
Minimization of the Number of Edges in an EVMDD by Variable Grouping
for Fast Analysis of Multi-State Systems

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper proposes an algorithm to minimize
the number of edges in an edge-valued multi-valued decision
diagram (EVMDD) for fast analysis of multi-state systems.
We minimize the number of edges by grouping multi-valued
variables into larger-valued variables. By grouping multi-
valued variables, we can also reduce the number of nodes.
However, minimization of the number of nodes by grouping
variables is not always effective for fast analysis of multi-state
systems. On the other hand, minimization of the number of
edges is effective. Experimental results show that the proposed
algorithm for minimizing the number of edges reduces the
number of edges by up to 15% and the number of nodes by up
to 47%. This results in a speed-up of the analysis of multi-state
systems by about three times.

Keywords-Minimization algorithm of the number of edges;
EVMDDs; grouping variables for optimization of decision dia-
grams; multi-state systems; system analysis based on decision
diagrams.

I. INTRODUCTION

A multi-state system is a system model in which per-
formance, reliability, safety, efficiency, power consumption,
etc. are represented by states. It is widely used to model
various fault tolerant systems including computer server
systems, telecommunication systems, water, gas, electrical
power distribution systems, flight control systems, and nu-
clear power plant monitoring systems [2], [3], [16], [20],
[22]. To design dependable fault tolerant systems, intensive
analysis of multi-state systems is indispensable. Since this
is very time-consuming, many analysis methods have been
proposed to shorten analysis time. Among them, methods
based on binary decision diagrams (BDDs) [1], [2], [4], [22]
and multi-valued decision diagrams (MDDs) [9], [15], [19],
[20] have attracted much attention, since they hold promise
as fast analysis methods.

In analysis methods based on decision diagrams (DDs),
optimization of DDs is very important to reduce memory
size and runtime for analysis. Most existing optimization
algorithms for DDs use variable reordering approaches [5]–
[7], [11], [12], [17]. However, for analysis of multi-state
systems in which some components (i.e., variables) have
interdependent states [10], the order of some variables can
be fixed. This is because conditional probabilities P(B|A)

are computed to analyze such systems, and P(B|A) cannot
be computed unless the value of A is decided prior to B.
Thus, another approach that does not change the order of
variables would be more robust and effective for analysis of
a wide range of systems.

In this paper, we use a variable grouping approach for
optimization of DDs [13]. In many uses of DDs, minimiza-
tion of the number of nodes is the objective of optimization.
However, minimization of the number of nodes by grouping
variables is trivial, and it is not always effective for fast
analysis of multi-state systems. Thus, we propose an algo-
rithm to minimize the number of edges in an edge-valued
multi-valued decision diagram (EVMDD) [14], [15] by
grouping multi-valued variables to larger-valued variables.
By grouping variables, we can reduce not only the number
of edges, but also the number of nodes effectively, resulting
in faster analysis of multi-state systems.

This paper is organized as follows: Section II defines
multi-state systems, EVMDDs, and variable grouping. Sec-
tion III introduces the analysis method of multi-state sys-
tems using EVMDDs, and in Section IV, we propose an
algorithm to minimize the number of edges in an EVMDD.
Experimental results are shown in Section V.

II. PRELIMINARIES

This section defines multi-state systems, structure func-
tions, EVMDDs to represent structure functions, and vari-
able grouping.

A. Multi-State Systems and Structure Functions

Definition 1: A multi-state system is a model of a sys-
tem that represents, as states, a capability, such as perfor-
mance, capacity, or reliability. There are usually more than
two states, and so a multiple-valued analysis is required.
When components in a system are modeled as well, it is
called a multi-state system with multi-state components.
In this paper, it is simply called a multi-state system.
Definition 2: A state of a multi-state system depends only

on states of components in the system. A system with n
components can be considered as a multi-valued function
f (x1,x2, . . . ,xn) : R1 × R2 × . . .× Rn → M, where each xi

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISMVL.2013.37

285

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISMVL.2013.37

285

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISMVL.2013.37

284

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISMVL.2013.37

284



Thermal power
plant
x1

Hydro power
plant
x2

Wind power
plant
x3

Transformer
x4

Town
f

(a) Multi-state system.

x1 x2 x3 x4 f
0 0 0 0 0
0 0 0 1 0
0 0 0 2 0
0 0 1 0 0
0 0 1 1 1

...
...

