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Abstract—Binary decision diagrams representing complex
logic circuits require a large number of nodes. This paper
shows a new method to represent logic circuits using multiple
decision diagrams. First, a given logic circuit is converted into
a direct acyclic graph (DAG). Then, the DAG is decomposed
into clusters. Next, clusters are represented by multi-terminal
binary decision diagrams for characteristic function (decomposed
MTBDDs for CF). It represents a logic circuit more compactly
than the conventional MTBDD for CF. Finally, the decomposed
MTBDDs for CF are converted into the multi-terminal multi-
valued decision diagrams for CF (decomposed MTMDDs for CF)
to be stored in the given memory size. Also, the decomposed
MTMDDs for CF is faster to evaluate than the conventional
MTMDD for CF using the same memory size on a BDD machine.

I. INTRODUCTION

Binary decision diagrams (BDDs) represent logic functions
efficiently, and are used for many applications including
formal verification [1]; logic simulation [2], [10], [20]; logic
design [6]; and special purpose processors [13].

As for a complex circuit, such as a multiplier, since the
number of the nodes in a BDD increases exponentially with
the number of inputs, a BDD is unsuitable to represent such
circuit, when the number of inputs is large [18]. Bryant
et al. have proposed the multiplicative binary moment dia-
gram (∗BMD) to represent the multiplier [3]. However, as
for the divider, the number of nodes in the ∗BMD increases
exponentially [16]. Thus, for practical arithmetic circuits, sizes
for BDDs and ∗BMDs increase exponentially with the number
of inputs. To represent a logic circuit by diagrams with a
reasonable size, Bryant et al. decomposed the multiplier into
sub-circuits, and represented them by multiple ∗BMDs [3].
We also decomposed a circuit and represented sub-circuits by
decision diagrams [9], [15]. These facts show that the size of
the decision diagrams for decomposed circuit is smaller than
the monolithic decision diagram for the original circuit.

A heterogeneous multi-valued decision diagram (HMDD)
may have nodes with different number of variables [12]. Since
the HMDD can use the optimal partition of the input variables
to reduce path length, the evaluation time of the HMDD is
shorter than the BDD [14]. We will show that the HMDDs
representing decomposed circuit can be evaluated faster than
the conventional HMDD.

Contributions of the paper are as follows:
To represent large functions, we adopted the HMDDs

representing decomposed circuit with a reasonable size. To
simulate large functions, BDDs representing decomposed cir-
cuit are used [2], [10], [20] on computers. In this application,
the reduction of the cache miss leads to the high-speed simu-
lation. Thus, small size BDDs are suitable to fit the cache with
the limited size of memory. On the other hand, we enhance the
performance by using the multi-terminal multi-valued decision
diagrams (MTMDDs) with an enough size of memory. It is an
opposite of their works. In the decision diagram machine [13]
with no cache, the evaluation time is proportional to the path
length of the decision diagram. An enough size of memory
reduces the path length of HMDDs [14].

We showed that the HMDDs representing decomposed
circuit is faster than the monolithic HMDD with an
enough size of memory. Since the HMDDs representing
decomposed circuit represents the logic circuit, the evaluation
time is 𝑂(𝑔), where 𝑔 is the number of logic gates. On
the other hand, since the monolithic HMDD represents the
logic function, the evaluation time is 𝑂(𝑛), where 𝑛 is the
number of inputs. Generally, since 𝑔 ≫ 𝑛, the monolithic
HMDD seems to be faster than the HMDDs representing
decomposed circuit. However, we discover that, with enough
size of memory (in our experiment, it is one Mega bytes),
the HMDDs representing decomposed circuit is faster than
the monolithic HMDD. Decades ago, when the memory was
expensive, it was difficult to use a memory with large size.
Nowadays, the large-scale integration gives us more than one
Giga bytes memory at a low price. Therefore, adopting the
HMDDs representing decomposed circuit with a large size of
memory is practical.

