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Abstract—This paper shows that autocorrelation functions
are useful to find the number of variables to represent
incompletely specified index generation functions. It also shows
a strategy to reduce the number of variables to represent
incompletely specified index generation functions in the au-
tocorrelation domain.
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I. INTRODUCTION

Various methods exist to decompose logic functions into

linear and non-linear parts. They are used to simplify AND-

OR logic circuits [9], [7], [3], [5], [20], or to simplify binary

decision diagrams [4], [6], [8].

To find a linear part of a decomposition, Walsh spectrum

and autocorrelation functions are used. Since autocorrela-

tions are invariant under a linear transformation of the input

variables [10], they are useful for linear decompositions.

In this paper, we use linear decompositions to realize

functions for which only k combinations of inputs are

defined. For this class of functions, the circuit sizes can be

reduced drastically with linear decompositions. To imple-

ment the linear part, we use a special programmable circuit

that consists of registers, multiplexers, and EXOR gates. To

implement the general part, we use a look-up table (LUT).

Thus, Fig. 1.1 can be a reconfigurable circuit.

Given an incompletely specified function, the problem of

the linear decomposition is to obtain a linear transformation

that minimizes the number of variables p for the general

part. When a given function is defined for only k input

combinations, the number of variables can be reduced to

2�log2 k� − 3, in many cases, and by this, the size of the

LUT is reduced drastically.

In this paper, we show that the minimization of variables

for incompletely specified index generation functions can

be done in the autocorrelation function domain. The rest

of the paper is organized as follows: Section 2 defines

index generation functions. Section 3 shows the number of

variables to represent incompletely specified index gener-

ation functions. Section 4 shows a method to reduce the

number of variables by linear transformations. Section 5

introduces autocorrelation functions. Section 6 shows an

algorithm to compute autocorrelation function. Section 7

shows a method to find good linear transformations, and

Section 8 summarizes the paper.

II. INDEX GENERATION FUNCTION

Definition 2.1: [13], [17] Consider a set of k different

vectors of n bits. These vectors are registered vectors.

For each registered vector, assign a unique integer from

1 to k. A registered vector table shows an index for

each registered vector. An incompletely specified index
generation function produces a corresponding index when

the input vector matches a registered vector. Otherwise,

the value of the function is undefined (d, don’t care). The

incompletely specified index generation function represents

a mapping M → {1, 2, . . . , k}, where M ⊂ Bn denotes the

set of registered vectors. k is the weight of the function.

Example 2.1: Consider the registered vectors shown in

Table 2.1. These vectors show an index generation function

with weight k = 7.

Index generation functions are useful for address tables

for the Internet, terminal access controllers of local area net-

works, databases, memory patch circuits, text compressions,

password tables, code converters [13], [16], [17], and com-

puter virus scanning engines. In many cases, functions must

be updated frequently. Thus, a reconfigurable architecture

such as Fig. 1.1 is desirable for the implementation.
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Figure 1.1. Linear Decomposition.
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Table 2.1
REGISTERED VECTOR TABLE

Vector Index
x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 2
0 0 1 0 0 0 0 3
0 0 0 1 0 0 0 4
0 0 0 0 1 0 0 5
0 0 0 0 0 1 0 6
0 0 0 0 0 0 1 7
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Figure 3.1. Index Generation Function of 4 variables.

III. NUMBER OF VARIABLES TO REPRESENT

INCOMPLETELY SPECIFIED FUNCTIONS

In an incompletely specified function f , don’t care values

can be chosen either as 0 or 1, to minimize the number of

variables to represent f . This property is useful to realize a

function using a smaller look-up table (LUT).

Theorem 3.1: Suppose that an incompletely specified

function f is represented by a decomposition chart [11]. If

each column has at most one care element, then the function

can be represented by using only the column variables.