2 2 2 2 5

(b) Structure function.

Figure 1. Multi-state system for an electrical power distribution system
and its structure function.

represents a component with ri states, Ri = {0,1, . . . ,ri−1}
is a set of the states, and M = {0,1, . . . ,m− 1} is a set of
the m system states. This multi-valued function is called a
structure function of the multi-state system.
Definition 3: A structure function f (x1,x2, . . . ,xn) is

monotone increasing iff, for all α,β ∈ Ri, where α≤ β,

f (x1,x2, . . . ,xi−1,α,xi+1, . . . ,xn)
≤ f (x1,x2, . . . ,xi−1,β,xi+1, . . . ,xn).

Structure functions are often monotone increasing, as
illustrated by the following example.
Example 1: Fig. 1(a) shows a multi-state system for an

electrical power distribution system. In this figure, the power
plants x1,x2,x3 and the transformer x4 have three states
which correspond to supply levels: 0 (breakdown), 1 (par-
tially supply), and 2 (fully supply). And, the system has six
states which correspond to the percentage of area of a town
that is blacked out: 0 (complete blackout), 1 (90% blackout),
2 (60% blackout), 3 (30% blackout), 4 (10% blackout), and
5 (0% blackout).

In this way, by assigning a value to each state in as-
cending order, we obtain the 6-valued monotone increasing
structure function f shown in Fig. 1(b). The table that is
partially shown in Fig. 1(b) has 81 rows and is too large
to be included in its entirety. However, its contents can be
determined by the function’s representation as an MDD or
EVMDD, as discussed in the next section. (End of Example)

B. Edge-Valued Multi-Valued Decision Diagrams

Definition 4: A multi-valued decision diagram (MDD)
is a rooted directed acyclic graph representing a multi-valued
function f . The MDD is obtained by repeatedly applying
the Shannon expansion to the multi-valued function [8]. It
consists of non-terminal nodes representing sub-functions
obtained from f by assigning values to certain variables.
It also has terminal nodes representing function values.
Each non-terminal node has multiple outgoing edges that
correspond to the values of a multi-valued variable. The
MDD is ordered; i.e., the order of variables along any path

x4

0 1 2

x4

x3

x2 x2

x1

1
0 2

1 2
0

1 20

0 1 2

10 2 0

1
2

x4

0 3 4

x4

x3

0 1 2

10 2
0

1
2

x4

0 3 5

x4

x3

0 1
2

10 2
0

1 2

v1

v3 v4

v5

x2

1 2
0
v2

1 2 4

v6 v7

v8

Figure 2. MDD for the structure function.

2

x4

0

x4

x3

x2 x2

x1

1
0 2

1 2 0 1
20

0 1 2

10 2 0
1 2

x3

0 1
2

111 4

x4 x4
10 2 0

1 2

231

x3

0
1

2

x2

1 2
0

5

x4 x4
10 2 0

1 2

343

Figure 3. EVMDD for the structure function.

from the root node to a terminal node is the same. When an
MDD represents a function for which multi-valued variables
have different domains, it is a heterogeneous MDD [13]. In
the following, the term ‘MDD’ refers to a heterogeneous
MDD.
Definition 5: An edge-valued MDD (EVMDD) [14] is

an extension of the MDD, and represents a multi-valued
function. It consists of one terminal node representing 0 and
non-terminal nodes with edges having integer weights; 0-
edges always have zero weights. In an EVMDD, the function
value is represented as a sum of weights for edges traversed
from the root node to the terminal node.
Example 2: Fig. 2 and Fig. 3 show an ordinary MDD

and an EVMDD for the structure function of Example 1.
For readability, some terminal nodes in the MDD are not
combined. (End of Example)

C. Variable Grouping

Definition 6: Let X = (x1,x2, . . . ,xn) be an ordered set of
n multi-valued variables. Let

X1 = (x1,x2, . . . ,xk1),
X2 = (xk1+1,xk1+2, . . . ,xk1+k2),

...

