
Multiple-Valued Input Index Generation Functions:
Optimization by Linear Transformation

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract—In an incompletely specified function f , don’t care
values can be chosen to minimize the number of variables to
represent f . We consider incompletely specified multiple-valued
input index generation functions f : D → {1, 2, . . . , k}, where
D ⊆ P n and P = {0, 1, 2, . . . , p − 1}. We show that most
functions can be represented with 2�logp(k + 1)� or fewer
variables, where k denotes the number of elements in D. Also, we
introduce linear transformations to further reduce the number
of variables. Experimental results support these observations.

I. INTRODUCTION

In an incompletely specified function f , don’t care values
can be chosen to minimize the number of variables to represent
f . This property is useful to represent the function compactly.
In this paper, we consider the minimization of number of
variables for incompletely specified index generation func-
tions. We show that most p-valued input index generation
functions of n variables with weight k can be represented
by 2�logp(k + 1)� or fewer variables, when k is sufficiently
smaller than pn. i.e., the functions are highly unspecified.

Index generation functions have applications in pattern
matching in internet [10]. The problem is also related to data
mining and perfect hashing. The rest of the paper is organized
as follows: Section 2 defines words; Section 3 derives the
number of variables to represent an incompletely specified
index generation functions with k registered vectors; Section
4 shows statistical results for uniformly distributed functions;
Section 5 shows reduction of the number of variables by linear
transformations; Section 6 shows experimental results using
list of English words; and Section 7 concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1: Consider a set of k different vectors with n
components. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A
registered vector table shows the index of each registered
vector.

Definition 2.2: A incompletely specified index generation
function f is a mapping D → {1, 2, . . . , k}, where D denotes
the set of registered vectors, D ⊆ Pn, P = {0, 1, . . . , p− 1},
|D| = k, and |D| denotes the number of elements in D. A
completely specified index generation function produces
the corresponding index if the input matches a registered
vector, and produces 0 otherwise. k is the weight of the index
generation function.

TABLE 2.1
REGISTERED VECTOR TABLE.

x1 x2 x3 x4 x5 f
0 0 1 0 0 1
0 1 0 0 1 2
0 1 1 1 0 3
1 0 0 1 1 4
1 0 1 0 1 5
1 1 0 1 0 6

Example 2.1: Table 2.1 shows a registered vector table
consisting of 6 vectors. It shows an incompletely specified
index generation function with weight 6.

Definition 2.3: f depends on xi if there exists a pair of
vectors

�a = (a1, a2, . . . , ai, . . . , an) and
�b = (a1, a2, . . . , bi, . . . , an),

such that both f(�a) and f(�b) are specified, ai �= bi, and f(�a) �=
f(�b).
If f depends on xi, then xi is essential in f , and xi must
appear in every expression for f .

Definition 2.4: Two functions f and g are compatible when
the following condition holds for any �a ∈ Pn: If both f(�a)
and g(�a) are specified, then f(�a) = g(�a).

Lemma 2.1: Let fi = f(|x = i) for i = 0, 1, . . . , p − 1.
Then, x is non-essential in f iff fi and fj are compatible for
all the pair (i, j).

If x is non-essential in f , then f can be represented by an
expression without x. Essential variables must appear in every
expression for f , while non-essential variables may appear in
some expressions and not in others. Algorithms to represent
a given function by using the minimum number of variables
have been considered [1], [3], [4].

III. NUMBER OF VARIABLES TO REPRESENT INDEX

GENERATION FUNCTIONS

In this part, we derive the number of variables to represent
an incompletely specified index generation function with k
registered vectors. We assume that k is much smaller than
pn, the total number of input combinations. The basic idea is
given by

Lemma 3.1: Suppose that an incompletely specified func-
tion f(X1, X2) is represented by a decomposition chart, where

2012 IEEE 42nd International Symposium on Multiple-Valued Logic

0195-623X/12 $26.00 © 2012 IEEE

DOI 10.1109/ISMVL.2012.21

185

TABLE 3.1
DECOMPOSITION CHART FOR f(X1, X2).

