
A Machine to Evaluate Decomposed Multi-Terminal
Multi-valued Decision Diagrams for Characteristic

Functions
Hiroki Nakahara∗, Tsutomu Sasao†, and Munehiro Matsuura†

∗Kagoshima University, Japan, †Kyushu Institute of Technology, Japan

Abstract—A decomposed multi-terminal multi-valued decision
diagrams for characteristic function (MTMDDs for CF) repre-
sents decomposed circuits. It can represent complex functions
compactly. This paper shows a machine that evaluates decision
diagrams. First, we introduce the decomposed MTMDDs for CF.
Then, we consider two instructions to evaluate the decomposed
MTMDDs for CF. Next, we show a machine that evaluates the
decision diagrams. We compare that machine with embedded
processors. As for the power-delay product, our machine running
at 100 MHz is 60.84 times smaller than Nios II processor running
at 100 MHz, and it is 18.66 times smaller than Atom N455
processor running at 1.67 GHz.

I. INTRODUCTION

Before the era of deep submicron, the performance of micro

processors was the major concern, and it was improved by the

scaling down of device dimensions. However, in the era of

deep submicron, the power-efficiency is the major concern of

the modern processors [4]. To improve the power-efficiency,

this paper proposed a decision diagram machine (DDM) [7],

[1] which evaluates decision diagrams (DDs). A heterogeneous

multi-valued decision diagram (HMDD) may have nodes with

different number of binary variables for different super vari-

ables [10]. Since the HMDD can use the optimal partition of

the input variables to reduce the path length, the evaluation

time of the HMDD is shorter than that of the corresponding

binary decision diagram (BDD) [15]. We showed that, the

HMDD machine is faster and dissipates lower power than

the conventional processor [12]. Applications for the HMDD

machine include a sequencer [22]; an accelerator for a logic

simulation [5]; and a packet classifier [14]. However, for

general applications including arithmetic circuits, since the

number of the nodes in a conventional HMDD increases expo-

nentially with the number of inputs, such HMDDs are difficult

to represent, when the number of inputs is large [20]. Thus,

the conventional DDM is unapplicable for general purpose.

To represent a logic circuit by DDs with a reasonable size,

we proposed decomposed MTMDDs for CF representing a

decomposed circuit [11]. With an enough size of memory,

the DDM for the decomposed MTMDD is faster than that for

the conventional HMDD. When the memory was expensive,

it was difficult to use a memory with large size. However, a

memory with more than one Giga bytes is available at a low

price today. Therefore, adopting the DDM for the decomposed
HMDDs for CF with a large memory is practical.

In this paper, we realize DDM for the decomposed HMDDs

for CF using an FPGA and an off-chip SRAM. Also, we

compare the proposed one with embedded processors with

respect to delay time, power consumption, and power-delay

product.

The rest of the paper is organized as follows: Chapter 2

shows definitions; Chapter 3 introduces the multi-terminal

multi-valued decision diagrams for characteristic function rep-

resenting a decomposed circuit (decomposed MTMDDs for

CF); Chapter 4 realizes the DDM for decomposed MTMDDs

for CF; Chapter 5 shows the experimental results; and Chapter

6 concludes the paper.

II. DEFINITION OF DECISION DIAGRAMS

A. Decision Diagram (DD)

Definition 2.1: A binary decision diagram (BDD) is ob-

tained by applying Shannon expansions repeatedly to a

logic function f [2]. Each non-terminal node labeled with

a variable xi has two outgoing edges which indicate nodes

representing cofactors of f with respect to xi. When the

Shannon expansions are performed with respect to k variables,

all the non-terminal nodes have 2k edges. In this case, we have

a multi-valued decision diagram (MDD(k)) [6].

Definition 2.2: In a DD, a sequence of edges and non-

terminal nodes leading from the root node to a terminal node

is a path. An ordered BDD (OBDD) has the same variable

order on any path. A reduced ordered BDD (ROBDD) is

derived by applying as follows:

1. Share equivalent sub-graphs.
2. If all the outgoing edges of a non-terminal node v point

the same succeeding node u, then delete v and connect

the incoming edges of v to u.