286286285285



2

X3

0

X3

X2

X1

4 5
7
8

3

0 1 2

10 2 0
1 2

X2

0 1
2

111 4

X3 X3
10 2 0

1 2

231

X2

0
1

2

1
2

0

5

X3 X3
10 2 0

1 2

343

6

Figure 4. GEVMDD for the function g(X1,X2,X3).

Xu = (xk1+k2+...+1,xk1+k2+...+2, . . . ,xn).

Then, (X1,X2, . . . ,Xu) is a grouping of X . Each ordered set
Xi = (x j+1,x j+2, . . . ,x j+ki) forms a super variable whose
domain is {0,1, . . . ,r j+1 × r j+2 × . . . × r j+ki − 1}, where
|Xi|= ki and k1 +k2 + . . .+ku = n. Note that the order of the
original multi-valued variables is preserved in a grouping.

By considering each super variable Xi as a larger-valued
variable, the original multi-valued function f (x1,x2, . . . ,xn) :
R1×R2× . . .×Rn → M can be converted into its larger-
valued input function g(X1,X2, . . . ,Xu) : P1 × P2 × . . .×
Pu→M, where Pi = {0,1, . . . ,r j+1× r j+2× . . .× r j+ki−1}.

In this paper, for convenience, an EVMDD representing
the function g obtained by grouping variables is called a
GEVMDD.
Example 3: When the multi-valued variables x1,x2,x3,x4

in Example 1 are grouped into three super variables, we have

X1 = (x1,x2),
X2 = (x3), and

X3 = (x4).

Note that since x1 and x2 are 3-valued variables, the super
variable X1 consisting of x1 and x2 is a 9-valued variable. The
GEVMDD representing the obtained function g(X1,X2,X3)
is shown in Fig. 4. (End of Example)

III. ANALYSIS METHOD USING EVMDDS

Definition 7: The probability that a structure function
f has the value s is denoted by Ps( f = s), where s ∈
{0,1, . . . ,m−1}. The probability that a component xi has the
value c is denoted by Pc(xi = c), where c∈ {0,1, . . . ,ri−1}.

An analysis of multi-state systems solves the following:
Problem 1: Given a structure function f of a multi-state

system and the probability of each state of each component
Pc(xi = c), compute the probability of each state of the multi-
state system Ps( f = s). For simplicity, we assume that the
probabilities of all component states are independent of each
other.

2

x4

0

x4

x3

x2 x2

x1

1
0 2

1 2 0 1
20

0 1 2

10 2 0
1 2

x3

0 1
2

111 4

x4 x4
10 2 0

1 2

231

x3

0
1

2

x2

1 2
0

5

x4 x4
10 2 0

1 2

343

v1

v2

P  (f=0) = 29/81
P  (f=1) = 14/81
P  (f=2) = 14/81
P  (f=3) =   1/9
P  (f=4) = 10/81
P  (f=5) =   5/81

s
s
s
s
s
s

P  (f     =0) = 5/9
P  (f     =1) = 4/9
s
s

v2
v2

P  (f     =0) = 1/3
P  (f     =1) = 2/3
s
s

v
v
1
1

T

Figure 5. Analysis of the multi-state system using EVMDD.

To solve this problem efficiently, a method using
EVMDDs has been proposed [15]. The method represents
given structure functions using EVMDDs, and computes
probabilities for a structure function by merging probabilities
for sub-functions represented by nodes in a bottom-up
manner.
Example 4: Let us compute the probability of each state

of the multi-state system using the EVMDD in Fig. 5. In
this example, we assume that all states of each component
occur with the same probability, 1/3.

First, we have Ps( fT = 0) = 1 at the terminal node T .
Then, we compute probabilities for a sub-function fv1 at
node v1. Since this node has two edges pointing to T whose
values are 1, and the two edges represent fv1 = 1, we have

Ps( fT = 0)×Pc(x4 = 1) = 1/3,

Ps( fT = 0)×Pc(x4 = 2) = 1/3, and thus,

Ps( fv1 = 1) = Ps( fT = 0)×Pc(x4 = 1)
+Ps( fT = 0)×Pc(x4 = 2)

= 2/3.