0 0 0 0 1 1 1 1 x1

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x3

0 0 1
0 1 2 5
1 0 3 6
1 1 4
x4 x5

X1 labels the columns and X2 labels the rows. If each column
has at most one care (non-zero) element, then the function can
be represented by using only variables in X1.
(Proof) In each column, let the values of don’t cares elements
be set to the value of the non-zero element in the column, then
the function depends only on the column variables. �

Example 3.1: Consider the decomposition chart shown in
Table 3.1. In Table 3.1, x1, x2, and x3 specify the columns,
while x4 and x5 specify the rows. Blank elements denote don’t
cares. Note that in Table 3.1, each column has at most one
care element. Thus, the function can be represented by only
the column variables: x1, x2, and x3. f = 1 · x̄1x̄2x3 ∨ 2 ·
x̄1x2x̄3 ∨ 3 · x̄1x2x3 ∨ 4 · x1x̄2x̄3 ∨ 5 · x1x̄2x3 ∨ 6 · x1x2x̄3.

Theorem 3.1: To represent any incompletely specified p-
valued input index generation function with weight k, at least
�logp k� variables are necessary.
(Proof) Let q = �logp k�. The number of different vectors
specified with q − 1 variables is at most pq−1 < k. Thus, to
distinguish k outputs, at least q variables are necessary. �

From here, we derive numbers of variables to represent
functions.

Theorem 3.2: Consider a set of uniformly distributed p-
valued input n-variable incompletely specified index gener-
ation functions f(x1, x2, . . . , xn) with weight k, where p ≤
k < pn−2. Let η(p, n, t, k) be the probability that f can be
represented with x1, x2, . . . , xt−1 and xt, where t < n. Then,

η(p, n, t, k) = ptPk · p(n−t)k

pnPk
. (3.1)

(Proof) From Theorem 3.1, we have k ≤ pt. The probability
is given as η(p, n, t, k) = A

B , where A denotes the number of
incompletely specified index generation functions with weight
k that can be represented with x1, x2, . . . , xt−1 and xt, and
B denotes the total number of incompletely specified index
generation functions with weight k.

1) Derive A, the number of incompletely specified index
generation functions with weight k such that each col-
umn has at most one care element. First, enumerate the
numbers of ways to specify the non-zero columns. It
is equal to the number of ways to distribute k distinct
elements into pt distinct bins: ptPk. Second, enumerate
the number of ways to specify the rows for all these
elements. The number of ways to select a row is pn−t

for each element. Since there are k elements, the total

number of ways to select the rows is (pn−t)k = p(n−t)k.
Thus, we have A = ptPk · p(n−t)k.

2) Derive B, the total number of n-variable incompletely
specified index generation functions with weight k. This
is equal to the number of ways to distribute k distinct
elements into pn distinct bins. It is

pnPk = pn · (pn − 1) · (pn − 2) · · · (pn − (k − 1)).

Hence, we have the theorem. �

The above theorem shows the case when the column vari-
ables are (x1, x2, . . . , xt). In practice, we can select the set of
column variables so that the number of variables is minimized.

Theorem 3.3: Consider a set of uniformly distributed
incompletely specified index generation functions
f(x1, x2, . . . , xn) with weight k, where p ≤ k < pn−2.
Let PR be the probability that f can be represented with t
variables, then

PR = 1− (1− η(p, n, t, k))(
n
t), (3.2)

where η(p, n, t, k) is the probability that f can be represented
with x1, x2, . . . , and xt.
(Proof) The probability that a function cannot be represented
by using x1, x2, . . . , xt−1 and xt is σ = 1−η(p, n, t, k). Since
there are

(
n
t

)
ways to choose t variables out of n variables,

the probability that a function cannot be represented by using
any combinations of t variables is σ(n

t). The probability that
a function can be presented by using at least one combination
of t variables is 1− σ(n

t). �

Since η(p, n, t, k) is not easy to treat, we use the following
approximation to simplify it.

Lemma 3.2: If 0 < α << 1, then 1 − α can be approxi-
mated by e−α, where e denotes the base of natural logarithm.

Lemma 3.3: When k
pt is small enough, η(p, n, t, k) in The-

orem 3.1 can be approximated by η̃(p, t, k) = exp(− k2

2pt).

