The LPM function [14]
is the logic function �f : Bn → Bm, where �f(x) is the min-
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Table 1. Example of LPM function.

x0 x1 x2 x3 Rule

0 0 0 0 1
0 0 0 1 2
1 0 0 0 3
1 0 0 1 4
0 0 1 * 5
1 0 0 * 6
0 1 * * 7

otherwise 0

f f f

Share sub func�ons Remove redundant node

0 1 0 1
0 1

0 1 0 1

Fig. 1. Conversion of a binary tree node into an MTBDD

node.

imum address of V EC1 corresponding to �x. If there is no
such vector, �f(�x) = 0m.

We can assign an arbitrary monotone increasing index

to the LPM table. In this paper, we use an M1-monotone
increasing function [8] to reduce the amount of memory.

Definition 2.2[8] Let Z be the set of integers, and I be a set
of integers including 0. An integer function f (X) : I → Z
such that 0 ≤ f (X + 1) − f (X) ≤ 1 and f (0) = 0 is
an M1-monotone increasing function on I . That is, for an
M1-monotone increasing function f (X), f (0) = 0, and
the increment of X by one increases the value of f(X) by at
most one.

Example 2.1 Table 1 shows an LPM function that is also
an M1-monotone increasing function.

3. CAM EMULATOR USING AN LUT CASCADE
BASED ON AN EVMDD (K)

3.1. LUT Cascade Based on an MTMDD (k)

Definition 3.3 A binary decision diagram (BDD) [2] is
obtained by applying Shannon expansions repeatedly to a
logic function f . Each non-terminal node labeled with a
variable xi has two outgoing edges which indicate nodes
representing cofactors of f with respect to xi.

Definition 3.4 A multi-terminal BDD (MTBDD) [3] is an
extension of a BDD and represents an integer-valued func-
tion. In the MTBDD, the terminal nodes are labeled by inte-
gers.

Definition 3.5 Let X = (X1, X2, . . . , Xu) be a partition of
the input variables, and |Xi| be the number of input vari-
ables in Xi. Xi is called a super variable. When the

Memory
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Fig. 2. An LUT cascade based on an MTMDD (k).
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Fig. 3. Example of an LUT cascade based on an MT-

MDD (k).

Shannon expansions are performed with respect to super
variables Xi, where |Xi| = k, all the non-terminal nodes
have 2k edges. In this case, we have a multi-valued multi-
terminal decision diagram (MTMDD(k)) [5]. Note that,
an MTMDD(1) means an MTBDD.

Definition 3.6 The width of the MDD (k) at the height k
is the number of edges crossing the section of the MDD (k)
between super variables Xi+1 and Xi, and denoted by μi

where the edges incident to the same node are counted as
one.

Let p be the number of rules, and |X| = n. An M1-

monotone increasing function can be realized by an LUT
cascade [15] shown in Fig. 2. Connections between LUTi
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Terminal Node Non-terminal Node

Fig. 4. Conversion of an MTBDD node into an EVBDD

node.

f f+ f
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(a) (b)

Fig. 5. Principle of reduction of width in an EVBDD.

and LUTi−1 requires ri = �log2 μi� rails. Since a mod-

ern FPGA has BRAMs and distributed RAMs (realized by

Slices), LUT cascades are easy to implement. The amount

of memory for LUTi based on an MTMDD (k) is ri·2(k+ri+1)

.Thus, the total amount of memory for an LUT cascade is

M =
∑u

i=0 ri · 2(k+ri+1).

Example 3.2 Fig. 3 shows an example of an LUT cascade
based on an MTMDD (k).

As for an M1-monotone increasing function, the upper

bound on the number of rails in the LUT cascade has been

analyzed [13] 1.

Theorem 3.1 Let p be the number of unique indices for the
M1-monotone increasing function. The upper bound on the
number of rails in the LUT cascade is r = �log2(p + 1)�.

3.2. CAM Emulator Using an LUT Cascade Based on
an EVMDD (k)

To reduce the amount of memory for an LUT cascade, we

introduce an LUT cascade based on an edge-valued multi-
valued decision diagram (EVMDD (k)), which is an ex-

tension of an EVBDD [6]. An EVBDD consists of one ter-

minal node representing zero and non-terminal nodes with

a weighted 1-edge, where the weight has an integer value

α. An EVBDD is obtained by recursively applying the con-

version shown in Fig. 4 to each non-terminal node in an

MTBDD. Note that, in the EVBDD, 0-edges have zero weights.

In an Mα-monotone increasing function, subfunction f ′

is obtained by adding α to subfunction f . Thus, an EVBDD

1In [13], the M1-monotone increasing function is called segment index

encoder function.
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Fig. 6. An LUT cascade based on an EVMDD (k).
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Fig. 7. Example of an LUT cascade based on an

EVMDD (k).

may have smaller widths by sharing f and f ′ with an α
edge (Fig. 5 (a)). The MTBDD only shares prefixes, while

the EVBDD shares both prefixes and postfixes (Fig. 5 (b)).