Thus, Ps( fv1 = 0) = 1/3 and Ps( fv1 = 1) = 2/3 for v1. At v2,
the probabilities at the terminal node and v1 are multiplied
by 1/3, and they are merged. Thus, Ps( fv2 = 0) = 5/9
and Ps( fv2 = 1) = 4/9. Similarly, by performing the same
computation at each node in a bottom-up manner, we
have the following at the root node: Ps( f = 0) = 29/81,
Ps( f = 1) = 14/81, Ps( f = 2) = 14/81, Ps( f = 3) = 1/9,
Ps( f = 4)= 10/81, and Ps( f = 5)= 5/81. (End of Example)

Since in many applications, structure functions are mono-
tone increasing, the functions are compactly represented by
EVMDDs, and Problem 1 can be solved efficiently by an
algorithm whose time complexity is O(NE), where NE is
the number of nodes in an EVMDD. However, this time
complexity is a very rough estimate.

We can minimize the number of nodes in an EVMDD
straightforwardly by grouping all n multi-valued variables
of a given structure function into a super variable as shown

287287286286



0

X1

1 2
0

αr   - 1
α2α1 n

nr   - 1

Figure 6. GEVMDD for a function g(X1), X1 = (x1,x2, . . . ,xn).

in Fig. 6. In this case, although the number of nodes is
only one, we have to access all rn edges, and merge their
probabilities, where r is the number of states for each
multi-valued variable. This allows the computation of the
probabilities of the function (Ps( f = s)). Therefore, the
time complexity is, more specifically, (overhead for merging
probabilities) × (the number of edges in each node) ×
(the number of nodes). Since the overhead for merging
probabilities is small, the time complexity is O(rn) in this
example.

In the optimization of DDs based on variable reordering,
minimization of the number of nodes is effective for fast
analysis since the number of edges in each node is constant.
However, in the optimization of EVMDDs based on vari-
able grouping, minimization of the number of edges in an
EVMDD is more effective.

IV. MINIMIZATION OF THE NUMBER OF EDGES

Example 5: The EVMDD shown in Fig. 3 has 39 edges.
On the other hand, the GEVMDD shown in Fig. 4 has 36
edges, and it is the GEVMDD with the minimum number
of edges. If the variables x1,x2,x3, and x4 are grouped into a
single super variable as in Fig. 6, then a GEVMDD obtained
by this grouping has 34 = 81 edges. (End of Example)

In this way, different groupings of variables produce
GEVMDDs with a different number of edges. Thus, there is
an optimum grouping of variables that produces a GEVMDD
with the minimum number of edges. This section formulates
a minimization problem of the number of edges in an
EVMDD, and then presents a minimization algorithm.
Problem 2: Given an EVMDD representing a struc-

ture function f (x1,x2, . . . ,xn), find a grouping of variables
(x1,x2, . . . ,xn) that produces a GEVMDD with the minimum
number of edges.

Algorithm 1 shows a pseudo-code to solve Problem 2.
This algorithm is based on dynamic programing, and
searches for the minimum number of edges for each sub-
EVMDD sequentially from the bottom. In the following,
for simplicity, we assume that the variable order for a given
EVMDD is x1,x2, . . . ,xn from the top to the bottom.

Algorithm 1 is efficient because limit[i] prevents unnec-
essary iterations of the second for loop. This is shown by