The rest of the paper is organized as follows: Chapter
2 defines decision diagrams; Chapter 3 defines the circuit
decomposition; Chapter 4 introduces the heterogeneous multi-
valued decision diagrams representing a decomposed circuit;
Chapter 5 shows the experimental results; and Chapter 6
concludes the paper.

II. DEFINITION OF DECISION DIAGRAMS

A. Decision Diagram (DD)

Definition 2.1: A binary decision diagram (BDD) is ob-
tained by applying Shannon expansions repeatedly to a
logic function 𝑓 [4]. Each non-terminal node labeled with
a variable 𝑥𝑖 has two outgoing edges which indicate nodes
representing cofactors of 𝑓 with respect to 𝑥𝑖. When the
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Shannon expansions are performed with respect to 𝑘 variables,
all the non-terminal nodes have 2𝑘 edges. In this case, we have
a multi-valued decision diagram (MDD(𝑘)) [8].

Definition 2.2: In a DD, a sequence of edges and non-
terminal nodes leading from the root node to a terminal node
is a path. An ordered BDD (OBDD) has the same variable
order on any path. A reduced ordered BDD (ROBDD) is
derived by applying the following two reduction rules to an
OBDD:

1. Share equivalent sub-graphs.
2. If all the outgoing edges of a non-terminal node 𝑣 point

the same succeeding node 𝑢, then delete 𝑣 and connect
the incoming edges of 𝑣 to 𝑢.

An ROMDD(𝑘) can be defined similarly to the ROBDD.
Note that, an MDD(1) means a BDD. In this paper, a BDD
and an MDD(𝑘) mean an ROBDD and an ROMDD(𝑘), re-
spectively, unless stated otherwise.

Definition 2.3: Let 𝑓(𝑋) : 𝐵𝑛 → 𝐵 be a two-valued logic
function, where 𝐵 = {0, 1}. Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑥𝑖 ∈
𝐵 be an ordered set of binary variables. Let {𝑋} denote the
unordered set of variables in 𝑋 . If {𝑋} = {𝑋1}∪{𝑋2}∪⋅ ⋅ ⋅∪
{𝑋𝑢} and {𝑋𝑖}∩{𝑋𝑗} = ∅(𝑖 ∕= 𝑗), then (𝑋1, 𝑋2, . . . , 𝑋𝑢) is
a partition of 𝑋 , where 𝑋𝑖 denotes a super variable. When
𝑘𝑖 = ∣𝑋𝑖∣(𝑖 = 1, 2, . . . , 𝑢), we have the relation 𝑘1 + 𝑘2 +
⋅ ⋅ ⋅+ 𝑘𝑢 = 𝑛.

Definition 2.4: Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑢) be a partition of
the input variables, and 𝑘𝑖 = ∣𝑋𝑖∣ be the number of inputs for
node 𝑖. When 𝑘 = ∣𝑋1∣ = ∣𝑋2∣ = ⋅ ⋅ ⋅ = ∣𝑋𝑢∣, an ROMDD
is a homogeneous MDD (MDD(𝑘)). On the other hand, if
there exists a pair (𝑖, 𝑗) such that ∣𝑋𝑖∣ ∕= ∣𝑋𝑗 ∣, then, it is a
heterogeneous MDD (HMDD).

An HMDD is a generalization of an MDD(𝑘). If the
evaluation time for all the nodes are the same, then the
evaluation time for an HMDD is proportional to the average
path length (APL) [5].

Definition 2.5: Let (𝑋1, 𝑋2, . . . , 𝑋𝑢) be a partition of the
input variables 𝑋 . Suppose that 𝑋𝑖 can take any value 𝑐 in
{0, 1, . . . , 2𝑘𝑖 − 1}. Then, 𝑃 (𝑋𝑖 = 𝑐) denotes the probability
that 𝑋𝑖 has the value 𝑐. The Path Probability (PP) of a
path 𝑝𝑖, denoted by 𝑃𝑃 (𝑝𝑖), is the probability that the path
𝑝𝑖 is selected in all assignments of values to the 2𝑘𝑖 -valued
variables. Then, we have 𝑃𝑃 (𝑝𝑖) =