Definition 3.7 An edge-valued MDD (k) (EVMDD (k)) [9]
is an extension of the MDD (k), and represents a multi-
valued input M1-monotone increasing function. It consists
of one terminal node representing zero and non-terminal
nodes with edges having integer weights, and 0-edges al-
ways have zero weights.

Let p be the number of rules, and |X| = n. An M1-

monotone increasing function is efficiently realized by an

LUT cascade with adders [10] shown in Fig. 6. In this case,
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the rails represent sub-functions in the EVMDD (k). Each

LUTi has an additional rail representing the weight of the

edge. We call such an output Arail which consists of ai

rails. Since the width of the EVMDD (k) for M1-monotone

increasing function is often smaller than that of the MT-

MDD (s), we can reduce the amount of memory for the LUT

cascade by using an EVMDD (k). Since adders are realized

by DSP blocks (DSP48Es), FPGA resources are efficiently

used.

Example 3.3 Fig. 7 shows an example of an LUT cascade
based on an EVMDD (k).

The amount of memory for LUTi is (ri + ai) · 2k+ri+1 .

Let |X| = n be the number of inputs, and k = |Xi|. The

LUT cascade requires u = �n
k � LUTs. Let M be the amount

of memory for the LUT cascade based on an EVMDD (k).

Then, we have

M =
u∑

i=0

(ri + ai) · 2k+ri+1 . (1)

Also, it requires u adders. Generally, an increase of k in-

creases the amount of memory, while decreases the number

of adders.

4. UPDATE METHOD FOR THE LUT CASCADE
BASED ON THE EVMDD (K)

4.1. Definition of the Update

Definition 4.8 The update for the EVMDD (k) is a change
of a constant value in the function.

The update of the LUT cascade is decomposed into an

addition and a deletion. The addition is archived by rewrit-

ing the index corresponding to non-zero, while the deletion

is archived by rewriting the index corresponding to zero.

Thus, the update requires both an addition and a deletion.

4.2. Update of the LUT Cascade Based on the EVMDD (k)

To update the LUT cascade based on the EVMDD (k), first,

we update the EVMDD (k) corresponding to the update vec-

tor. We show an algorithm to update the EVMDD (k) as

follows:

Algorithm 4.1
1. Traverse the EVMDD (k) from the root node to the termi-

nal node corresponding to the update vector by converting
the EVMDD node into the MTMDD node.

2. When it reaches the terminal node, then rewrite the termi-
nal value.

3. Return to the root node by converting the MTMDD node
to the EVMDD node shown in Fig. 4.

4. Terminate.
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Fig. 8. Example of the update for the EVMDD (1).

Example 4.4 Fig. 8 updates the index “0” of the vector
“0101” into the index “8”. First, it traverses the EVMDD (1)
corresponding to the vector “0101” (Fig. 8 (a)～(d)) by con-
verting the EVMDD node into the MTMDD node. Then, it
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Fig. 9. Example of the update for the LUT cascade based on

the EVMDD (1).

rewrites the terminal value into “8” (Fig. 8 (e)). Finally,
it returns to the root node by converting the MTMDD node
into the EVMDD node (Fig. 8 (f)～(h)).

Then, we modify the memory of the LUT cascade ac-

cording to the modified part of the EVMDD (k). Modifica-

tion of the LUT cascade can be done as follows:

Algorithm 4.2
1. Apply the Algorithm 4.1.

2. Traverse the modified EVMDD (k) corresponding to the
update vector. Then, modify the memory of the LUT cascade
corresponding to the modified node on the EVMDD (k).

3. Terminate.

Example 4.5 Fig. 9 shows the modification of the memory
on the LUT cascade (indicated in gray) according to modi-
fied part of the EVMDD shown in Fig. 8.

4.3. Analysis of the Memory Size of the LUT Cascade

We analyze the upper bound on the memory size with re-

spect to the number of update vector p′.

Theorem 4.2 Let p be the width of the EVMDD (k) rep-
resenting M1 monotone increasing function. When p′ vec-
tors are updated, the width of the EVMDD (k) is at most
p + p′ + 1.

(Proof) As for the EVMDD (k), by shifting down all the

edge values to the terminal node, we have the MTMDD (k).

From Theorem 3.1, the width of the MTMDD (k) increases

Fig. 10. Comparison with Update Time.

at most p′. Thus, the width of the EVMDD (k) is at most

p + p′ + 1 after the update of p′ vectors. (Q.E.D.)