An ROMDD(k) can be defined similarly to the ROBDD.

Note that, an MDD(1) means a BDD. In this paper, a BDD

and an MDD(k) mean an ROBDD and an ROMDD(k), re-

spectively, unless stated otherwise.

If the evaluation time for all the nodes are the same, then

the average evaluation time for an HMDD is proportional to

the average path length (APL) [3].

B. Representation of Multi-output Logic Function Using De-
cision Diagrams for Characteristic Function

Many practical applications use multiple-output functions.

Here, we represent an n-input m-output logic function using

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.6

90

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.6

90

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.6

90

Half Adder

Half Adder

SumCarry

SumCarry

SumCarry

x3 x1 x3 x0 x2 x1 x2 x0x1 x0

x3 x2

x2x0x2x1

x3x0x3x1

y0y1y2y3

y0y1y2y3

×

Fig. 1. Circuit for a 2-bit multiplier.

x3_1 x1_1 x3_0 x0_1 x2_1 x1_0 x2_0 x0_0

y0y1y2y3

w1w2

w4

w0

w3

w7 w6

w5

Fig. 2. DAG representing the multiplier shown in
Fig. 1.

x3_1 x1_1 x3_0 x0_1 x2_1 x1_0 x2_0 x0_0

y0y1y2y3

w1w2

w4

w0

w3

w7 w6

w5

C2

C1

C3

Fig. 3. An example of a cluster decomposition.

a decision diagram (DD).

Definition 2.3: Let �X = (x1, x2, . . . , xn) be the input

variables, �Y = (y1, y2, . . . , ym) be the output variables,

and �f = (f1(�X), f2(�X), . . . , fm(�X)) be a multiple-output

function. The characteristic function (CF) of a multiple-

output function is �χ(�X, �Y) =
m∧

i=1

(yi ≡ fi(�X)).

The characteristic function of an n-input m-output func-

tion is a two-valued logic function with (n + m) inputs.

It has input variables xi (i = 1, 2, . . . , n), and output

variables yj for outputs fj . Let B = {0, 1}, �a ∈ Bn,
�F = (f1(�a), f2(�a), . . . , fm(�a)) ∈ Bm, and �b ∈ Bm. Then,

the characteristic function satisfies the relation

�χ(�a,�b) =
{

1 (when �b = �F (�a))
0 (otherwise)

Definition 2.4: A support variable of a function f is a

variable on which f actually depends.

Definition 2.5: [19] A multi-terminal binary decision
diagram for characteristic function (MTBDD for CF) of a

multiple-output function �f = (f1, f2, . . . , fm) represents the

characteristic function �χ. We assume that the root node is in

the top of the MTBDD, and the variable yi is below the support

variable of fi, where yi is the variable representing fi.

III. DECOMPOSED MULTI-TERMINAL MULTI-VALUED

DECISION DIAGRAMS FOR CHARACTERISTIC FUNCTION

A. Cluster Decomposition of a Circuit

In this paper, a combinational circuit is represented by a
directed acyclic graph (DAG). In a DAG, a primary input
node denotes a primary input; a primary output node denotes

a primary output; and an intermediate node denotes a 2-input

logic gate1. When the output of a logic gate i is connected to

a logic gate j, the DAG has an edge from a node i to a node j.

In the DAG, we assume that a primary input does not fan-out.

Thus, in general, we need to duplicate the input variables.

Therefore, the number of the primary input nodes can be

greater than the number of the primary inputs. We denote an

input node by (primary input name) (unique number).

1A NOT gate is converted into a NAND gate having the same inputs. Also,
a gate with more than two inputs is decomposed into multiple gates with two
inputs.