∑
�⃗�∈𝐶𝑖

𝑃 (𝑋1 = 𝑐1) ⋅
𝑃 (𝑋2 = 𝑐2) ⋅ . . . ⋅ 𝑃 (𝑋𝑢 = 𝑐𝑢), where 𝐶𝑖 denotes a set of
assignments of values to the variables 𝑋 selecting the path
𝑝𝑖, and �⃗� = (𝑐1, 𝑐2, . . . , 𝑐𝑢). The average path length (APL)
of a DD is 𝐴𝑃𝐿 =

∑𝑁
𝑖=1 𝑃𝑃 (𝑝𝑖) ⋅ 𝑙𝑖, where 𝑁 denotes the

number of paths, and 𝑙𝑖 denotes the path length of path 𝑝𝑖.

B. Representation of Multi-output Logic Function Using De-
cision Diagrams for Characteristic Function

Many practical applications use multiple-output functions.
Here, we represent an 𝑛-input 𝑚-output logic function using
a decision diagram (DD).

Definition 2.6: Let �⃗� = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be the input
variables, �⃗� = (𝑦1, 𝑦2, . . . , 𝑦𝑚) be the output variables,
and 𝑓 = (𝑓1(�⃗�), 𝑓2(�⃗�), . . . , 𝑓𝑚(�⃗�)) be a multiple-output

function. The characteristic function (CF) of a multiple-

output function is �⃗�(�⃗�, �⃗� ) =
𝑚⋀
𝑖=1

(𝑦𝑖 ≡ 𝑓𝑖(�⃗�)).

The characteristic function of an 𝑛-input 𝑚-output func-
tion is a two-valued logic function with (𝑛 + 𝑚) inputs.
It has input variables 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛), and output
variables 𝑦𝑗 for outputs 𝑓𝑗 . Let 𝐵 = {0, 1}, �⃗� ∈ 𝐵𝑛,
𝐹 = (𝑓1(⃗𝑎), 𝑓2(⃗𝑎), . . . , 𝑓𝑚(⃗𝑎)) ∈ 𝐵𝑚, and �⃗� ∈ 𝐵𝑚. Then,
the characteristic function satisfies the relation

�⃗�(⃗𝑎, �⃗�) =

{
1 (𝑤ℎ𝑒𝑛 �⃗� = 𝐹 (⃗𝑎))
0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

Definition 2.7: A support variable of a function 𝑓 is a
variable on which 𝑓 actually depends.

Definition 2.8: A multi-terminal binary decision dia-
gram for characteristic function (MTBDD for CF) of a
multiple-output function 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑚) represents the
characteristic function �⃗�. We assume that the root node is in
the top of the MTBDD, and the variable 𝑦𝑖 is below the support
variable of 𝑓𝑖, where 𝑦𝑖 is the variable representing 𝑓𝑖.

Definition 2.9: [19] The width of the MTBDD for CF
at the height 𝑘 is the number of edges crossing the section of
the graph between 𝑥𝑘 and 𝑥𝑘+1, where the edges incident to
the same nodes are counted as one.

III. CLUSTER DECOMPOSITION OF CIRCUIT

A. Graph Representation of Combinational Circuit

In this paper, a combinational circuit is represented by a
directed acyclic graph (DAG). In the DAG, a primary input
node denotes a primary input; a primary output node denotes
a primary output; and an intermediate node denotes a 2-input
logic gate1. When the output of a logic gate 𝑖 is connected to
a logic gate 𝑗, the DAG has an edge from a node 𝑖 to a node 𝑗.
In the DAG, we assume that a primary input does not fan-out.
Thus, we need to duplicate the input variables. Therefore, the
number of the primary input nodes can be greater than the
number of the primary inputs. We denote the input nodes by
(primary input name) (unique number).