(Proof) In each column, let the values of don’t cares ele-

ments be set to the value of the care element in the column,

then the function depends only the column variables. �

Example 3.1: Consider the decomposition chart shown in

Fig. 3.1, where x1 and x2 specify the columns, and x3 and

x4 specify the rows, and blank elements denote don’t cares.

Note that in Fig. 3.1, each column has at most one care
element. Thus, this function can be represented by only the

column variables x1 and x2:

F = 1 · x1x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1x̄2 ∨ 4 · x1x2.

Algorithms to minimize the number of variables in in-

completely specified functions have been developed [1], [2],

[12], [14]. As for incompletely specified index generation

functions, we have the following [16]:

Conjecture 3.1: When the number of the input variables

is sufficiently large, most incompletely specified index gen-

eration functions with weight k (≥ 8) can be represented

by p = 2�log2 k� − 3 variables.

There exist exceptions. An example of the exceptions is:

Example 3.2: Consider the registered vectors shown in

Table 2.1. It shows an index generation function with weight

k = 7. To distinguish these seven vectors, 6 variables are

necessary.

However, for such functions, as shown in the next section,

by a linear transformation, the number of variables can be

reduced. Thus, when we use linear transformations, almost

all functions can be realized with the number of variables

given by Conjecture 3.1.

As for the lower bound on the number of variables, we

have the following:

Theorem 3.2: [18] To represent any incompletely spec-

ified index generation function f with weight k, at least

q = �log2 k� variables are necessary.

Thus, when the weight k of an n-variable index generation

function is greater than 2n−1, we cannot reduce the number

of variables.

IV. REDUCTION OF THE NUMBER OF VARIABLES BY

LINEAR TRANSFORMATIONS

In the previous section, we showed a method to reduce

the number of variables for incompletely specified functions.

Unfortunately, the applicability of such method is limited.

In this section, we show that more variables can be reduced

by using linear transformations.

Example 4.1: For the function in Table 2.1, the numbers

of 1’s in the registered vectors are all one. Thus, the number

of variables for the function can be reduced to six: Any one

variable can be removed. If we remove x7, then we have:

F = 1 · x1x̄2x̄3x̄4x̄5x̄6 ∨ 2 · x̄1x2x̄3x̄4x̄5x̄6

∨ 3 · x̄1x̄2x3x̄4x̄5x̄6 ∨ 4 · x̄1x̄2x̄3x4x̄5x̄6

∨ 5 · x̄1x̄2x̄3x̄4x5x̄6 ∨ 6 · x̄1x̄2x̄3x̄4x̄5x6

∨ 7 · x̄1x̄2x̄3x̄4x̄5x̄6.

However, we cannot remove two or more variables simulta-

neously.

Definition 4.1: A linear transformation is defined as

y1 = c11x1 ⊕ c12x2 ⊕ c13x3 ⊕ . . .⊕ c1nxn,

y2 = c21x1 ⊕ c22x2 ⊕ c23x3 ⊕ . . .⊕ c2nxn,

y3 = c31x1 ⊕ c32x2 ⊕ c33x3 ⊕ . . .⊕ c3nxn,
...

yp = cp1x1 ⊕ cp2x2 ⊕ cp3x3 ⊕ . . .⊕ cpnxn,

where cij ∈ {0, 1}.
Definition 4.2: Given an incompletely specified index

generation function, a linear transformation that minimizes

the number of variables is optimum.

By Theorem 3.2, if the linear transformation reduces the

number of variables to q = �log2 k� variables, then it is

optimum.
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Table 4.1
REGISTERED VECTORS AFTER LINEAR TRANSFORMATION

Vector Index
y4 y2 y1
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Example 4.2: For the function in Table 2.1, consider the

linear transformation:

y1 = x1 ⊕ x3 ⊕ x5 ⊕ x7,
y2 = x2 ⊕ x3 ⊕ x6 ⊕ x7,
y4 = x4 ⊕ x5 ⊕ x6 ⊕ x7.