(Proof) η(p, n, t, k) = pt Pk·p(n−t)k

pn Pk

= pt(pt−1)(pt−2)···(pt−(k−1))
pn(pn−1)(pn−2)···(pn−(k−1))p

k(n−t)

= pn

pn · pn−1·pn−t

pn−1 · pn−2·pn−t

pn−2 · pn−3·pn−t

pn−3 · · · pn−(k−1)·pn−t

pn−(k−1)
Assume that k is sufficiently smaller than pn, and assume that
pn − i is approximated by pn. We have

η̃(p, t, k)
= pn

pn · pn−1·pn−t

pn · pn−2·pn−t

pn · pn−3·pn−t

pn · · · pn−(k−1)·pn−t

pn

= (1− 1α) · (1− 2α) · (1− 3α) · · · (1− (k − 1)α),
where α = p−t.

When iα is small, by Lemma 3.2, 1− iα is approximated
by exp(−iα). Thus, η̃(p, t, k) is approximated by

η̃(p, t, k)

k−1∏

i=1

exp(−iα) = exp(−
k−1∑

i=1

iα)

 exp(−k(k − 1)α
2

)
 exp(−k2α

2
)

�

From this, we have the following:

186

Conjecture 3.1: Consider a set of uniformly distributed
incompletely specified p-valued input n-variable index gen-
eration functions with weight k, where p3 ≤ k ≤ pn−2 and
n ≥ 10. If t ≤ n − 3 satisfies the following conditions, then
more than 95% of the functions can be represented with t
variables.

t ≥ �2 logp k − logp 5.485�
(Explanation supporting the Conjecture) 1− σ(n

t) approaches
1.0, as n increases, since σ = 1 − η(p, n, t, k) < 1.0. When
t ≤ n− 3,

(
n
t

) ≥ n(n− 1)(n− 2)/6. Assume that n ≥ 10. In

this case, we have
(
n
t

) ≥ 120. The condition that σ(n
t) ≤ 0.05

derives σ < 0.9753. Thus, if η(p, n, t, k) ≥ 0.02465, then at
least 95% of the functions can be represented with t variables.
Thus, we have exp(− k2

2pt) ≥ 0.02465. When t ≥ �2 logp k −
logp 5.485�, we have η > 0.02465. (End of explanation)

Note that there exist functions that require all the variables
as shown below. However, we conjecture that the fraction of
such functions approaches to zero as n increase.

Example 3.2: Consider the n-variable incompletely speci-
fied index generation function f with weight k = n + 1 and
p = 2:

f(1, 0, 0, . . . , 0, 0) = 1
f(0, 1, 0, . . . , 0, 0) = 2
f(0, 0, 1, . . . , 0, 0) = 3

...
...

f(0, 0, 0, . . . , 1, 0) = n− 1
f(0, 0, 0, . . . , 0, 1) = n

f(0, 0, 0, . . . , 0, 0) = n + 1
f(a1, a2, a3, . . . , an−1, an) = d (for other combinations).

In this function, all the variables are essential, and no variable
can be removed.

IV. STATISTICAL RESULTS FOR UNIFORMLY DISTRIBUTED

FUNCTIONS

We generated uniformly distributed index generation func-
tions, and obtained statistical data. Table 4.1 shows the average
numbers of variables to represent p-valued input n-variables
index generation functions with weight k. The columns headed
with Exp show that the average numbers of variables to
represent the functions. For each parameter, we generated 100
functions. The columns headed with Conj show the number of
variables to represent incompletely specified index generation
functions with weight k given by Conjecture 3.1. For example,
when k = 1023 and p = 2, to represent a uniformly distributed
function, experimental results show that, on the average, 16.32
variables are necessary to represent the functions. On the other
hand, Conjecture 3.1 shows that 18 variables are sufficient.
Experimental results show that only 13 functions out of 5400
functions exceeded the bound given by Conjecture 3.1.

Table 4.2 shows the probability that index generation func-
tions with weight k can be represented with t variables.

TABLE 5.1
ORIGINAL LIST OF ENGLISH WORDS.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 f
a c c o m m o d a t i o n s 1
a d m i n i s t r a t i o n 2
c h a r a c t e r i s t i c 3
c o n g r a t u l a t i o n 4
c o n s t i t u t i o n a l 5
d i s a p p o i n t m e n t 6
d i s c r i m i n a t i o n 7
g e n e r a l i z a t i o n 8
i d e n t i f i c a t i o n 9
i n t e r p r e t a t i o n 10
r e c o m m e n d a t i o n 11
r e p r e s e n t a t i o n 12
r e p r e s e n t a t i v e 13
r e s p o n s i b i l i t y 14
t r a n s p o r t a t i o n 15
39 41 33 27 33 39 35 45 39 113 105 125 89 87 ω