Example 3.1: Fig. 1 shows the circuit for a two-bit mul-

tiplier, where {x0, x1, x2, x3} denotes the primary inputs

and {y0, y1, y2, y3} denotes the primary outputs. Fig. 2

shows the DAG for the multiplier in Fig. 1, where X =
{x0 0,x0 1,x1 0,x1 1,x2 0,x2 1,x3 0,x3 1} denotes the pri-

mary input nodes; Y = {y0, y1, y2, y3} denotes the primary

output nodes; and W = {w0, w1, w2, w3, w4, w5, w6, w7}
denotes the intermediate nodes.

Definition 3.6: A cut (S, T) is a partition of nodes in the

DAG. For s ∈ S and t ∈ T , no node of T has an edge directed

to any node of S.

Definition 3.7: Let X be the set of primary input nodes of

the DAG. The set of nodes that depend on X is denoted by

D(X). Note that, D(X) includes the primary input nodes X ,

while it does not include the primary output nodes Y .

Example 3.2: In Fig. 2, let X = {x1 0,x2 1,x0 1,x3 0} be

a subset of primary input nodes of the DAG. In this case,

D(X) = {x1 0,x2 1,x0 1,x3 0,w1,w2,w3,w4}.
Definition 3.8: Let V be a set of all the nodes in the DAG;

(X1, X2, X3, ..., Xq) be a partition of the primary input nodes

X , where Xi∩Xj = ∅ (i �= j); and Y be the set of the primary

output nodes. A cut set with topological order {(Si, Ti)|i =
1, 2, . . . , q} is the set satisfying:

1. For first cut (S1, T1), S1 = D(X1) and T1 = V − S1.

2. For i-th cut (Si, Ti), Si = D(X1 ∪X2 ∪ . . . ∪Xi) and

Ti = V − Si, where 1 < i < q.

3. For q-th cut (Sq, Tq), Sq = D(X) and Tq = Y .

When a partition of the primary input nodes is given, the

cut set with topological order is uniquely determined. By

evaluating a set Si (i = 1, 2, . . . , q) in order, we can evaluate

the DAG.

Definition 3.9: Suppose that the DAG is decomposed into a

cut set with topological order {(Si, Ti)|i = 1, 2, . . . , q}. Then,

Ci = Si−Si−1 is a cluster, where S0 = ∅. A decomposition

of the DAG into a set of clusters {C1, C2, . . . Cq} is a cluster
decomposition.

Example 3.3: Fig. 3 shows an example of a cluster decom-

position, where C1 = {x0 0,x2 0,x1 0,x2 1,w0,w1}, C2 =
{x1 1,x3 1,w5}, and C3 = {x0 1,x3 0,w2,w4,w6,w7,w3}.

In a set of clusters {C1, C2, . . . , Cq}, when i < j, the cluster

Ci may have edges directed to the cluster Cj , while the cluster

Cj does not have edges directed to the cluster Ci.

919191

C1 C2 Cq

Rail Outputs

Fan-out of primary inputs

Fig. 4. Circuit realizing
the cluster decomposition.

x3_1 x1_1 x3_0 x0_1
x2_1 x1_0x2_0 x0_0

y0 y1y2y3

C1 C2 C3

w1
w5

Fig. 5. Circuit realizing the cluster
decomposition of 2-bit multiplier.

1

1 0

0

1 0

0 0 0 1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1
1

1

1

0

0
0

00
0

0
0

1
0

0
1

0
0

0 0

1
111

x3_1

x3_0

x2_1

x2_0

x1_0

x0_0

x1_1

x0_1

w1 w5

y0 y1

y2

y3

w1

w5

C3C2C1

Fig. 6. MTBDDs for CF representing clusters shown in Fig. 5.

Definition 3.10: Fig. 4 shows the circuit representing a set

of clusters {C1, C2, . . . Cq}. Let i < j. The outputs of the

cluster Ci directed to the cluster Cj are rail outputs, and the

inputs of the cluster Cj directed from the cluster Ci are rail
inputs.

Example 3.4: Fig. 5 shows the circuit realizing the cluster

decomposition of the two-bit multiplier shown in Fig. 3.

