Multi-Terminal Multi-Valued Decision Diagrams for Characteristic Function Representing Cluster Decomposition

Hiroki Nakahara*, Tsutomu Sasao†, and Munehiro Matsuura‡
*Kagoshima University, Japan, †Kyushu Institute of Technology, Japan

Abstract—Binary decision diagrams representing complex logic circuits require a large number of nodes. This paper shows a new method to represent logic circuits using multiple decision diagrams. First, a given logic circuit is converted into a direct acyclic graph (DAG). Then, the DAG is decomposed into clusters. Next, clusters are represented by multi-terminal binary decision diagrams for characteristic function (decomposed MTBDDs for CF). It represents a logic circuit more compactly than the conventional MTBDD for CF. Finally, the decomposed MTBDDs for CF are converted into the multi-terminal multi-valued decision diagrams for CF (decomposed MTMDDs for CF) to be stored in the given memory size. Also, the decomposed MTMDDs for CF is faster to evaluate than the conventional MTMDD for CF using the same memory size on a BDD machine.

I. INTRODUCTION

Binary decision diagrams (BDDs) represent logic functions efficiently, and are used for many applications including formal verification [1]; logic simulation [2], [10], [20]; logic design [6]; and special purpose processors [13].

As for a complex circuit, such as a multiplier, since the number of the nodes in a BDD increases exponentially with the number of inputs, a BDD is unsuitable to represent such circuit, when the number of inputs is large [18]. Bryant et al. have proposed the multiplicative binary moment diagram (*BMD) to represent the multiplier [3]. However, as for the divider, the number of nodes in the *BMD increases exponentially [16]. Thus, for practical arithmetic circuits, sizes for BDDs and *BMDs increase exponentially with the number of inputs. To represent a logic circuit by diagrams with a reasonable size, Bryant et al. decomposed the multiplier into sub-circuits, and represented them by multiple *BMDs [3]. We also decomposed a circuit and represented sub-circuits by decision diagrams [9], [15]. These facts show that the size of the decision diagrams for decomposed circuit is smaller than the monolithic decision diagram for the original circuit.

A heterogeneous multi-valued decision diagram (HMDD) may have nodes with different number of variables [12]. Since the HMDD can use the optimal partition of the input variables to reduce path length, the evaluation time of the HMDD is shorter than the BDD [14]. We will show that the HMDDs representing decomposed circuit can be evaluated faster than the conventional HMDD.

Contributions of the paper are as follows: To represent large functions, we adopted the HMDDs representing decomposed circuit with a reasonable size. To simulate large functions, BDDs representing decomposed circuit are used [2], [10], [20] on computers. In this application, the reduction of the cache miss leads to the high-speed simulation. Thus, small size BDDs are suitable to fit the cache with the limited size of memory. On the other hand, we enhance the performance by using the multi-terminal multi-valued decision diagrams (MTMDDs) with an enough size of memory. It is an opposite of their works. In the decision diagram machine [13] with no cache, the evaluation time is proportional to the path length of the decision diagram. An enough size of memory reduces the path length of HMDDs [14].

We showed that the HMDDs representing decomposed circuit is faster than the monolithic HMDD with an enough size of memory. Since the HMDDs representing decomposed circuit represents the logic circuit, the evaluation time is \(O(g) \), where \(g \) is the number of logic gates. On the other hand, since the monolithic HMDD represents the logic function, the evaluation time is \(O(n) \), where \(n \) is the number of inputs. Generally, since \(g \gg n \), the monolithic HMDD seems to be faster than the HMDDs representing decomposed circuit. However, we discover that, with enough size of memory (in our experiment, it is one Mega bytes), the HMDDs representing decomposed circuit is faster than the monolithic HMDD. Decades ago, when the memory was expensive, it was difficult to use a memory with large size. Nowadays, the large-scale integration gives us more than one Giga bytes memory at a low price. Therefore, adopting the HMDDs representing decomposed circuit with a large size of memory is practical.

The rest of the paper is organized as follows: Chapter 2 defines decision diagrams; Chapter 3 defines the circuit decomposition; Chapter 4 introduces the heterogeneous multi-valued decision diagrams representing a decomposed circuit; Chapter 5 shows the experimental results; and Chapter 6 concludes the paper.