Algorithm 1: (Minimization of the number of edges)
1: minimize edge (EVMDD, the number of variables n) {
2: for(i = n; i > 0; i = i - 1) {
3: min edges = ∞ :
4: for(k = 1; k ≤ limit[i]; k = k + 1) {
5: n edges = nodes(EVMDD, i, k) ×∏k−1

j=0 ri+ j ;
6: n edges = n edges + lower edges[i + k] ;
7: if (min edges > n edges) {
8: min edges = n edges ;
9: register the grouping k ;
10: }
11: }
12: lower table[i] = min edges ;
13: }
14: return lower table[1] ;
15:}

the following theorem.
Theorem 1: Let nodes(EVMDD, i, k) be the number

of nodes in a GEVMDD with respect to a super variable
that consists of k variables from xi to xi+k−1, and let
edges(EVMDD, i) be the number of edges associated with
nodes in the given EVMDD representing variables from xi
to xn. If, for some value of k, the following relation holds:

nodes(EVMDD, i, k)×
k−1

∏
j=0

ri+ j > edges(EVMDD, i),

then for any k′ ≥ k, the same relation holds:

nodes(EVMDD, i, k′)×
k′−1

∏
j=0

ri+ j > edges(EVMDD, i).

(Proof) See Appendix.
This theorem states that, once the number of edges in

a GEVMDD becomes larger than that in an EVMDD, the
number of edges in a GEVMDD never becomes smaller,
even if the number of variables in a super variable increases.
Thus, we can prune such redundant branching.

In the 5th line, nodes(EVMDD, i, k) denotes the number
of root nodes for sub-EVMDDs from xi to xi+k−1. When k
variables xi,xi+1, . . . ,xi+k−1 are grouped into a super vari-
able, each root node for the sub-EVMDDs corresponds to
each node in a GEVMDD with respect to the super variable,
which has ∏k−1

j=0 ri+ j edges. That is, the 5th line computes
the number of edges in the GEVMDD with respect to the
super variable from xi to xi+k−1.

In the 6th line, the table lower edges[i + k] stores the
minimum number of edges computed for the lower-EVMDD
from xi+k to xn. By summing this number and the number
of edges computed in the 5th line, we have the number of
edges in sub-EVMDDs from xi to xn.

The time complexity of Algorithm 1 is O(n2). However,
the coefficient of n2 is very small due to Theorem 1.

288288287287



Table I
EVMDDS AND GEVMDDS FOR m-STATE SYSTEMS WITH n 3-STATE COMPONENTS.

n m Number of nodes Number of edges Computation time (μsec.)
EVMDD GEVMDD Ratio EVMDD GEVMDD Ratio EVMDD GEVMDD Ratio

5 3 10 8 80% 27 27 100% 1.20 1.08 90%
5 10 18 15 83% 51 48 94% 2.52 2.37 94%

10 3 15 13 87% 42 42 100% 1.85 1.83 99%
10 10 57 47 82% 168 162 96% 7.84 7.20 92%
10 100 265 171 65% 792 750 95% 49.27 35.54 72%
10 1,000 907 547 60% 2,718 2,364 87% 317.79 181.73 57%
15 3 30 28 93% 87 87 100% 3.72 3.84 103%
15 10 105 102 97% 312 309 99% 14.07 13.35 95%
15 100 708 613 87% 2,121 2,076 98% 110.72 99.30 90%
15 1,000 3,362 2,472 74% 10,083 9,597 95% 744.59 537.08 72%
15 10,000 11,474 8,219 72% 34,419 31,212 91% 4,701.00 2,504.00 53%
15 100,000 62,759 33,575 53% 188,274 159,768 85% 60,901.00 17,996.00 30%
n: Number of 3-state components. m: Number of states for systems. Ratio: GEVMDD / EVMDD × 100 (%)
The computation time is an average time obtained by running the same computation 1,000,000 times, and dividing its total
time by 1,000,000.

Since the proposed algorithm does not change the order of
the original variables, it can be also applied to the analysis
of multi-state systems in which some components have
interdependent states [10].

V. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed optimization
algorithm for fast system analysis, we used the same anal-
ysis algorithm and the same structure functions as [15].
The algorithms are implemented on our private EVMDD
package, and run on the following computer environment:
CPU: Intel Core2 Quad Q6600 2.4GHz, memory: 4GB, OS:
CentOS 5.7, and C-compiler: gcc -O2 (version 4.1.2). Table I
shows the experimental results for randomly generated m-
state systems with n 3-state components.

From this table, we can see that GEVMDDs have fewer
nodes than EVMDDs for all functions. Especially, as the
number of states m becomes larger, the difference in the
number of nodes between GEVMDDs and EVMDDs be-
comes larger. With respect to the number of edges, Table I
shows a similar tendency, although the relative reduction is
not so large.