The transformed registered vectors are shown in Table 4.1.

In this case, three variables (y4, y2, y1) distinguish 7 vectors.

Note that this is an optimum transformation.

Definition 4.3: Consider an incompletely specified index

generation function of n variables:

F : M → {1, 2, . . . , k},M ⊂ {0, 1}n.
The corresponding characteristic logic function is

f : {0, 1}n → {0, 1},
where

f(�x) =

{
1 (�x ∈M )

0 (Otherwise).

In other words, the characteristic logic function is a charac-

teristic function of M .

Example 4.3: Fig. 4.1 shows the characteristic logic func-

tion for the incompletely specified index generation function

shown in Fig. 3.1.

Note that two index generation functions whose indices

are permutated have the same characteristic logic function.

Also, they require the same number of variables in linear

decompositions. From this, we have the following:
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Figure 4.1. Characteristic Logic Function for Fig. 3.1.

Lemma 4.1: Incompletely specified index generation

functions sharing the same characteristic logic functions

require the same number of variables in their linear decom-

positions.

V. AUTOCORRELATION FUNCTION

In this part, we show that an autocorrelation function

is useful to find the number of variables to represent an

incompletely specified index generation function.

Definition 5.1: Let f be an n-variable logic function, and

�τ ∈ {0, 1}n. Then, the the autocorrelation function is

Bf (�τ) =
∑

�v∈{0,1}n
f(�v) · f(�v ⊕ �τ).

Definition 5.2: Let �ei = (0, . . . , 0, 1, 0, . . . , 0) be the unit
vector whose i-th element is 1.

First, we consider the condition that a single variable can

be removed.

Lemma 5.1: Let f be the characteristic logic function

of an incompletely specified index generation function F .

Then, F can be represented without xi iff Bf (�ei) = 0.

(Proof) Consider the decomposition chart, where the row

variable is xi, and the column variables are the remaining

variables. Suppose that F can be represented without using

xi. In this case, each column has at most one non-zero

element. This means that f(�τ) · f(�τ ⊕ �ei) = 0 for each �τ .

In other words, Bf (�ei) = 0. Next, assume that Bf (�ei) = 0.

In this case, we have f(�τ) · f(�τ ⊕ �ei) = 0 for each �τ . This

means that F can be represented without using xi. �

The condition that two variables can be removed simul-

taneously is:

Lemma 5.2: Let f be the characteristic logic function

of an incompletely specified index generation function F .

Then, F can be represented without xi and xj iff Bf (�ei) =
0, Bf (�ej) = 0, and Bf (�ei ∨ �ej) = 0.

Example 5.1: First, consider the incompletely specified

index generation function shown in Fig. 5.1. The non-zero

coefficients of the autocorrelation function is shown in Table

5.1. The last column of the table denotes the weight of �τ ,

the number of 1’s in the vector. Since Bf (�ei) = 0 for i =
1, 2, 3, 4, any single variable can be removed. However, since

Bf (�ei ∨ �ej) 
= 0 for (1 ≤ i < j ≤ 4), two variables cannot

be removed simultaneously. Thus, we need at least three

variables to represent F .

Second, consider the transformation:

x1 ⇐ x1 ⊕ x4,

x2 ⇐ x2 ⊕ x4.

The map for the transformed function is shown in Fig. 3.1.

Table 5.2 shows the non-zero coefficients of the autocorre-

lation function. In this case,

Bf (�e3) = Bf (�e4) = Bf (�e3 ∨ �e4) = 0.

Thus, we can remove two variables x3 and x4 simultane-

ously, and the function can be represented with only x1 and

x2.
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Figure 5.1. Index Generation Function of 4 variables.

Table 5.1
AUTOCORRELATION COEFFICIENTS FOR FIG. 5.1

�τ Bf (�τ) |�τ |
x1 x2 x3 x4

0 0 0 0 4 0
0 0 1 1 2 2
0 1 0 1 2 2
0 1 1 0 2 2
1 0 0 1 2 2
1 0 1 0 2 2
1 1 0 0 2 2

Third, consider the transformation in Fig. 3.1:

x2 ⇐ x2 ⊕ x3.