These values are derived from Theorems 3.2 and 3.3, and
Lemma 3.3. For example, when p = 2, n = 20, and
k = 1023, the probability that the function can be represented
with t = 15 variables is 0.00185. However, when t = 16
the probability is 0.79731, and when t = 17 the probability
is 1.0000. This is consistent with the experimental results:
Out of 100 functions, 1 function required 15 variables; 66
functions required 16 variables; and 33 functions required 17
variables. We performed additional experiments and confirmed
Conjecture 3.1

V. REDUCTION OF THE NUMBER OF VARIABLES BY

LINEAR TRANSFORMATIONS

This section shows a method to reduce the number of
variables to represent a given incompletely specified index
generation function f by using linear transformations.

Definition 5.1: A compound variable has a form y =
c1x1⊕c2x2⊕· · ·⊕cnxn where ci ∈ {0, 1} and ⊕ denotes the
mod p sum operation. The compound degree of y is

∑n
i=1 ci,

where ci is viewed as an integer and
∑

denotes an ordinary
integer addition. A primitive variable is one with compound
degree one.

It is also possible to consider the case where ci ∈ P .
However, in this case, we need multipliers in addition to adder.
So, in this paper, we consider only the case of ci ∈ {0, 1}.

Definition 5.2: Given an incompletely specified index gen-
eration function, a linear transformation that minimizes the
number of variables is optimum.

By Theorem 3.1, if the linear transformation reduce the
number of variables to q = �logp k� variables, then it is an
optimum. A brute force way to find an optimum transformation
is first to construct the compound variables whose degrees are
t or less than t. The number of such variables is

∑t
i=1

(
n
i

)
.

Then, apply the method shown in [10]. However, such method
takes too much computation time, and is impractical.

Example 5.1: Table 5.1 shows a list of 15 English words
consisting of 14 characters. Each variable can take one of
27 values i.e., 26 alphabets and a - (hyphen). To distinguish

187

TABLE 4.1
AVERAGE NUMBER OF VARIABLES TO REPRESENT INCOMPLETELY SPECIFIED INDEX GENERATION FUNCTION.

p: Number of values. n: Number of original variables. k: Weight of the function.
p = 2 p = 3 p = 4 p = 5 p = 10 p = 27
n = 20 n = 13 n = 10 n = 10 n = 10 n = 10

k Exp Conj Exp Conj Exp Conj Exp Conj Exp Conj Exp Conj
15 4.93 6 3.24 4 3.00 3 2.84 3 2.00 2 1.96 2
31 6.07 8 4.52 5 3.98 4 3.13 4 2.81 3 2.00 2
63 8.00 10 5.85 7 4.97 5 4.00 5 3.00 3 2.04 2

127 10.00 12 6.99 8 6.01 6 5.00 5 3.98 4 3.00 3
255 11.98 14 8.00 9 6.93 7 6.00 6 4.00 5 3.00 3
511 14.02 16 9.59 10 7.95 8 6.97 7 5.00 5 3.89 4

1023 16.32 18 10.97 12 9.02 9 7.85 8 5.27 6 4.00 4
2047 18.66 20 12.43 13 9.95 10 8.78 9 6.00 6 4.02 5
4095 19.97 22 13.00 14 10.00 11 9.69 10 6.94 7 5.00 5

TABLE 4.2
PROBABILITY THAT INDEX GENERATION FUNCTIONS WITH WEIGHT k CAN BE REPRESENTED WITH t VARIABLES.

p: Number of values. n: Number of original variables. k: Weight of the function.
p = 2 p = 3 p = 4 p = 5 p = 10 p = 27
n = 20 n = 13 n = 10 n = 10 n = 10 n = 10

k = 1023 k = 511 k = 511 k = 511 k = 255 k = 255
t PR t PR t PR t PR t PR t PR

15 0.00185 8 0.00000 6 0.00000 5 0.00000 3 0.00000 2 0.00000
16 0.79731 9 0.59347 7 0.03805 6 0.04471 4 0.99972 3 1.00000
17 1.00000 10 1.00000 8 0.99863 7 1.00000 5 1.00000

TABLE 5.2
REDUCED LIST OF ENGLISH WORDS.