II. DEFINITION OF DECISION DIAGRAMS

A. Decision Diagram (DD)

Definition 2.1: A binary decision diagram (BDD) is obtained by applying Shannon expansions repeatedly to a logic function \(f \) [4]. Each non-terminal node labeled with a variable \(x_i \) has two outgoing edges which indicate nodes representing cofactors of \(f \) with respect to \(x_i \). When the
Shannon expansions are performed with respect to \(k \) variables, all the non-terminal nodes have \(2^k \) edges. In this case, we have a **multi-valued decision diagram (MDD\((k)\))** \[8\].

Definition 2.2: In a DD, a sequence of edges and non-terminal nodes leading from the root node to a terminal node is a **path**. An **ordered BDD (OBDD)** has the same variable order on any path. A **reduced ordered BDD (ROBDD)** is derived by applying the following two reduction rules to an OBDD:

1. Share equivalent sub-graphs.
2. If all the outgoing edges of a non-terminal node \(v \) point to the same succeeding node \(u \), then delete \(v \) and connect the incoming edges of \(v \) to \(u \).

An **ROMDD**\((k)\) can be defined similarly to the ROBDD. Note that, an MDD\((1)\) means a BDD. In this paper, a BDD and an MDD\((k)\) mean an ROBDD and an ROMDD\((k)\), respectively, unless stated otherwise.

Definition 2.3: Let \(f(X): B^m \rightarrow B \) be a two-valued logic function, where \(B = \{0, 1\} \). Let \(X = (x_1, x_2, \ldots, x_n) \), \(x_i \in B \) be an ordered set of binary variables. Let \(\{X\} \) denote the unordered set of variables in \(X \). If \(\{X\} = \{X_1\} \cup \{X_2\} \cup \cdots \cup \{X_u\} \) and \(\{X\} \cap \{X_i\} = \emptyset (i \neq j) \), then \((X_1, X_2, \ldots, X_u) \) is a **partition** of \(X \), where \(X_i \) denotes a **super variable**. When \(k_i = |X_i| (i = 1, 2, \ldots, u) \), we have the relation \(k_1 + k_2 + \cdots + k_u = n \).

Definition 2.4: Let \(X = (X_1, X_2, \ldots, X_u) \) be a partition of the input variables, and \(k_i = |X_i| \) be the number of inputs for node \(i \). When \(k = |X_1| = |X_2| = \cdots = |X_u| \), an **ROMDD** is a **homogeneous MDD (MDD\((k)\))**. On the other hand, if there exists a pair \((i, j)\) such that \(|X_i| \neq |X_j| \), then, it is a **heterogeneous MDD (HMDD)**.

An HMDD is a generalization of an MDD\((k)\). If the evaluation time for all the nodes are the same, then the evaluation time for an HMDD is proportional to the **average path length (APL)** \[5\].

Definition 2.5: Let \((X_1, X_2, \ldots, X_u) \) be a partition of the input variables \(X \). Suppose that \(X_i \) can take any value \(e \) in \(\{0, 1, \ldots, 2^k - 1\} \). Then, \(P(X_i = e) \) denotes the probability that \(X_i \) has the value \(e \). The **Path Probability (PP)** of a path \(p_i \), denoted by \(PP(p_i) \), is the probability that the path \(p_i \) is selected in all assignments of values to the \(2^k \)-valued variables. Then, we have \(PP(p_i) = \sum_{e \in C_i} P(X_1 = c_1) \cdot P(X_2 = c_2) \cdot \cdots \cdot P(X_u = c_u) \), where \(C_i \) is a set of assignments of values to the variables \(X \) selecting the path \(p_i \), and \(e = (c_1, c_2, \ldots, c_u) \). The **average path length (APL)** of a DD is \(APL = \sum_{i=1}^N PP(p_i) \cdot l_i \), where \(N \) denotes the number of paths, and \(l_i \) denotes the path length of path \(p_i \).

B. Representation of Multi-output Logic Function Using Decision Diagrams for Characteristic Function

Many practical applications use multi-output functions. Here, we represent an \(n \)-input \(m \)-output logic function using a decision diagram (DD).

Definition 2.6: Let \(X = (x_1, x_2, \ldots, x_n) \) be the input variables, \(\bar{Y} = (y_1, y_2, \ldots, y_m) \) be the output variables, and \(\bar{f} = (f_1(\bar{X}), f_2(\bar{X}), \ldots, f_m(\bar{X})) \) be a multiple-output function. The **characteristic function (CF)** of a multiple-output function is \(\chi(\bar{X}, \bar{Y}) = \bigwedge_{i=1}^m (y_i \equiv f_i(\bar{X})) \).