Surprisingly, the computation time of the analysis of
multi-state systems is reduced more than the number of
edges and nodes are reduced, when m is large. This is be-
cause a reduction in the number of nodes and edges reduces
the overhead of merging probabilities. In the analysis method
using EVMDDs, probabilities of function values at each
node are merged at its parent node, as shown in Fig. 5.
Thus, the overhead of merging probabilities increases as
the number of function values at child nodes increases. Our
optimization algorithm usually groups nodes near the root
node into one node, as shown in Fig. 4. Since nodes near the
root node tend to have many function values, this grouping
yields a significant reduction in overhead. This results in
faster system analysis.

From these results, we can say that the proposed opti-
mization algorithm is very effective for fast system analysis,
since minimization of the number of edges by variable
grouping reduces the number of nodes, as well as overhead
for merging probabilities. Especially, when the number of
states m is large, we can represent structure functions more
compactly, and analyze multi-state systems more quickly.

VI. CONCLUSION AND COMMENTS

This paper proposes a minimization algorithm of the num-
ber of edges in an EVMDD for fast analysis of multi-state
systems. The proposed algorithm minimizes the number of
edges by grouping multi-valued variables into larger-valued
variables. By grouping multi-valued variables, we can also
reduce the number of nodes and overhead for merging
probabilities. Experimental results show that the proposed
algorithm reduces the number of edges by up to 15% and
reduces the number of nodes by up to 47%, resulting in
much faster analysis of multi-state systems.

As a future work, we will study an EVMDD-based
analysis method of systems in which components have
interdependent states.

ACKNOWLEDGMENTS

This research is partly supported by the Ministry of Ed-
ucation, Culture, Sports, Science, and Technology (MEXT)
Grant-in-Aid for Scientific Research (C), (No. 22500050),
2012, and Hiroshima City University Grant for Special
Academic Research (General Studies), (No. 0206), 2012.

REFERENCES

[1] J. D. Andrews and S. J. Dunnett, “Event-tree analysis using
binary decision diagrams,” IEEE Transactions on Reliability,
Vol. 49, No. 2, pp. 230–238, June 2000.

[2] Y.-R. Chang, S. V. Amari, and S.-Y. Kuo, “Reliability eval-
uation of multi-state systems subject to imperfect coverage
using OBDD,” Proc. of the 2002 Pacific Rim International
Symposium on Dependable Computing (PRDC’02), pp. 193–
200, 2002.

289289288288



[3] S. A. Doyle, J. B. Dugan, and F. A. Patterson-Hine, “A
combinatorial approach to modeling imperfect coverage,”
IEEE Transactions on Reliability, Vol. 44, No. 1, pp. 87–94,
Mar. 1995.

[4] S. A. Doyle and J. B. Dugan, “Dependability assessment
using binary decision diagrams (BDDs),” 25th International
Symposium on Fault-Tolerant Computing (FTCS), pp. 249–
258, June 1995.

[5] R. Drechsler, W. Günther, and F. Somenzi, “Using lower
bounds during dynamic BDD minimization,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., Vol. 20 No. 1,
pp. 51–57, Jan. 2001.

[6] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable order-
ing of binary decision diagrams for the application of multi-
level logic synthesis,“ EDAC, pp. 50–54, Mar. 1991.

[7] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of
binary decision diagrams based on exchanges of variables,“
International Conference on Computer-Aided Design (IC-
CAD’91), pp. 472–475, Nov. 1991.

[8] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and ap-
plications,” Multiple-Valued Logic: An International Journal,
Vol. 4, No. 1-2, pp. 9–62, 1998.

[9] T. W. Manikas, M. A. Thornton, and D. Y. Feinstein,
“Using multiple-valued logic decision diagrams to model
system threat probabilities,” 41th International Symposium on
Multiple-Valued Logic, pp. 263–267, May 2011.