x3 x13 x6 x8 y1 y2 z1 f
c n m d p p r 1
m o i t ! a a 2
a i c e i g s 3
n o a u a u g 4
n a i u n b b 5
s n p i e x x 6
s o i i f q h 7
n o a i a i k 8
e o i i s q o 9
t o p e g t m 10
c o m n q z q 11
p o s n c e i 12
p v s n j e p 13
s t n i k v e 14
a o p r o f y 15
33 89 39 45 17 19 15 ω

these 15 words, three variables (characters) are necessary and
sufficient. For example, it can be represented by (x3, x6, x13).
However, by using the linear transformation:

y1 = x3 ⊕ x13,
y2 = x6 ⊕ x8

we have the registered vectors shown in Table 5.2. In this
case, two variables (y1, y2) distinguish 15 vectors. Note that
a, b, c, . . . , y, and z have values 0, 1, 2, . . . , 24, and 25, respec-
tively. Also, the character - has the value 26.

Example 5.2: In Table 5.1, consider the linear transforma-
tion:

z1 = x1 ⊕ x5 ⊕ x10 ⊕ x13

As shown in Table 5.2, only one variable z1 can distinguish
15 vectors.

As shown in this example, by the linear transformation,
we can often reduce the number of variables to represent
the function. Since the linear transformation makes a more
balanced decision tree, it reduces the number of variables. To
obtain the linear transformation that produces a more balanced
decision tree, we define a measure showing the distribution of
values in the registered vector table.

Definition 5.3: In the the registered vector table, let ν(xi, j)
be the number of vectors with xi = j, where j ∈ P . The
imbalance measure of xi is defined as

ω(xi) =
p−1∑

j=0

ν(xi, j)2.

In the registered vector table, when the numbers of occur-
rences of j’s in the column xi are the same, ω(xi) takes its
minimum. The larger the difference of the frequency of values,
the larger the imbalance measure. Let k be the number of
registered vectors. Then,

∑p−1
j=0 ν(xi, j) = k.

Example 5.3: In Table 5.1, consider the variable x1. Note
that a, d and i appear twice, c appear three times, r appears
four times, g and t appear only once. Thus,

ω(x1) =
26∑

j=0

ν(x1, j)

= 3× 22 + 1× 32 + 1× 42 + 2× 12 = 39.

The last row of Table 5.1 show the imbalance measure for the
variables xi.

In Table 5.2, consider the variable y1. Note that only a
appears twice, but other 13 characters appear only once. Thus,

188

TABLE 5.3
INDEX GENERATION FUNCTION.

x1 x2 x3 x4 x5 f
0 0 0 0 0 1
0 1 0 1 0 2
0 1 1 1 0 3
1 1 1 0 0 4
1 0 0 1 1 5
1 0 1 1 1 6
1 1 1 0 1 7

we have
ω(y1) = 1× 22 + 13× 12 = 17.

Also, consider the variables y2. Note that only e and q appear
twice, but other 11 characters appear only once. Thus, we have

ω(y2) = 2× 22 + 11× 12 = 19.

The last row of Table 5.2 show the imbalance measure for the
variables yi.

In other words, the linear transformation in Example 5.1
reduces the imbalance measure, and improves the balance of
the decision tree.

When the imbalance measure is large, the reduction of vari-
ables tends to be difficult. However, if a linear transformation
reduces the imbalance measure, then we may reduce more
variables.

Definition 5.4: [12] Let f(x1, x2, . . . , xn) be an incom-
pletely specified index generation function with weight |f |.
Let �x = (xπ(1), xπ(2), . . . , xπ(t)) be a vector consisting of a
subset of the variables {x1, x2, . . . , xn}, where π denotes a
permutation of {1, 2, . . . , n}. Let N(f, �x,�a) be the number
of registered vectors of f that takes non-zero values, when
the values of �x are set to �a = (a1, a2, . . . , at), ai ∈ P . The
ambiguity of f with respect to �x is defined as

AMB(�x) = −|f |+
∑

�a∈P t

N(f, �x,�a)2.