We have the function shown in Fig. 5.2. The autocorrelation

function is shown in Table 5.3. In this case, Bf (�e3) = 2.
This means that to represent f , we need x3. However, we

can remove any one of the other variables.

In general, the condition to remove s variables simulta-

neously is given by

Theorem 5.1: Let f be the characteristic logic function

of an incompletely specified index generation function F .

Then, F can be represented without xt1 , xt2 , . . ., and xts ,

iff Bf (�t) = 0, where �t = a1�et1 ∨ a2�et2 ∨ . . . ∨ as�ets for

Table 5.2
AUTOCORRELATION COEFFICIENTS FOR FIG. 3.1

�τ Bf (�τ) |�τ |
x1 x2 x3 x4

0 0 0 0 4 0
1 1 1 1 2 4
1 0 0 1 2 2
0 1 1 0 2 2
0 1 0 1 2 2
1 0 1 0 2 2
1 1 0 0 2 2
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Figure 5.2. Index Generation Function of 4 variables.

Table 5.3
AUTOCORRELATION COEFFICIENTS FOR FIG. 5.2

�τ Bf (�τ) |�τ |
x1 x2 x3 x4

0 0 0 0 4 0
0 1 0 1 2 2
0 0 1 0 2 1
1 0 0 1 2 2
1 1 1 0 2 3
1 1 0 0 2 2
1 0 1 1 2 3

Table 5.4
AUTOCORRELATION COEFFICIENTS FOR THE FUNCTION IN TABLE 2.1

�τ Bf (�τ) |�τ |
x1 x2 x3 x4 x5 x6 x7

0 0 0 0 0 0 0 7 0
0 0 0 0 0 1 1 2 2
0 0 0 0 1 0 1 2 2
0 0 0 0 1 1 0 2 2
0 0 0 1 0 0 1 2 2
0 0 0 1 0 1 0 2 2
0 0 0 1 1 0 0 2 2
0 0 1 0 0 0 1 2 2
0 0 1 0 0 1 0 2 2
0 0 1 0 1 0 0 2 2
0 0 1 1 0 0 0 2 2
0 1 0 0 0 0 1 2 2
0 1 0 0 0 1 0 2 2
0 1 0 0 1 0 0 2 2
0 1 0 1 0 0 0 2 2
0 1 1 0 0 0 0 2 2
1 0 0 0 0 0 1 2 2
1 0 0 0 0 1 0 2 2
1 0 0 0 1 0 0 2 2
1 0 0 1 0 0 0 2 2
1 0 1 0 0 0 0 2 2
1 1 0 0 0 0 0 2 2

ai ∈ {0, 1}, �t 
= �0.

Example 5.2: Consider the incompletely specified index

generation function shown in Table 2.1. The non-zero coef-

ficients of the autocorrelation function are shown in Table

5.4. Since Bf (�ei) = 0, for i = 1, 2, . . . , 7, any single

variable can be removed. However, since Bf (�ei ∨ �ej) 
= 0
for (1 ≤ i < j ≤ 7), two variables cannot be removed

simultaneously.

Next, consider the transformation:

x1 ⇐ x1 ⊕ x3 ⊕ x5 ⊕ x7,

x2 ⇐ x2 ⊕ x3 ⊕ x6 ⊕ x7,

x4 ⇐ x4 ⊕ x5 ⊕ x6 ⊕ x7.

The non-zero coefficients of the autocorrelation function is

shown in Table 5.5. In this case, Bf (�τ) = 0, where

�τ = a1�e3 ∨ a2�e5 ∨ a3�e6 ∨ a4�e7,

ai ∈ {0, 1}, and �τ 
= �0.