Example 3.1: Fig. 1 shows the circuit for a two-bit mul-
tiplier, where {𝑥0, 𝑥1, 𝑥2, 𝑥3} denotes the primary inputs
and {𝑦0, 𝑦1, 𝑦2, 𝑦3} denotes the primary outputs. Fig. 2
shows the DAG for the multiplier in Fig. 1, where 𝑋 =
{𝑥0 0,𝑥0 1,𝑥1 0,𝑥1 1,𝑥2 0,𝑥2 1,𝑥3 0,𝑥3 1} denotes the pri-
mary input nodes; 𝑌 = {𝑦0, 𝑦1, 𝑦2, 𝑦3} denotes the primary
output nodes; and 𝑊 = {𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7}
denotes the intermediate nodes.

Next, we define a decomposition of the DAG.
Definition 3.10: A cut (𝑆, 𝑇 ) is a partition of nodes in the

DAG. For 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 , no node of 𝑇 has an edge directed
to any node of 𝑆.

Definition 3.11: Let 𝑋 be a set of primary input nodes of
the DAG. A set of nodes 𝐷(𝑋) depending 𝑋 is a depended

1A NOT gate is converted into a NAND gate having the same inputs. Also,
a gate with more than two inputs is decomposed into multiple gates with two
inputs.
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Fig. 1. Circuit for the 2-bit multiplier.
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Fig. 2. DAG representing the multiplier shown in
Fig. 1.
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Fig. 3. An example of a cluster decomposition.
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Rail Outputs
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Fig. 4. Circuit realizing the cluster
decomposition.

x3_1  x1_1 x3_0 x0_1x2_1 x1_0x2_0 x0_0

y0 y1y2y3

C1 C2 C3
w1 w5

Fig. 5. Circuit realizing the cluster
decomposition of 2-bit multiplier.

node set. Note that, 𝐷(𝑋) includes the primary input nodes
𝑋 , while it does not include the primary output nodes 𝑌 .

Example 3.2: In Fig. 2, let 𝑋 = {𝑥1 0,𝑥2 1,𝑥0 1,𝑥3 0} be
a subset of primary input nodes of the DAG. In this case,
𝐷(𝑋) = {𝑥1 0,𝑥2 1,𝑥0 1,𝑥3 0,𝑤1,𝑤2,𝑤3,𝑤4}.

Definition 3.12: Let 𝑉 be a set of all the nodes in the DAG;
(𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑞) be a partition of the primary input nodes
𝑋 , where 𝑋𝑖∩𝑋𝑗 = ∅ (𝑖 ∕= 𝑗); and 𝑌 be the set of the primary
output nodes. A cut set with topological order {(𝑆𝑖, 𝑇𝑖)∣𝑖 =
1, 2, . . . , 𝑞} is the set satisfying:

1. For first cut (𝑆1, 𝑇1), 𝑆1 = 𝐷(𝑋1) and 𝑇1 = 𝑉 − 𝑆1.
2. For 𝑖-th cut (𝑆𝑖, 𝑇𝑖), 𝑆𝑖 = 𝐷(𝑋1 ∪𝑋2 ∪ . . . ∪𝑋𝑖) and
𝑇𝑖 = 𝑉 − 𝑆𝑖, where 1 < 𝑖 < 𝑞.

3. For 𝑞-th cut (𝑆𝑞, 𝑇𝑞), 𝑆𝑞 = 𝐷(𝑋) and 𝑇𝑞 = 𝑌 .

When the partition of the primary input nodes is given,
the cut set with topological order is uniquely determined. By
evaluating a set 𝑆𝑖 (𝑖 = 1, 2, . . . , 𝑞) in order, we can evaluate
the DAG.

Definition 3.13: Suppose that the DAG is decomposed into
a cut set with topological order {(𝑆𝑖, 𝑇𝑖)∣𝑖 = 1, 2, . . . , 𝑞}.
𝐶𝑖 = 𝑆𝑖−𝑆𝑖−1 is a cluster, where 𝑆0 = ∅. A decomposition
of the DAG into a set of clusters {𝐶1, 𝐶2, . . . 𝐶𝑞} is a cluster
decomposition.

Example 3.3: Fig. 3 shows an example of a cluster decom-
position, where 𝐶1 = {𝑥0 0,𝑥2 0,𝑥1 0,𝑥2 1,𝑤0,𝑤1}, 𝐶2 =
{𝑥1 1,𝑥3 1,𝑤5}, and 𝐶3 = {𝑥0 1,𝑥3 0,𝑤2,𝑤4,𝑤6,𝑤7,𝑤3}.