Example 5.4: Consider the index generation function
shown in Table 5.3. Assume that the values of (x1, x2, x3)
are changed as (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1), in this order. Then, the values of
f change as follows:

[1], [d], [2], [3], [5], [6], [d], [4, 7],

where [d] denotes undefined or don’t care. In this case, the
ambiguity with respect to (x1, x2, x3) is

AMB(x1, x2, x3)
= −7 + (12 + 02 + 12 + 12 + 12 + 12 + 02 + 22) = 2

When (x1, x2, x3) = (0, 0, 1), the value of f is undefined,
while when (x1, x2, x3) = (1, 1, 1), the value of f is ambigu-
ous, since f can be either 4 or 7.

Next, let the variable set be (x1, x3, x5). Similarly, the
values of f change as follows:

[1, 2], [d], [3], [d], [d], [5], [4], [6, 7].

In this case, the ambiguity with respect to (x1, x3, x5) is

AMB(x1, x3, x5)
= −7 + (22 + 02 + 12 + 02 + 02 + 12 + 12 + 22) = 4

When (x1, x3, x5) = (0, 0, 0) and (1, 1, 1), the values of f are
ambiguous.

Finally, let the variable set be (x3, x4, x5). Similarly, the
values of f change as follows:

[1], [d], [2], [5], [4], [7], [3], [6].

In this case, the ambiguity with respect to (x3, x4, x5) is

AMB(x3, x4, x5)
= −7 + (12 + 02 + 12 + 12 + 12 + 12 + 12 + 12) = 0.

Note that f can be represented with only (x3, x4, x5).
Theorem 5.1: AMB(�x) = 0 iff �x can represent f .

(Proof) Let D be the set of registered vectors for f and let D̃
be the set of vectors consisting of variables for �x.
(⇒) We prove this by contradiction. Assume that �x cannot
represent f . Two cases are possible.

1) f is undefined for some �a ∈ D̃. In this case,
N(f, �x,�a) = 0. Since �a is a registered vector where
some variables are omitted, this cannot happen.

2) f is ambiguous for some �a ∈ D̃. In this case,
N(f, �x,�a) ≥ 2. Since

∑
N(f, �x,�a)2 > |f |, we have

AMB(�a) > 0.
From these, for each �a ∈ D̃, the value of f is uniquely defined.
Thus, f can be represented with �x.
(⇐) Assume that f is represented with �x. In this case, the
value of f is uniquely defined or undefined for all possible
cases. This implies that N(f, �x,�a) = 1 for all �a ∈ D̃. From
this, we have AMB(�x) = −|f |+∑

�a∈D̃ 12 = 0, since, |f | =
|D̃|. �

By using these two measures, we have a heuristic algorithm
to reduce the number of variables. In this algorithm, the
imbalance measure is used to guide the linear transformation.
The compound variable is chosen to minimize the imbalance
measure in a greedy manner. Then the ambiguity measure
(AMB) is tested. If the AMB > 0, more compound variables
are required to distinguish the registered vectors. This process
stops when AMB = 0.

Algorithm 5.1: (Heuristic Method to Find a Linear Trans-
formation that Reduces the Number of Variables)

1) Let the input variables be x1, x2, . . . , xn. Let t ≥ 2 be
the maximal compound degree.

2) Generate the compound variables yi whose compound
degrees are t or less than t. The number of such
compound variables is

∑t
i=1

(
n
i

)
. Let T be the set of

compound variables.
3) Let y1 be the variable with the smallest imbalance

measure. Let �Y ← (y1), T ← T − y1.
4) While AMB(�Y) > 0, find the variable yj in T that

minimizes the value of AMB(�Y , yj). Let �Y ← (�Y , yj),
T ← T − yj .

189

TABLE 6.1
LIST OF ENGLISH WORDS (p = 27).

Compound Degree: t
n k 1 2 3 4 5 6
8 548 8 5 4 4 3 3
9 380 6 4 4 3 3 3
10 272 6 4 3 3 3 3
11 143 5 3 3 3 3 3
12 75 4 2 2 2 2 2
13 38 3 2 2 2 2 2
14 15 3 2 2 1 1 1

5) Stop.

Experimental results show that this algorithm obtains a fairly
good solutions in a short time.

VI. EXPERIMENTAL RESULTS

From a list of 5000 frequently used English words, we made
seven sub-lists of words, each consisting of 8, 9, 10, 11, 12,
13 and 14 characters. For each list, we minimized the number
of variables (i.e., the characters) using Algorithm 5.1. Table
6.1 shows the numbers of variables to represent the sub-lists.
In the table, n denotes the number of characters; k denotes the
number of words in the sub-list; and t denotes the compound
degree. These sub-lists correspond to 27-valued input index
generation functions with weight k.