The characteristic function of an \(n \)-input \(m \)-output function is a two-valued logic function with \((n + m)\) inputs. It has input variables \(x_i \ (i = 1, 2, \ldots, n) \), and output variables \(y_j \) for outputs \(f_j \). Let \(B = \{0, 1\} \), \(\bar{F} = (f_1(\bar{a}), f_2(\bar{a}), \ldots, f_m(\bar{a})) \in B^m \), and \(\bar{b} \in B^m \). Then, the characteristic function satisfies the relation \(\chi(\bar{a}, \bar{b}) = \begin{cases} 1 & \text{when } \bar{b} = \bar{F}(\bar{a}) \\ 0 & \text{otherwise} \end{cases} \).

Definition 2.7: A **support variable** of a function \(f \) is a variable on which \(f \) actually depends.

Definition 2.8: A multi-terminal binary decision diagram for characteristic function (MTBDD for CF) of a multiple-output function \(\bar{f} = (f_1, f_2, \ldots, f_m) \) represents the characteristic function \(\bar{X} \). We assume that the root node is in the top of the MTBDD, and the variable \(y_i \) is below the support variable of \(f_i \), where \(y_i \) is the variable representing \(f_i \).

Definition 2.9: \[19\] The **height of the MTBDD for CF** at the height \(k \) is the number of edges crossing the section of the graph between \(x_k \) and \(x_{k+1} \), where the edges incident to the same nodes are counted as one.

III. CLUSTER DECOMPOSITION OF CIRCUIT

A. Graph Representation of Combinational Circuit

In this paper, a combinational circuit is represented by a directed acyclic graph (DAG). In the DAG, a primary input node denotes a primary input; a **primary output node** denotes a primary output; and an intermediate node denotes a 2-input logic gate\(^1\). When the output of a logic gate \(i \) is connected to a logic gate \(j \), the DAG has an edge from a node \(i \) to a node \(j \). In the DAG, we assume that a primary input does not fan-out. Thus, we need to duplicate the input variables. Therefore, the number of the primary input nodes can be greater than the number of the primary inputs. We denote the input nodes by \((primary\ input\ name)\)\(_{unique\ number}\).

Example 3.1: Fig. 1 shows the circuit for a two-bit multiplier, where \(\{x_0, x_1, x_2, x_3\} \) denotes the primary inputs and \(\{y_0, y_1, y_2, y_3\} \) denotes the primary outputs. Fig. 2 shows the DAG for the multiplier in Fig. 1, where \(X = \{x_0 \cdot x_0, x_1 \cdot x_1, x_2 \cdot x_2, x_3 \cdot x_3\} \) denotes the primary input nodes; \(\bar{Y} = \{y_0, y_1, y_2, y_3\} \) denotes the primary output nodes; and \(W = \{w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7\} \) denotes the intermediate nodes.

Next, we define a decomposition of the DAG.

Definition 3.10: A cut \((S, T)\) is a partition of nodes in the DAG. For \(s \in S \) and \(t \in T \), no node of \(T \) has an edge directed to any node of \(S \).

Definition 3.11: Let \(X \) be a set of primary input nodes of the DAG. A set of nodes \(D(X) \) depending \(X \) is a **dependent**

\(^1\) A NOT gate is converted into a NAND gate having the same inputs. Also, a gate with more than two inputs is decomposed into multiple gates with two inputs.
includes the primary input nodes $S_i, V, Y, q, i, x_i, X_j$. In order, we can evaluate V. The outputs of the cluster C_i is $S_i \cup S_0 = S_i$ be the set of the primary input nodes.

Let $D(X, T_i) = \{ \}$. The cluster C_i be a set of all the nodes in the DAG; $D(X, T_i)$ be a set of all the nodes in the DAG; $D(X)$ be the MTBDD for CF, where the inputs consist of primary inputs and rail inputs, while the outputs for a cluster consist of primary inputs and rail outputs.

Example 4.4: Fig. 2 plots the circuit realizing the cluster decomposition of the two-bit multiplier shown in Fig. 3.