B. MTBDDs for CF Representing a Cluster Decomposition

In a set of clusters {C1, C2, . . . , Cq}, Ci is represented by

an MTBDD for CF, where the inputs consist of primary inputs

and rail inputs, and the outputs consist of primary outputs and

rail outputs.

Example 3.5: Fig. 6 shows MTBDDs for CF representing

clusters shown in Fig. 5.

Definition 3.11: Let {C1, C2, . . . , Cq} be a set of clusters,

where Ci is represented by an MTBDD for CF. The MTBDDs
for CF representing a cluster decomposition (decomposed
MTBDDs for CF) is obtained by connecting MTBDDs for

CF in the topological order of {C1, C2, . . . , Cq}.
Example 3.6: Fig. 7 shows the decomposed MTBDDs for

CF representing the two-bit multiplier in Fig. 3.

C. Decomposed MTMDDs for CF

A decomposed MTBDDs for CF can be extended to a

decomposed multi-valued decision diagrams for CF (de-
composed MTMDDs for CF). To reduce its evaluation time,

the DDM for decomposed MTMDDs for CF can use more

memory than that for the decomposed MTBDDs for CF.

1

1 0

0

1 0

0 0 0 1

0
0

1
0

0
1

x3_1

x3_0

x2_1

x2_0

x1_0

x0_0

x1_1

x0_1

w1

w5

y0

y1

y2

y3

w1

w5

C1

C2

C3

Fig. 7. An example of the decom-
posed MTBDDs for CF.

0 0 0 1

0
0

1
0

0
1

{x1_0,

x2_1,

x1_1,

x3_1}

{x0_0 ,x2_0}

w1

y0

y1

y2

y3

w5

1 0

0
0

1
0

0
1

1
1

w5

{x3_0,

x0_1,

w1}

Fig. 8. An example of the decom-
posed MTMDDs for CF.

Example 3.7: Fig. 8 shows the decomposed MTMDDs for

CF converted from the MTBDDs for CF shown in Fig. 7. Note

that, the decomposed MTMDDs for CF is obtained by merging

the cluster C1 and a part of cluster C2, and by changing the

variable order of a node.

As shown in Example 3.7, in MTBDDs for CF, multiple

clusters are merged and the variable order of a node is changed

to obtain MTMDDs for CF.

Note that, the decomposed MTBDDs for CF lost canonicity

of the BDD. Thus, the application of decomposed MTBDDs

for CF to formal verification is difficult. However, the applica-

tion to logic evaluation is straightforward, since the canonicity

is not used.

IV. DDM FOR DECOMPOSED MTMDDS FOR CF

A. Instructions to Evaluate the Decomposed MTMDDs for
CF [13]

In a DDM, for a non-terminal node, we use the indirect

branch instruction shown in Fig. 9. The index and branch

addresses are stored in the separated words to use the memory

efficiently as shown in Fig. 10. For a non-terminal node,

first, the current index is read. Then, the jump address cor-

responding to the value of the current input variables is read.

To evaluate a terminal node, we use the output and jump
instruction shown in Fig. 11. To evaluate a terminal node,

first, the output value is read. Then, the jump address is

read. Since we use only two instructions, only one bit field

is necessary to distinct them.

B. Interconnections Among the Decomposed MTMDDs for CF

Since the decomposed MTMDDs for CF allows fan-outs of

both the primary inputs and the rail outputs, interconnections

929292

A1

A0

index

A1

A0

index A0

A1

A3

A2

index

A0

A1

A3

A2

index
A0

A1

A2

A3

A4

A5

A7

A6

index

A0

A1

A2

A3

A4

A5

A7

A6

index

k=1 k=2 k=3

Fig. 9. Example of indirect branch instruction.

k

2k ADR_2k-1

ADR_1

ADR_0

INDEX0

ADR_2k-1

ADR_1

ADR_0

INDEX0

2k

Opcode

Fig. 10. Indirect branch instruction.