Thus, four variables x3, x5, x6, x7 can be removed

simultaneously, and the function can be represented with

only x1, x2, and x4.

VI. ALGORITHM TO COMPUTE AUTOCORRELATION

FUNCTIONS

Theorem 6.1: Let M be the set of binary vectors corre-

sponding to the minterms of f . Let Df be the set of vectors
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Table 5.5
AUTOCORRELATION COEFFICIENTS FOR TRANSFORMED FUNCTION

�τ Bf (�τ) |�τ |
x1 x2 x3 x4 x5 x6 x7

0 0 0 0 0 0 0 7 0
1 0 0 0 0 1 1 2 3
0 1 0 0 1 0 1 2 3
1 1 0 0 1 1 0 2 4
1 1 0 0 0 0 1 2 3
0 1 0 0 0 1 0 2 2
1 0 0 0 1 0 0 2 2
0 0 1 1 0 0 1 2 3
1 0 1 1 0 1 0 2 4
0 1 1 1 1 0 0 2 4
1 1 1 1 0 0 0 2 4
1 0 0 1 0 0 1 2 3
0 0 0 1 0 1 0 2 2
1 1 0 1 1 0 0 2 4
0 1 0 1 0 0 0 2 2
1 0 1 0 0 0 0 2 2
0 1 0 1 0 0 1 2 3
1 1 0 1 0 1 0 2 4
0 0 0 1 1 0 0 2 2
1 0 0 1 0 0 0 2 2
0 1 1 0 0 0 0 2 2
1 1 0 0 0 0 0 2 2

�a⊕�b, where �a,�b ∈M , and a 
= b. Then,

Bf (�τ) =

⎧⎨
⎩
|M | if �τ = �0
≥ 2 if �τ ∈ Df

0 Otherwise

(Proof) The minterm expansion of f is

f =
∨

�a∈M
�x�a,

where �x�a = 1 iff �x = �a. In this case, we have

Bf (�τ) =
∑

�v∈{0,1}n
[
∨

�a∈M
�v�a] · [

∨
�b∈M

(�v ⊕ �τ)
�b]

=
∨

�a∈M

∨
�b∈M

B(�a,�b)(�τ),

where B(�a,�b)(�τ) = 1 iff τ = �a⊕�b. Thus, we have Bf (�0) =

|M |, and Bf (�a ⊕�b) ≥ 2, where �a 
= �b and �a,�b ∈ M . It is

clear that Bf (τ) = 0 for other vectors. �

Example 6.1: Consider the function shown in Fig. 5.2.

The set of vectors corresponding to the minterms for f is

M = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 1)}. Thus,

Df = {(1, 1, 0, 0), (1, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 0),
(1, 0, 0, 1), (1, 0, 1, 1)}. Also, Bf (�0) = |M | = 4. Note that

these correspond to Table 5.3.

Thus, when |M | = k, the number of non-zero coefficients

of the autocorrelation function is at most
(
k
2

)
+1 = k(k−1)

2 +
1.

It is very interesting to note that Df corresponds to the

difference matrix used in [19].

VII. A METHOD TO FIND GOOD LINEAR

TRANSFORMATIONS

A. Minimal Sets of Variables

From the results of the previous sections, we have the

following:

Algorithm 7.1: (Expression Showing Minimal Sets of

Variables for an Incompletely Specified Index Generation

Function)

1) Let f be the characteristic logic function of the index

generation function F .

2) Let Df be the set of non-zero vectors defined in

Theorem 6.1.

3) For each vector in Df , make a product by replacing

1 with x̄i, where i denotes the index of the variable,

and by replacing 0 with a missing variable.

4) Derive the sum-of-products expression (SOP) R̄ con-

sisting above products.

5) Obtain the SOP for R.

6) Each product shows a minimal set of variables to

represent F .

Note that R is the covering function defined in [16].

Example 7.1: 1) Consider the function shown in Fig.

5.2.