In a set of clusters {𝐶1, 𝐶2, . . . , 𝐶𝑞}, when 𝑖 < 𝑗, the cluster
𝐶𝑖 may have edges directed to the cluster 𝐶𝑗 , while the cluster
𝐶𝑗 does not have edges directed to the cluster 𝐶𝑖.

Definition 3.14: Fig. 4 shows a circuit representing a set of
clusters {𝐶1, 𝐶2, . . . 𝐶𝑞}. Let 𝑖 < 𝑗. The outputs of the cluster
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Fig. 6. MTBDDs for CF representing clusters shown in Fig. 5.

𝐶𝑖 directed to the cluster 𝐶𝑗 are rail outputs, and the inputs
of the cluster 𝐶𝑗 directed from the cluster 𝐶𝑖 are rail inputs.

The inputs for a cluster consist of primary inputs and rail
inputs, while the outputs for a cluster consist of primary
outputs and rail outputs.

Example 3.4: Fig. 5 shows the circuit realizing the cluster
decomposition of the two-bit multiplier shown in Fig. 3.

IV. DECOMPOSED MULTI-TERMINAL MULTI-VALUED

DECISION DIAGRAMS FOR CHARACTERISTIC FUNCTION

A. MTBDDs for CF Representing Cluster Decomposition

In a set of clusters {𝐶1, 𝐶2, . . . , 𝐶𝑞}, 𝐶𝑖 is represented by
an MTBDD for CF, where the inputs consist of primary inputs
and rail inputs, and the outputs consist of primary outputs and
rail outputs directing to other MTBDDs for CF representing
𝐶𝑗 (𝑗 > 𝑖).

Example 4.5: Fig. 6 shows MTBDDs for CF representing
clusters shown in Fig. 5.

Definition 4.15: Let {𝐶1, 𝐶2, . . . , 𝐶𝑞} be a set of clusters,
where 𝐶𝑖 is represented by an MTBDD for CF. The MTBDDs
for CF representing a cluster decomposition (decomposed
MTBDDs for CF) connect MTBDDs for CF in the topological
order of {𝐶1, 𝐶2, . . . , 𝐶𝑞}.

Example 4.6: Fig. 7 shows the decomposed MTBDDs for
CF representing the two-bit multiplier in Fig. 3.
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Fig. 7. An example of the decomposed MTBDDs for CF.

TABLE I
TAXONOMY OF DECISION DIAGRAMS (DDS).

Decision Diagram Type Fan-out of Fan-out of
Primary Inputs Rail Outputs

Monolithic MTBDD for CF [19] Not allowed Not allowed
Indexed BDD [7] Allowed Not allowed
Decomposed MTBDDs for CF Allowed Allowed

Definition 4.16: A monolithic MTBDD for CF represents
a set of clusters. It is a conventional MTBDD for CF.

Table I shows the taxonomy of decision diagrams repre-
senting a cluster decomposition in terms of the fan-outs of
the primary inputs and rail outputs. Table I shows that the
decomposed MTBDDs for CF are unique decision diagrams
that allow the fan-out of rail outputs.

B. Decomposed MTMDDs for CF

Decomposed MTBDDs for CF are extended to decom-
posed multi-valued decision diagrams for CF (decomposed
MTMDDs for CF). The decomposed MTMDDs for CF can
use more memory than the decomposed MTBDDs for CF, to
reduce their evaluation time.

Example 4.7: Fig. 8 shows the decomposed MTMDDs for
CF converted from the MTBDDs for CF shown in Fig. 7. Note
that, the decomposed MTMDDs for CF is obtained by merging
the cluster 𝐶1 and a part of cluster 𝐶2, and by changing the
variable order of a node.

As shown in Example 4.7, in MTBDDs for CF, multiple
clusters are merged and the variable order of a node is changed
to obtain MTMDDs for CF.