VALUE
ADR

VALUE1

ADR

VALUE1

Opcode

Fig. 11. Output and jump instruc-
tion.

are necessary. They are implemented by the random logic in

the FPGA. Since the most parts of the circuit is realized by the

nodes of the decomposed MTMDDs for CF, hardware for the

interconnections tends to be small. Thus, the interconnections

can be realized with a small FPGA. Experimental results will

demonstrate this.

C. DDM for Decomposed MTMDDs for CF

Fig. 12 shows the DDM for a decomposed MTMDDs for

CF. The instruction memory stores the instructions; the
instruction register stores the instruction from the instruction

memory; the program counter (PC) retains the address for

the instruction memory; the interconnection module selects

both the primary inputs and the rail inputs; and the double-
rank shift register retains the output value. Fig. 13 shows

the double-rank shift register consisting of double-rank flip-
flops [18]. The shift register retains outputs of the decomposed

MTMDDs for CF by the C Clock. When all outputs are

evaluated, values are sent to the primary outputs by the

S Clock.

The following algorithms show the execution of the indirect

branch instruction and the output and jump instruction.

Instruction

Memory

(Off-chip)

Primary Inputs

0: Branch

1: Output

+ PC

+1

1

0

0: Fetch inputs

1: Jump

0

1

Control
Double-Rank

RegisterFetch

Instruction

Register

Rail

Register

Primary Outputs

Interconnection

module
Index

State Variables

Rail Outputs

Op. code

same as the conventional HMDD machine

Fig. 12. DDM for Decomposed MTMDDs for CF.

FF

FF

FF

FF

FF

FF
S_Clock

C_Clock

`VALUE’ from the output instruction

Double-Rank

Filp Flop

Fig. 13. Double-rank shift register.

Algorithm 4.1: (2k indirect branch instruction)

1. Obtain indirect branch address

1.1 Read the index corresponding to the index filed of

the branch instruction.

1.2 Add it to the PC.

2. Perform the jump operation

2.1 Read the jump address corresponding to the PC.

2.2 Set the jump address to the PC.

3. Terminate.

Algorithm 4.2: (Output and jump instruction).

1. Output the value.

1.1 Read the output value and the jump address corre-

sponding to the PC.

1.2 Set the value to the double-rank register.

1.3 If all outputs are evaluated, then send them to the

primary outputs.

2. Perform the jump operation, similarly to the Step 2 of

Algorithm 4.1.

3. Terminate.

Example 4.8: The left column of Fig. 14 shows the inter-

connections for the decomposed MTMDDs for CF shown in

Fig. 8.

1. To evaluate the root node, select primary inputs x0 and

x2. Then, set the primary output y0 to the double-rank

register (Fig. 14 (1)).

2. To evaluate the next node, select primary inputs x1, x2,

and x3. Then, set rail outputs w1 and w5 to the rail

register (Fig. 14 (2)).

3. To evaluate the next node, select primary inputs x0 and

x3, and the rail input w1. Then, set the primary output

y1 to the double-rank register (Fig. 14 (3)).

4. To evaluate the leaf node, select the rail input w5. Then,

set primary outputs y2 and y3 to the double-rank register.

Since all the outputs are evaluated, the double-rank

register send them to the primary outputs (Fig. 14 (4)).

V. EXPERIMENTAL RESULTS

A. Comparison with Embedded Processors

We implemented the DDM for decomposed MTMDDs

for CF on the Altera Cyclone III starter kit (FPGA: Cy-

clone III, EP3C25). For the FPGA synthesis tool, we used

939393

TABLE I
COMPARISON OF PROCESSORS.