2) Table 5.3 shows Df .

3) The set of products to representing vectors in Df is

{x̄2x̄4, x̄3, x̄1x̄4, x̄1x̄2x̄3, x̄1x̄2, x̄1x̄3x̄4}.
4) The SOP for R̄ is

R = x̄2x̄4 ∨ x̄3 ∨ x̄1x̄4 ∨ x̄1x̄2x̄3 ∨ x̄1x̄2 ∨ x̄1x̄3x̄4.

5) The SOP for R is

R = x2x3x4 ∨ x1x3x4 ∨ x1x2x3.

6) Minimum sets of variables to represent F are

{x2, x3, x4}, {x1, x3, x4}, and {x1, x2, x3}.

Example 7.2: 1) Consider the non-zero coefficients of

the autocorrelation function shown in Table 5.5.

2) The SOP for R̄ is

R̄ = x̄1x̄6x̄7 ∨ x̄2x̄5x̄7 ∨ x̄1x̄2x̄5x̄6

∨ x̄1x̄2x̄7 ∨ x̄2x̄6 ∨ x̄1x̄5 ∨ x̄3x̄4x̄7

∨ x̄1x̄3x̄4x̄6 ∨ x̄2x̄3x̄4x̄5 ∨ x̄1x̄2x̄3x̄4

∨ x̄1x̄4x̄7 ∨ x̄4x̄6 ∨ x̄1x̄2x̄4x̄5 ∨ x̄2x̄4

∨ x̄1x̄3 ∨ x̄2x̄4x̄7 ∨ x̄1x̄2x̄4x̄6 ∨ x̄4x̄5

∨ x̄1x̄4 ∨ x̄2x̄3 ∨ x̄1x̄2.

3) The SOP for R is

R = x2x3x4x5x6 ∨ x1x3x4x5x6 ∨ x1x2x3x5x6

∨ x2x3x4x5x7 ∨ x1x3x4x6x7 ∨ x1x2x5x6x7

∨ x1x2x4.

4) The minimum set of variables to represent F is

{x1, x2, x4}.
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B. Linear Transformations in the Autocorrelation Domain

Let |M | = k. Then, the number of non-zero coefficients

in the autocorrelation function is at most
k(k−1)

2 +1. When

k << 2n, this value is not so large, and we can search for

a good linear transformation in the autocorrelation domain

instead of the original domain.

For example, Table 5.2 can be obtained from Table 5.1

by the linear transformation:

x1 ⇐ x1 ⊕ x4,

x2 ⇐ x2 ⊕ x4.

Also, Table 5.3 can be obtained from Table 5.2 by the

linear transformation:

x2 ⇐ x2 ⊕ x3.

C. Strategy to Find Good Linear Transformations in the
Autocorrelation Domain

Since Df contains all the necessary information, we can

work on Df . If Bf (�es) 
= 0, then we cannot remove the

variable xs. So, in the autocorrelation domain, we try to

find the linear transformation xi ⇐ xi ⊕ xj that modifies

such vectors to increase their weights.

To remove xi and xj simultaneously, we have to remove

the vectors �ei, �ej , and �ei ∨ �ej from Df by increasing the

weight of such vectors, if any of such vectors exist in Df .

Thus, the strategy is to increase the total number of 1’s
in the vectors of Df .

Example 7.3: Consider the function in Table 2.1. To

represent this function, we need 6 variables. Let μ be the

total number of 1’s in the vectors. Then μ = 42. By

increasing the value of μ, we can reduce the number of

variables to represent F . Consider the following operations:

x1 ⇐ x1 ⊕ x3 (μ = 46).

x1 ⇐ x1 ⊕ x5 (μ = 48).

x1 ⇐ x1 ⊕ x7 (μ = 48).

x2 ⇐ x2 ⊕ x3 (μ = 52).

x2 ⇐ x2 ⊕ x6 (μ = 54).

x2 ⇐ x2 ⊕ x7 (μ = 54).

x4 ⇐ x4 ⊕ x5 (μ = 58).

x4 ⇐ x4 ⊕ x6 (μ = 60).

x4 ⇐ x4 ⊕ x7 (μ = 60).