IV. DECOMPOSED MULTI-Terminal MULTI-VALENT DECISION DIAGRAMS FOR CHARACTERISTIC FUNCTION

A. MTBDDs for CF Representing Cluster Decomposition

In a set of clusters $\{C_1, C_2, \ldots, C_q\}$, C_i is represented by an MTBDD for CF, where the inputs consist of primary inputs and rail inputs, and the outputs consist of primary outputs and rail outputs directing to other MTBDDs for CF representing $C_j (j \neq i)$.

Example 4.5: Fig. 6 plots MTBDDs for CF representing clusters shown in Fig. 5.

Definition 4.15: Let $\{C_1, C_2, \ldots, C_q\}$ be a set of clusters, where C_i is represented by an MTBDD for CF. The MTBDDs for CF representing a cluster decomposition (decomposed MTBDDs for CF) connect MTBDDs for CF in the topological order of $\{C_1, C_2, \ldots, C_q\}$.

Example 4.6: Fig. 7 plots the decomposed MTBDDs for CF representing the two-bit multiplier in Fig. 3.

Fig. 1. Circuit for the 2-bit multiplier.

Fig. 2. DAG representing the multiplier shown in Fig. 1.

Fig. 3. An example of a cluster decomposition.

Fig. 4. Fan-out of primary inputs.

Fig. 5. Circuit realizing the cluster decomposition.

Fig. 6. MTBDDs for CF representing clusters shown in Fig. 5.
Definition 4.16: A monolithic MTBDD for CF represents a set of clusters. It is a conventional MTBDD for CF.

Table I shows the taxonomy of decision diagrams representing a cluster decomposition in terms of the fan-outs of the primary inputs and rail outputs. Table I shows that the decomposed MTBDDs for CF are unique decision diagrams that allow the fan-out of rail outputs.

B. Decomposed MTMDDs for CF

Decomposed MTBDDs for CF are extended to decomposed multi-valued decision diagrams for CF (decomposed MTMDDs for CF). The decomposed MTMDDs for CF can use more memory than the decomposed MTBDDs for CF, to reduce their evaluation time.

Example 4.7: Fig. 8 shows the decomposed MTMDDs for CF converted from the MTBDDs for CF shown in Fig. 7. Note that, the decomposed MTMDDs for CF is obtained by merging the cluster C_3 and a part of cluster C_2, and by changing the variable order of a node.

As shown in Example 4.7, in MTBDDs for CF, multiple clusters are merged and the variable order of a node is changed to obtain MTMDDs for CF.

Since the decomposed MTBDDs for CF allow fan-outs of both the primary inputs and the rail outputs, they can represent a complex circuit compactly. Thus, we have the following:

Conjecture 4.1: Suppose that the given circuit has fan-outs of primary inputs and rail outputs. When the circuit is converted into the BDD, the number of nodes may increase exponentially.

Experimental results in Section V-A confirm Conjecture 4.1. Note that, the decomposed MTBDDs for CF lost canonicity of the BDD. Thus, the application of decomposed MTBDDs for CF to formal verification is difficult. However, applications of the decomposed MTBDDs for CF to logic simulation is straightforward, since the canonicity is not used.

V. EXPERIMENTAL RESULTS

A. Comparison of BDDs Representing Cluster Decompositions

To confirm Conjecture 4.1, we used multipliers and hidden weight bit (HWB) functions whose BDDs increase exponentially with n. The HWB function selects the input corresponding to the weight of the inputs. Fig. 12 shows the circuit for the seven-bit HWB function. We compare the numbers of nodes for three decision diagrams:

1. The monolithic MTBDD for CF: Does not allow fan-outs of primary inputs nor rail outputs.
2. The indexed BDD: Allows the fan-out of primary inputs, while does not allow fan-out of rail outputs.
3. The decomposed MTBDDs for CF: Allow the fan-outs of both primary inputs and rail outputs.

To obtain the decomposed MTBDDs for CF, first, we generated the netlist from the Verilog-HDL description by using Quartus II logic synthesis tool ver.9.1 with area minimization option. Then, we decomposed the netlist into clusters by using the greedy algorithm [15]. Next, we converted clusters into the decomposed MTBDDs for CF. To reduce the number of nodes in MTBDDs, we used the sifting algorithm [17].

The *BMDs can represent multipliers compactly.
for the indexed BDD and the monolithic MTBDD for CF for the HWB function, we borrowed the numbers of nodes in [7]. Table II compares the numbers of nodes for \(n \)-bit multipliers, and Table III compares that of \(n \)-bit HWB functions. Tables II and III show that the decomposed MTBDDs for CF can represent large and complex functions compactly.