DDM for MTMDDs for CF@100MHz Atom N455@1.67GHz Nios II@100MHz
Name In Out FF APL #LEs Max. Freq. Delay PowerDelay Delay PowerDelay Delay PowerDelay

[MHz] [nsec] [Wnsec] [nsec] [Wnsec] [nsec] [Wnsec]
s641 37 23 14 30.0 421 323 600 562.5 1450 13268.5 10392 45148.2
s713 37 23 14 30.3 371 363 607 569.0 1370 12535.5 11050 48006.6
s820 20 19 5 49.9 425 332 998 935.2 1610 14731.5 9100 39536.0
s1196 16 14 18 99.1 636 264 1983 1858.6 2300 21045.0 24974 108497.0
s5378 35 49 164 343.8 1471 186 6877 6444.6 12330 112819.5 43825 190397.0
s9234 36 39 211 151.8 874 222 3037 2845.7 4740 43371.0 51223 222535.8
s38417 28 106 1636 2010.5 3577 129 40210 37677.2 103850 950227.5 553705 2405513.6

Ratio 1.00 1.00 1.91 18.66 13.12 60.84

QuartusII (v.9.1). We compare it with the Intel’s Atom pro-

cessor running at 1.67 GHz and the Altera’s Nios II embed-

ded processor running at 100 MHz. We obtained the delay

time per one random test vector [nsec/work] as shown in

Table I using MCNC benchmark functions [21]. To obtain

the decomposed MTBDDs for CF, first, we generated the

netlist from the Verilog-HDL description by using Quartus II

logic synthesis tool ver.9.1 with area minimization option.

Then, we decomposed the netlist into clusters by using the

greedy algorithm [16]. Next, we converted clusters into the

decomposed MTBDDs for CF. To reduce the number of nodes

in MTBDDs, we used the sifting algorithm [17]. To obtain

the decomposed MTMDDs for CF, first, we set the memory

size limitation to 1 Mega bytes (MB). Then, we converted

the decomposed MTBDDs for CF into an MTMDDs for CF

by using the dynamic programming [9]. To obtain delay time

for the Nios II processor and the Atom N455 processor, we

generated C-code for the decomposed MTMDDs for CF. Then,

we generated the executable code using gcc compiler with

optimize option -O3. The delay time of the DDM for the

decomposed MTMDDs for CF is 1.91 times shorter than that

of the Atom processor, and it is 13.12 times shorter than that

of the Nios II processor.

We measured the power consumption [W] to obtain the

power-delay product. The power-delay product corresponds

to the energy [Wnsec] to evaluate the function. To make the

comparison fair, we tried to make the temperature of the DDM

for decomposed MTMDDs for CF, the Nios II processor, and

the Atom N455 processor the same. A linear shift register

implemented on the FPGA was used to generate random test

vectors. As for the DDM for decomposed MTMDDs for CF

running at 100 MHz, we assume that the power consumption

was the total power consumption for the Altera’s Cyclone III

starter kit and the off-chip SRAM board. The power-supply

voltage of the DDM for the decomposed MTMDDs for CF

was 9.017 [V], and the measured current was 0.104 [A]. Thus,

the power consumption for the DDM for the decomposed

MTMDDs for CF is 0.937 [W]. As for the Nios II processor

running at 100 MHz, we implemented it on the same platform

as the DDM for the decomposed MTMDDs for CF. The

power-supply voltage was 9.017 [V], and the measured current

was 0.481 [A]. Thus, the power consumption for the Nios II

processor was 4.344 [W]. As for the Atom processor, to obtain

the power consumption, we measured Atom N455 embedded

evaluation board. To obtain power consumption for the Atom

processor, we turned off the display, disconnected the network,

and suspended applications except for the kernel and the

clock counter for measurement of the delay time. The power-

supply voltage was 5.000 [V], and the measured current was

1.830 [A]. Thus, the power consumption was 9.150 [W].

Table I compares power-delay products. The power-delay

product of the DDM for the decomposed MTMDDs for CF is

18.66 times lower than that of the Atom processor, and it is

66.84 times lower than that of the Nios II processor. Thus, the

DDM for the decomposed MTMDDs for CF is more power-

efficient than existing embedded processors.