By Theorem 3.1, we have an upper bound of the number

of rails on the LUT cascade from the upper bound of the

width of the EVMDD (k)

Theorem 4.3 Let p be the width of the EVMDD (k) repre-
senting M1 monotone increasing function. After p′ vectors
are updated, the number of rails on the LUT cascade based
on the EVMDD (k) is at most r = �log2(p + p′ + 1)�.

(Proof) From Theorem 4.2, the width of the EVMDD (k)

is at most p + p′ + 1. Obviously, the number of rails is at

most r = �log2(p + p′ + 1)�. (Q.E.D.)

Theorem 4.3 introduces the upper bound of the number

of rails. In the LPM function, the length of vector n is fixed.

For example, that for the IPv4 address is 32, while that for

the IPv6 address is 128. Therefore, Expr. (1) shows the up-

per bound of the memory size of the LUT cascade based on

the EVMDD (k).

Corollary 4.1 Assume that p vectors are registered on the
LUT cascade based on the EVMDD (k). When p′ vectors are
updated, then, its memory size is at most n

k 2n/k+1�log2(p+
p′ + 1)�, where n is the length of the vector.

(Proof) The upper bound of both the adder rail and the

rail is p + p′1 + 1 respectively. Thus, the number of out-

puts for each LUT is at most 2�log2(p + p′ + 1)�. The

number of words for each memory is 2n/k, and the num-

ber of memories on the LUT cascade is n
k . Thus, we have

n
k 2n/k+1�log2(p + p′ + 1)�. (Q.E.D.)

5. EXPERIMENTAL RESULTS

5.1. Comparison with Update Time

We implemented Algorithm 4.2 using the ARM Cortex-A9

MPCore (666 MHz, L1 cache 32KB I/D, L2 cache 512KB)

on the Avanet Corp. Zedboard which has a 512 MB DDR3
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Table 2. Comparison with other realizations.

p = 255 p = 511 p = 1023
Realization 4-LUT BRAM Cascade Cascade 4-LUT BRAM Cascade Cascade 4-LUT BRAM Cascade Cascade

+LUT (MT) (EV) +LUT (MT) (EV) +LUT (MT) (EV)

# of 4LUTs 3156 1271 — — 6383 2806 — — 13294 6133 — —

# of Block RAMs — 32 18 16 — 64 21 18 — 128 32 22

Equivalent # of 4LUTs 3156 7415 3456 3072 6383 15094 4032 3456 13294 30709 6144 4224

Max. Freq. (MHz) 55.1 46.5 188.7 181.1 52.6 42.1 172.9 168.8 50.1 38.4 165.7 152.3

Efficiency (KHz/LUT) 17.4 6.2 54.6 58.9 8.2 2.7 42.8 48.8 3.7 1.2 26.9 36.0

SDRAM. The operating system (OS) was Ubuntu 12.04 LTS.

We wrote Algorithm 4.2 by C-language. Then, we gener-

ated the execution code by gcc compiler with an optimize

option -O3. The size of the execution code was 96.3 KB.

Thus, the proposed program and the work area (stack and

heap) fit in the available memory. As for the update time

of LUT cascades with respect to the number of updates,

Fig. 10 compares the EVMDD (k) based one with the MT-

MDD (k) based one [12]. Although the update time for

the EVMDD (k) based one is longer than that for the MT-

MDD (k) based one, it is about a half of the required time for

the BGP protocol which requires 10,000 updates per second.

Thus, its update time is acceptable.

5.2. Comparison of Area-Performance Efficiency

We assumed that the length of the vector is 32. We imple-

mented the Xilinx Inc. CAM IPs [18] on the Xilinx Inc.

FPGA (Spartan III: XC3S256FG). The synthesis tool was

Xilinx Inc. ISE Web Pack 7.2i. As for the number of vec-

tors p, Table 2 compares the EVMDD (k) based one with the

4-input LUT based CAM IP (4-LUT), and the block RAM

and 4-input LUT based CAM IP (BRAM+LUT). Since the

different realization uses different resources, to do fair com-

parison, we assume that one 4-input LUT corresponds to 96

bits of a BRAM [16]. We used the equivalent number of
4-input LUTs as follows:

Equivalent # of 4LUTs = # of 4-input LUTs

+ # of BRAMs× 192.

Since the LPM architecture on the router requires high through-

put per area, we used efficiency [kHz/LUT], which shows

the clock frequency per a 4-input LUT. Table 2 shows that

the LUT cascade based on the EVMDD (k) has the highest

efficiency.

6. CONCLUSION

This paper showed an update method for a CAM emulator

using an LUT cascade based on an EVMDD (k). Since the

EVMDD (k) represents the M1-monotone increasing func-

tion, it is suitable for the LPM function, which is used for

the router. The experimental result showed that the proposed

update method is acceptable for the BGP protocol which re-

quires 100,000 updates per second. Compared with other

CAM realizations, the LUT cascade based on the EVMDD (k)

has a higher throughput per area.
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