[10] T. W. Manikas, D. Y. Feinstein, and M. A. Thornton, “Mod-
eling medical system threats with conditional probabilities
using multiple-valued logic decision diagrams,” 42nd Inter-
national Symposium on Multiple-Valued Logic, pp. 244–249,
May 2012.

[11] D. M. Miller and R. Drechsler, “Augmented sifting of
multiple-valued decision diagrams,” 33rd International Sym-
posium on Multiple-Valued Logic, pp. 375–382, Tokyo, Japan,
May 2003.

[12] S. Nagayama A. Mishchenko, T. Sasao, and J. T. Butler,
“Exact and heuristic minimization of the average path length
in decision diagrams,” Journal of Multiple-Valued Logic and
Soft Computing, Vol. 11, No. 5-6, pp. 437–465, Aug. 2005.

[13] S. Nagayama and T. Sasao, “On the optimization of het-
erogeneous MDDs,” IEEE Trans. on CAD, Vol. 24, No. 11,
pp. 1645–1659, Nov. 2005.

[14] S. Nagayama, T. Sasao, and J. T. Butler, “A systematic
design method for two-variable numeric function generators
using multiple-valued decision diagrams,” IEICE Trans. on
Information and Systems, Vol. E93-D, No. 8, pp. 2059–2067,
Aug. 2010.

[15] S. Nagayama, T. Sasao, and J. T. Butler, “Analysis of multi-
state systems with multi-state components using EVMDDs,”
42nd International Symposium on Multiple-Valued Logic,
pp.122-127, May, 2012.

[16] J. E. Ramirez-Marquez and D. W. Coit, “Composite impor-
tance measures for multi-state systems with multi-state com-
ponents,” IEEE Transactions on Reliability, Vol. 54, No. 3,
pp. 517–529, Sept. 2005.

[17] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,” International Conference on Computer-
Aided Design (ICCAD’93), pp. 42–47, Nov. 1993.

[18] T. Sasao and M. Fujita (eds.), Representations of Discrete
Functions, Kluwer Academic Publishers 1996.

[19] L. Xing and J. B. Dugan, “Dependability analysis using
multiple-valued decision diagrams,” Proc. of 6th International
Conference on Probabilistic Safety Assessment and Manage-
ment, June 2002.

[20] L. Xing and Y. Dai, “A new decision-diagram-based method
for efficient analysis on multistate systems,” IEEE Transac-
tions on Dependable and Secure Computing, Vol. 6, No. 3,
pp. 161–174, 2009.

[21] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and
R. S. Stankovic, Decision Diagram Techniques for Micro- and
Nanoelectronic Design, CRC Press, Taylor & Francis Group,
2006.

[22] X. Zang, D. Wang, H. Sun, and K. S. Trivedi, “A BDD-based
algorithm for analysis of multistate systems with multistate
components,” IEEE Transactions on Computers, Vol. 52,
No. 12, pp. 1608–1618, Dec. 2003.

APPENDIX

Proof for Theorem 1: Suppose that for a value of k,
the following relation holds:

nodes(EVMDD, i, k)×
k−1

∏
j=0

ri+ j > edges(EVMDD, i) (A.1)

Then, we will prove that, for k+ 1, (A.1) also holds.
By multiplying both sides of (A.1) by ri+k, we have

nodes(EVMDD, i, k)×
k−1

∏
j=0

ri+ j× ri+k

> edges(EVMDD, i)× ri+k, (A.2)

where ri+k is the number of values of xi+k.
From the definition of a super variable, the number of

edges in a GEVMDD with respect to a super variable that
consists of k+ 1 variables from xi to xi+k is

nodes(EVMDD, i, k+ 1)×
k

∏
j=0

ri+ j.

Since nodes(EVMDD, i, k) is monotone increasing with
respect to k, we have

nodes(EVMDD, i, k+ 1)≥ nodes(EVMDD, i, k)

and thus,

nodes(EVMDD, i, k+ 1)×
k

∏
j=0

ri+ j

≥ nodes(EVMDD, i, k)×
k

∏
j=0

ri+ j. (A.3)

From (A.1), (A.2), and (A.3), the relation (A.1) holds for
k+ 1. Therefore, for any k′ ≥ k, the theorem holds.

290290289289