VI. CONCLUSION

This paper showed the DDM for the decomposed MTMDDs

for CF. To evaluate a non-terminal node, it uses an indirect

branch instruction, while to evaluate a terminal node, it uses

an output and jump instruction. The FPGA realizes the in-

terconnections and the controller, while the SRAM stores the

instructions. As for the speed, the DDM for the decomposed

MTMDDs for CF is 1.91 times faster than the Atom processor,

and is 13.12 times faster than the Nios II processor. Also, as

for the power-delay product, the DDM dissipates 18.66 times

lower energy than the Atom processor, and dissipates 66.84

times lower energy than the Nios II processor. Thus, the DDM

for the decomposed MTMDDs for CF is more power-efficient

than existing embedded processors.

VII. ACKNOWLEDGMENTS

This research is supported in part by the Grants in Aid for

Scientific Research of JSPS. Discussions with Prof. J. T. Butler

and Prof. Shinobu Nagayama were quite useful.

REFERENCES

[1] R. T. Boute, “The binary-decision machine as programmable controller,”
Euromicro Newsletter, Vol. 1, No. 2, pp. 16-22, 1976.

[2] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. on Comput., Vol. C-35, No. 8, Aug. 1986, pp. 677-
691.

[3] J. T. Butler, T. Sasao, and M. Matsuura, “Average path length of binary
decision diagrams,” IEEE Trans. on Compt., Vol. 54, No. 9, Sep. 2005,
pp. 1041-1053.

[4] P. P. Gelsinger, “Microprocessors for the new millennium: Challenges,
opportunities, and new frontiers,” ISSCC ’01, pp. 22-25.

[5] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno, “A hardware simulation
engine based on decision diagrams,” Asia and South Pacific Design
Automation Conference (ASPDAC2000), Jan., 26-28, Yokohama, Japan,
pp.73-76.

[6] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Multi-valued decision diagrams: Theory and applications,” Multiple-
Valued Logic, Vol.4, no.1-2, 1998, pp.9-62.

[7] D. Mange, “A high-level-language programmable controller: Part I-II,”
IEEE Micro, Vol. 6, No. 1, pp. 25-41 (Part I), Vol. 6, No. 2, pp. 47-
63 (Part II), Feb/Mar, 1986.

949494

0 0 0 1

0

0

1

0

0

1

{x1_0,x2_1

x1_1,x3_1}

{x0_0 ,x2_0}

w1

y0

y1

y2
y3

w5

1 0

0

0

1

0

0

1

1

1

w5{x3_0,x0_1

w1}

x0 x1x2x3

Part of

Machine

(Gray part

in Fig.12)

00

01

10

11

x0

x0

x1 x1

x2

x2 x3

x3

Double-Rank

Register

Rail

Register

(1)

y0

0 0 0 1

0

0

1

0

0

1

{x1_0,x2_1

x1_1,x3_1}

{x0_0 ,x2_0}

w1

y0

y1

y2
y3

w5

1 0

0

0

1

0

0

1

1

1

w5{x3_0,x0_1

w1}

x0 x1x2x3

Part of

Machine

(Gray part

in Fig.12)

00

01

10

11

x0

x0

x1 x1

x2

x2 x3

x3

Double-Rank

Register

Rail

Register

(2)

w5
w1

y0

0 0 0 1

0

0

1

0

0

1

{x1_0,x2_1

x1_1,x3_1}

{x0_0 ,x2_0}

w1

y0

y1

y2
y3

w5

1 0

0

0

1

0

0

1

1

1

w5{x3_0,x0_1

w1}

x0 x1x2x3

Part of

Machine

(Gray part

in Fig.12)

00

01

10

11

x0

x0

x1 x1

x2

x2 x3

x3

Double-Rank

Register

Rail

Register

(3)

w1

w5
w1

y0 y1

0 0 0 1

0

0

1

0

0

1

{x1_0,x2_1

x1_1,x3_1}

{x0_0 ,x2_0}

w1

y0

y1

y2
y3

w5

1 0

0

0

1

0

0

1

1

1

w5{x3_0,x0_1

w1}

x0 x1x2x3

Part of

Machine

(Gray part

in Fig.12)

00

01

10

11

x0

x0

x1 x1

x2

x2 x3

x3

Double-Rank

Register

Rail

Register

(4)

w5
w1

y0

w1

y1

w5

y2 y3

y0 y1 y2 y3

Fig. 14. Example of the input selector.