The sub-list of English words for n = 14 is shown in Table
5.1. In Table 6.1, the bold letters show exact minimum. The
experimental results in Table 6.1 are consistent with Tables
4.1 and 4.2.

For example, in the case of n = 14. To distinguish 15 words,

1) When t = 1, three variables {x3, x8, x13} are sufficient.
2) When t = 2, two variables {y1 = x3 ⊕ x13, y2 = x6 ⊕

x8} are sufficient.
3) When t = 4, one variable {z1 = x1 ⊕ x5 ⊕ x10 ⊕ x13}

is sufficient.

Up to t = 5, the number of variables are reduced by
increasing the value of t. However, for t = 6 the number
of variables could not be reduced any more.

It is known that the numbers of characters appearing English
words are not uniform: e appears the most frequently, while
z appears the least frequently. This means that the decision
tree according to the original alphabets is not balanced. By
using compound variables, the decision tree can be made more
balanced.

It is also possible to represent a characters with five two-
valued variables [12]. In this case, the total number of variables
would be five times, and the computation time would be very
large, although more variables can be reduced.

VII. CONCLUDING REMARKS

In this paper, we derived the number of variables to rep-
resent incompletely specified p-valued input index generation
functions with weight k. Most functions can be represented
by 2�logp(k + 1)� or fewer variables, when k is sufficiently
smaller than pn.

Also, in this paper, we considered linear transformations
of index generation functions. To find good linear transfor-
mations, we introduced two measures: the imbalance measure
and the ambiguity measure. We showed a heuristic method to
find linear transformation that reduces the number of variables
to represent the functions. When the imbalance measures are
large, the reduction of primitive variables is difficult. However,
with a linear transformation that reduces imbalance measures,
we can reduce more variables.

ACKNOWLEDGMENTS

This work was supported in part by a Grant in Aid for
Scientific Research of the JSPS, and Knowledge Cluster
Project of MEXT. The author thanks Prof. Jon T. Butler for
discussion and Mr. M. Matsuura for experiment.

REFERENCES

[1] F. M. Brown, Boolean Reasoning: The logic of Boolean Equations,
Kluwer Academic Publishers, Boston, 1990.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis, Boston,
MA. Kluwer Academic Publishers, 1984.

[3] C. Halatsis and N. Gaitanis, “Irredundant normal forms and minimal
dependence sets of a Boolean functions,” IEEE Trans. on Computers,
Vol. C-27, No. 11, Nov. 1978, pp. 1064-1068.

[4] Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE
Trans. on Computers, Vol. C-28, No. 9, Sept. l979, pp. 609-617.

[5] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[6] T. Sasao, “On the number of dependent variables for incompletely
specified multiple-valued functions,” 30th International Symposium on
Multiple-Valued Logic, Portland, Oregon, U.S.A., May 23-25, 2000,
pp. 91-97.

[7] T. Sasao, “Design methods for multiple-valued input address genera-
tors,”(invited paper) International Symposium on Multiple-Valued Logic
(ISMVL-2006), Singapore, May 2006.

[8] T. Sasao, “On the number of variables to represent sparse logic
functions,” ICCAD-2008, San Jose, California, USA, Nov.10-13, 2008,
pp. 45-51.

[9] T. Sasao, “On the numbers of variables to represent multi-valued
incompletely specified functions,” 13th EUROMICRO Conference on
Digital System Design (DSD-2010), Lille, France, Sept. 1-3, 2010,
pp. 420-423.

[10] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[11] T. Sasao, “Index generation functions: Recent developments,”(invited

paper) International Symposium on Multiple-Valued Logic (ISMVL-
2011), Tuusula, Finland, May 23-25, 2011.

[12] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference (ASPDAC-2012),
Jan. 30- Feb. 2, 2012, Sydney, Australia, pp.781-788.

[13] T. Sasao, “Row-shift decompositions for index generation functions,”
Design, Automation & Test in Europe (DATE-2012), March 12-16, 2012,
Dresden, Germany.

[14] D. A. Simovici, D. Pletea, and R. Vetro, “Information-theoretical mining
of determining sets for partially defined functions,”ISMVL-2010, May
2010, pp. 294-299.

190