B. Complexities of Decomposed MTBDDs for CF

Let \(g_{\text{mul}} \) be the estimated number of gates to implement the \(n \)-bit multiplier consisting of an \(n \times n \) array of adders. Then, we have \(g_{\text{mul}} = n^2 \times g_{\text{adr}} \), where \(g_{\text{adr}} \) denotes the number of gates in a full adder. Let \(g_{\text{HWB}} \) be the estimated number of gates for the circuit of the \(n \)-bit HWB function, where \(n = 2^q - 1 \) (\(q = 2, 3, 4, \ldots \)). As shown in Fig. 12, the circuit for the HWB function consists of an \(n \)-bit selector and an \(n \)-bit 1’s counter. Therefore, we have \(g_{\text{HWB}} = n \times g_{\text{mux}} + \sum_{p=1}^{\lceil \log_2(n+1) \rceil} 2^{\lceil \log_2(n+1) \rceil - p} g_{\text{adr}} \), where \(g_{\text{mux}} \) denotes the number of gates to implement a two-input multiplexer.

Fig. 9 shows the relationship between the number of nodes of the decomposed MTBDDs for CF and the number of gates for the \(n \)-bit multiplier, while Fig. 9 shows the relationship for the \(n \)-bit HWB function. As shown in Figs. 9 and 10, the number of nodes in the decomposed MTBDDs for CF is proportional to the number of gates \(g \). Therefore, the complexity of the decomposed MTBDDs for CF is \(O(g) \).

C. Comparison of the Evaluation Times for MDDs

The monolithic MTBDD for CF does not allow fan-outs of the primary inputs nor the rail outputs, while the decomposed MTBDDs for CF allow these fan-outs. Thus, the APL for the monolithic MTBDD for CF is shorter than that for the decomposed MTBDDs for CF. As for the HMDD, the APL can be reduced by increasing the memory size. So, in general, evaluation using the HMDD can be faster than the BDD. We compared the numbers of nodes. To obtain the decomposed MTMDs for CF, first, we set the memory size limitation to 1 Mega bytes (MB). Then, we converted the decomposed MTBDDs for CF into an MTMDs for CF by using the dynamic programming [11]. Table IV compares the APL for the decomposed MTMDs for CF with that for the monolithic MTMDD for CF representing MCNC benchmark functions [21]. Note that, the monolithic MTBDD for CF could not represent s38417 nor s38584. Fig. 11 shows the APL for each MDD.

As for small functions (s420, s510, s641, s1196, s5378), the APL for the monolithic MTMDD for CF is shorter than

TABLE II

<table>
<thead>
<tr>
<th>Multiplier Width</th>
<th>Monolithic MTBDD for CF</th>
<th>Indexed BDD</th>
<th>Decomposed MTBDDs for CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 4</td>
<td>507</td>
<td>372</td>
<td>323</td>
</tr>
<tr>
<td>5 × 5</td>
<td>2014</td>
<td>784</td>
<td>527</td>
</tr>
<tr>
<td>6 × 6</td>
<td>7889</td>
<td>1452</td>
<td>839</td>
</tr>
<tr>
<td>7 × 7</td>
<td>31006</td>
<td>2468</td>
<td>1097</td>
</tr>
<tr>
<td>8 × 8</td>
<td>122438</td>
<td>3892</td>
<td>1433</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>HWB Function Bits</th>
<th>Monolithic MTBDD for CF</th>
<th>Indexed BDD</th>
<th>Decomposed MTBDDs for CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>382</td>
<td>137</td>
<td>444</td>
</tr>
<tr>
<td>31</td>
<td>6326</td>
<td>529</td>
<td>921</td>
</tr>
<tr>
<td>63</td>
<td>2.5 \times 10^{10}</td>
<td>2081</td>
<td>1813</td>
</tr>
<tr>
<td>127</td>
<td>2.39 \times 10^{10}</td>
<td>8257</td>
<td>3645</td>
</tr>
</tbody>
</table>

Fig. 9. Number of nodes and gates for \(n \)-bit multiplier.

Fig. 10. Number of nodes and gates for \(n \)-bit HWB function.

Fig. 11. APL for two types of MDDs.