Note that the values of μ after the operations are non-

decreasing. These operations are equivalent to the transfor-

mation used in Example 5.2. Thus, after these transforma-

tions, F can be represented with only three variables.

VIII. EXPERIMENTAL RESULTS

We developed a program to perform the algorithm de-

scribed in the previous section. To improve the performance,

we also incorporated the rule xi ⇐ xi ⊕ xi ⊕ xk. As

Table 8.1
REDUCTION OF VARIABLES FOR 1-OUT-OF-n CODE TO INDEX

CONVERTERS

# of variables μ
n MIN AUTO Orig Aft CPU(ms)
6 3 3 30 54 10.9
7 3 3 42 84 9.7
8 3 3 56 127 12.5
9 4 4 72 180 11.3

10 4 4 90 249 16.4
11 4 4 110 330 17.5
12 4 4 132 431 32.0
13 4 4 156 546 27.3
14 4 4 182 685 22.6
15 4 6 210 840 11.3
16 4 6 240 1023 18.3
17 4 5 272 1224 35.5
18 5 6 306 1457 16.7
19 5 6 306 1710 123.8
20 5 5 380 1999 230.4
21 5 5 420 2310 783.9
22 5 7 420 2661 249.2
23 5 7 420 3036 386.0
24 5 6 552 3455 3347.2

Table 8.2
COMPARISON WITH EXISTING METHOD

Exhaustive This
Method Method

ISMVL2011 ISMVL2013
Required Large Small
Memoroy O(k2n) O(nk2)
CPU time Large Small
Quality of Exact Near
Solutions Minimum Minimum

for the benchmark function, we used the 1-out-of-n code

to index converter [18]. Table 2.1 shows the example of

n = 7. It is an index generation functions with weight

n. The i-th variable has 1 and other variables have 0 in

the input if and only if the value of the function is i. The

minimum number of variables to represent this function is

�log2 n�. Table 8.1 shows the results. The first column shows

n, the number of inputs; the second column (MIN) shows

the minimum solution; the third column (AUTO) shows the

number of variables obtained by the presented method; the

fourth column (Orig) shows the number of 1’s in the original

difference matrix; the fifth column (Aft) shows the number

of 1’s after the transformation; and the last column shows

the CPU time.

Up to n = 14, the program obtained minimum solutions.

However, for n = 15, it obtained a solution that required

two more variables than the minimum. Also, for n ≥ 22,

the algorithm failed to obtain the minimum. This implies

that for these function, we need rules that incorporate more

than three variables. However, the presented program is fast

enough and requires much less memory than one in [17] for

this class of functions. In the experiment, we used INTEL

Core i5-3320M CPU @2.6 GHz, and Windows 7, 64-bit

operating system. Currently, we are improving the algorithm.

Table 8.2 compares the property of the present algorithm

with existing method.
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IX. SUMMARY

Major contributions of this paper are:

• Defined the characteristic logic function f of an incom-

pletely specified index generation function F .

• Showed that the autocorrelation function of f are useful

to reduce the number of variables to represent F .

• Presented an algorithm to derive minimal sets of vari-

ables to represent F .

• Presented an algorithm to derive the set of vectors that

produce non-zero values in the autocorrelation function

of f . The number of non-zero coefficients is at most
k(k−1)

2 +1, where k is the number of specified elements

in the index generation function F .

• Showed a heuristic algorithm to find a good linear

transformation in the autocorrelation domain. Also de-

veloped a program and presented some experimental

results.

• Showed that the set of vectors that produce non-zero

values in the autocorrelation function of f , is equivalent

to the covering function defined in [16], and also to

the difference matrix Df used in [19].
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