[8] M. Matsuura, T. Sasao, J. T. Butler, and Y. Iguchi, “Bi-partition of
shared binary decision diagrams,” IEICE Trans. on Fund. of Electronics,
Vol.E85-A, No.12, Dec. 2002, pp.2693-2700.

[9] S. Nagayama and T. Sasao, “On the optimization of heterogeneous
MDDs,” IEEE Trans. on CAD, Vol.24, No.11, Nov., 2005, pp.1645-
1659.

[10] S. Nagayama and T. Sasao, “Compact representations of logic functions
using heterogeneous MDDs,” 33rd IEEE Int’l Symp. on Multiple-Valued
Logic (ISMVL2003), May, 2003, pp.247-255.

[11] H. Nakahara, T. Sasao, and M. Matsuura, “Multi-terminal multi-valued
decision diagrams for characteristic function representing cluster decom-
position,” The 42nd IEEE International Symposium on Multiple-Valued
Logic (ISMVL 2012), May 14-16, 2012, pp.148-153.

[12] H. Nakahara, T. Sasao, and M. Matsuura, “A low power-delay product
processor using multi-valued decision diagram machine,” The 17th
Workshop on Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2012), March 8-9, 2012, pp.394-395.

[13] H. Nakahara, T. Sasao, and M. Matsuura, “A comparison of multi-valued
and heterogeneous decision diagram machines,” Journal of Multiple-
Valued Logic, Vol. 19, No.1-3, pp.203-217.

[14] H. Nakahara, T. Sasao, and M. Matsuura, “Packet classifier using a
parallel branching program machine,” 13th EUROMICRO Conf. on
Digital System Design (DSD-2010), Lille, France, Sept., 2010, pp.745-
752.

[15] H. Nakahara, T. Sasao and M. Matsuura, “A comparison of architectures
for various decision diagram machines,” ISMVL2010, Barcelona, Spain,
May, 26-28, 2010, pp.229-234.

[16] H. Nakahara, T. Sasao, and M. Matsuura, “A PC-based logic simulator
using a look-up table cascade emulator,” IEICE Trans. on Fund. of Elec-
tronics, Communications and Computer Sciences, Vol. E89-A, No. 12,
Dec., 2006, pp. 3471-3481.

[17] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” IEEE/ACM Int’l Conf. on Computer-Aided Design (IC-
CAD1993), Nov., 1993, pp. 42-47.

[18] T. Sasao, H. Nakahara, M. Matsuura and Y. Iguchi, “Realization of
sequential circuits by look-up table ring,” The 2004 IEEE Int’l Midwest
Symp. on Circuits and Systems (MWSCAS 2004), Hiroshima, July 25-28,
2004, pp.I:517-I:520.

[19] T. Sasao and M. Matsuura, “A method to decompose multiple-output
logic functions,” 41st Design Automation Conference (DAC2004), June,
2004, pp. 428-433.

[20] T. Sasao and M. Fujita (ed.), Representations of Discrete Functions,
Kluwer Academic Publishers, 1996.

[21] S. Yang, “Logic synthesis and optimization benchmark user guide
version 3.0,” MCNC, Jan. 1991.

[22] P.J.A.Zsombor-Murray, L.J. Vroomen, R.D. Hudson, Le-Ngoc Tho, and
P.H. Holck, “Binary-decision-based programmable controllers, Part I-
III,” IEEE Micro Vol. 3, No. 4, pp. 67-83 (Part I), No. 5, pp. 16-26 (Part
II), No. 6, pp. 24-39 (Part III), 1983.

959595