Fig. 12. Circuit for the seven-bit HWB function.
that for the decomposed MTMDDs for CF. Since both BDDs can represent the small function compactly, they can reduce the APL by using extra memory space with the MDD. As for large functions (s9234, s13207), the APL for the decomposed MTMDDs for CF is shorter than that for the monolithic MTMDD for CF. Therefore, we can use an appropriate MDD as follows:

- For a small function, use a monolithic MTMDD for CF
- For a large function, use decomposed MTMDDs for CF

VI. CONCLUSION AND COMMENTS

This paper showed the decomposed MTMDDs for CF. To obtain the decomposed MTMDDs for CF, first, the given circuit is decomposed into clusters. Then, each cluster is converted into the MTBDD for CF. Next, the decomposed MTBDDs for CF is obtained by connecting them by the topological order. Finally, the decomposed MTBDDs for CF is converted into MTMDDs for CF to be stored in the given memory space. Its complexity is $O(g)$, where g is the number of gates for the given circuit. The decomposed MTBDDs for CF is smaller than the monolithic MTBDD for CF. Also, under the same memory size, the decomposed MTMDDs for CF is faster to evaluate than the monolithic MTMDD for CF for large functions on a BDD machine.

The decomposed MTMDDs for CF can represent the large functions that cannot be represented by a monolithic decision diagram. Thus, the decomposed MTMDDs for CF are promising for new applications. The future project is to utilize the decomposed MTMDDs for CF in practical applications.

VII. ACKNOWLEDGMENTS

This research is supported in part by the Grants in Aid for Scientific Research of JSPS, and the grant of Innovative Cluster Project of MEXT (the second stage).

REFERENCES

TABLE IV
COMPARISON OF APLS FOR MCNC BENCHMARK FUNCTIONS (MEMORY SIZE LIMITATION 1 [MB]).

<table>
<thead>
<tr>
<th>Name</th>
<th>In</th>
<th>Out</th>
<th>PF</th>
<th># of gates</th>
<th>Monolithic MTMDDs for CF</th>
<th>Decomposed MTMDDs for CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>s420</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td>287</td>
<td>2.3</td>
<td>5.5</td>
</tr>
<tr>
<td>s510</td>
<td>19</td>
<td>7</td>
<td>22</td>
<td>256</td>
<td>6.2</td>
<td>18.0</td>
</tr>
<tr>
<td>s614</td>
<td>36</td>
<td>23</td>
<td>19</td>
<td>193</td>
<td>3.8</td>
<td>17.5</td>
</tr>
<tr>
<td>s1196</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>485</td>
<td>4.1</td>
<td>51.3</td>
</tr>
<tr>
<td>s3738</td>
<td>35</td>
<td>49</td>
<td>164</td>
<td>1294</td>
<td>112.8</td>
<td>129.1</td>
</tr>
<tr>
<td>s9234</td>
<td>59</td>
<td>99</td>
<td>71</td>
<td>978</td>
<td>82.1</td>
<td>673.7</td>
</tr>
<tr>
<td>s13207</td>
<td>36</td>
<td>39</td>
<td>211</td>
<td>1219</td>
<td>175.2</td>
<td>55.6</td>
</tr>
<tr>
<td>s38417</td>
<td>28</td>
<td>106</td>
<td>1636</td>
<td>8278</td>
<td>382</td>
<td>112.7</td>
</tr>
<tr>
<td>s38584</td>
<td>38</td>
<td>204</td>
<td>1424</td>
<td>8728</td>
<td>204</td>
<td>1016.3</td>
</tr>
</tbody>
</table>

This paper showed the decomposed MTMDDs for CF. To obtain the decomposed MTMDDs for CF, first, the given circuit is decomposed into clusters. Then, each cluster is converted into the MTBDD for CF. Next, the decomposed MTBDDs for CF is obtained by connecting them by the topological order. Finally, the decomposed MTBDDs for CF is converted into MTMDDs for CF to be stored in the given memory space. Its complexity is $O(g)$, where g is the number of gates for the given circuit. The decomposed MTBDDs for CF is smaller than the monolithic MTBDD for CF. Also, under the same memory size, the decomposed MTMDDs for CF is faster to evaluate than the monolithic MTMDD for CF for large functions on a BDD machine.

The decomposed MTMDDs for CF can represent the large functions that cannot be represented by a monolithic decision diagram. Thus, the decomposed MTMDDs for CF are promising for new applications. The future project is to utilize the decomposed MTMDDs for CF in practical applications.