Since the decomposed MTBDDs for CF allow fan-outs of
both the primary inputs and the rail outputs, they can represent
a complex circuit compactly. Thus, we have the following:
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Fig. 8. An example of the decomposed MTMDDs for CF.

Conjecture 4.1: Suppose that the given circuit has fan-
outs of primary inputs and rail outputs. When the circuit is
converted into the BDD, the number of nodes may increase
exponentially.

Experimental results in Section V-A confirm Conjecture 4.1.
Note that, the decomposed MTBDDs for CF lost canonicity of
the BDD. Thus, the application of decomposed MTBDDs for
CF to formal verification is difficult. However, applications
of the decomposed MTBDDs for CF to logic simulation is
straightforward, since the canonicity is not used.

V. EXPERIMENTAL RESULTS

A. Comparison of BDDs Representing Cluster Decomposi-
tions

To confirm Conjecture 4.1, we used multipliers 2 and
hidden weight bit (HWB) functions whose BDDs increase
exponentially with 𝑛. The HWB function selects the input
corresponding to the weight of the inputs. Fig. 12 shows
the circuit for the seven-bit HWB function. We compare the
numbers of nodes for three decision diagrams:

1. The monolithic MTBDD for CF: Does not allow fan-
outs of primary inputs nor rail outputs.

2. The indexed BDD: Allows the fan-out of primary inputs,
while does not allow fan-out of rail outputs.

3. The decomposed MTBDDs for CF: Allow the fan-outs
of both primary inputs and rail outputs.

To obtain the decomposed MTBDDs for CF, first, we gen-
erated the netlist from the Verilog-HDL description by using
Quartus II logic synthesis tool ver.9.1 with area minimization
option. Then, we decomposed the netlist into clusters by using
the greedy algorithm [15]. Next, we converted clusters into
the decomposed MTBDDs for CF. To reduce the number of
nodes in MTBDDs, we used the sifting algorithm [17]. As

2The ∗BMDs can represent multipliers compactly.
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TABLE II
NUMBER OF NODES FOR 𝑛-BIT MULTIPLIER.

Multiplier Monolithic Indexed Decomposed
Width MTBDD BDD MTBDDs
Bits for CF for CF

4× 4 507 372 323
5× 5 2014 784 527
6× 6 7889 1452 839
7× 7 31006 2468 1097
8× 8 122438 3892 1433

for the indexed BDD and the monolithic MTBDD for CF for
the HWB function, we borrowed the numbers of nodes in [7].
Table II compares the numbers of nodes for 𝑛-bit multipliers,
and Table III compares that of 𝑛-bit HWB functions. Tables II
and III show that the decomposed MTBDDs for CF can
represent large and complex function compactly.

TABLE III
NUMBER OF NODES FOR 𝑛-BIT HWB FUNCTION.

HWB Monolithic Indexed Decomposed
Function MTBDD BDD MTBDDs

Bits for CF for CF
15 282 137 444
31 6326 529 921
63 2.5×109 2081 1813

(Estimation)
127 239×109 8257 3645

(Estimation)

B. Complexities of Decomposed MTBDDs for CF

Let 𝑔𝑚𝑢𝑙 be the estimated number of gates to implement
the 𝑛-bit multiplier consisting of an 𝑛 × 𝑛 array of adders.
Then, we have 𝑔𝑚𝑢𝑙 = 𝑛2 × 𝑔𝑎𝑑𝑟, where 𝑔𝑎𝑑𝑟 denotes
the number of gates in a full adder. Let 𝑔𝐻𝑊𝐵 be the
estimated number of gates for the circuit of the 𝑛-bit HWB
function, where 𝑛 = 2𝑞 − 1 (𝑞 = 2, 3, 4, . . .). As shown
in Fig. 12, the circuit for the HWB function consists of
an 𝑛-bit selector and an 𝑛-bit 1’s counter. Thus, we have
𝑔𝐻𝑊𝐵 = 𝑛× 𝑔𝑚𝑢𝑥+

∑⌈𝑙𝑜𝑔2(𝑛+1)⌉
𝑝=1 2⌈𝑙𝑜𝑔2(𝑛+1)⌉−𝑝𝑔𝑎𝑑𝑟, where

𝑔𝑚𝑢𝑥 denotes the number of gates to implement a two-input
multiplexor.

Fig. 9 shows the relationship between the number of nodes
of the decomposed MTBDDs for CF and the number of gates
for the 𝑛-bit multiplier, while Fig. 9 shows the relationship
for the 𝑛-bit HWB function. As shown in Figs. 9 and 10,
the number of nodes in the decomposed MTBDDs for CF
is proportional to the number of gates 𝑔. Therefore, the
complexity of the decomposed MTBDDs for CF is 𝑂(𝑔).

C. Comparison of the Evaluation Times for MDDs

The monolithic MTBDD for CF does not allow fan-outs of
the primary inputs nor the rail outputs, while the decomposed
MTBDDs for CF allow these fan-outs. Thus, the APL for
the monolithic MTBDD for CF is shorter than that for the
decomposed MTBDDs for CF. As for the HMDD, the APL
can be reduced by increasing the memory size. So, in general,
evaluation using the HMDD can be faster than the BDD. We
compared the numbers of nodes. To obtain the decomposed
MTMDDs for CF, first, we set the memory size limitation
to 1 Mega bytes (MB). Then, we converted the decomposed
MTBDDs for CF into an MTMDDs for CF by using the
dynamic programming [11]. Table IV compares the APL
for the decomposed MTMDDs for CF with that for the
monolithic MTMDD for CF representing MCNC benchmark
functions [21]. Note that, the monolithic MTBDD for CF could
not represent s38417 nor s38584. Fig. 11 shows the APL for
each MDD.

As for small functions (s420, s510, s641, s1196, s5378),
the APL for the monolithic MTMDD for CF is shorter than
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TABLE IV
COMPARISON OF APLS FOR MCNC BENCHMARK FUNCTIONS (MEMORY

SIZE LIMITATION 1 [MB]).

Name In Out FF # of Monolithic Decomposed
gates MTMDD for CF MTMDDs for CF

Small functions
s420 18 1 16 187 2.3 8.5
s510 19 7 22 256 6.2 18.0
s641 36 23 19 193 3.8 17.5
s1196 13 13 19 483 4.1 51.3
s5378 35 49 164 1294 112.8 129.1
Large functions
s9234 36 39 211 974 82.3 67.7
s13207 36 39 211 1219 175.2 55.6
s38417 28 106 1636 8278 — 112.7
s38584 38 204 1424 6724 — 1016.3

that for the decomposed MTMDDs for CF. Since both BDDs
can represent the small function compactly, they can reduce
the APL by using extra memory space with the MDD. As for
large functions (s9234, s13207), the APL for the decomposed
MTMDDs for CF is shorter than that for the monolithic
MTMDD for CF. Therefore, we can use an appropriate MDD
as follows:

∙ For a small function, use a monolithic MTMDD for CF
∙ For a large function, use decomposed MTMDDs for CF

VI. CONCLUSION AND COMMENTS

This paper showed the decomposed MTMDDs for CF. To
obtain the decomposed MTMDDs for CF, first, the given
circuit is decomposed into clusters. Then, each cluster is
converted into the MTBDD for CF. Next, the decomposed
MTBDDs for CF is obtained by connecting them by the
topological order. Finally, the decomposed MTBDDs for CF
is converted into MTMDDs for CF to be stored in the given
memory space. Its complexity is 𝑂(𝑔), where 𝑔 is the number
of gates for the given circuit. The decomposed MTBDDs for
CF is smaller than the monolithic MTBDD for CF. Also, under
the same memory size, the decomposed MTMDDs for CF is
faster to evaluate than the monolithic MTMDD for CF for
large functions on a BDD machine.

The decomposed MTMDDs for CF can represent the large
functions that cannot be represented by a monolithic decision
diagram. Thus, the decomposed MTMDDs for CF are promis-
ing for new applications. The future project is to utilize the
decomposed MTMDDs for CF in practical applications.
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