
Analysis of Multi-State Systems with Multi-State Components Using EVMDDs

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper proposes a new analysis method of
multi-state systems with multi-state components using multi-
valued decision diagrams (MDDs). The multi-state systems with
multi-state components can be considered as multi-valued func-
tions, called structure functions. Since the structure functions
are usually monotone increasing functions, they can be rep-
resented compactly using edge-valued MDDs (EVMDDs). This
paper proposes an efficient analysis method using EVMDDs.
It shows that by using EVMDDs, the structure functions can
be represented more compactly than existing methods using
ordinary MDDs, and systems can be analyzed with comparable
computation time.

Keywords-multi-state systems with multi-state components;
fault tolerant systems; structure functions; system analysis
based on decision diagrams; EVMDDs.

I. INTRODUCTION

In recent years, various systems such as computer server
systems, telecommunication systems, water, gas, and elec-
tricity distribution systems, become tolerant to faults and
errors. Even if a fault occurs, these systems still keep on
working with an acceptable or degraded performance level.
Thus, these systems cannot be modeled by two states: work-
ing and failure. In addition, with the advance of technology,
each component in a system also becomes fault tolerant. To
model such systems, a multi-state system with multi-state
components are often used [11], [14], [16].

Fault tolerance is usually achieved by multiplexing com-
ponents in a system. However, multiplexing noncritical
components to design a fault tolerant system is inefficient
and not cost effective. Also, if critical components are not
sufficiently tolerant to faults, fault tolerance of the system
is not sufficient. Thus, identifying which components are
critical to achieve fault tolerance of the system, and mul-
tiplexing them are important, especially for safety-critical
systems such as flight control systems and nuclear power
plant monitoring systems [2].

To identify critical components and system weaknesses,
analyzing multi-state systems by various assessment mea-
sures is required [11]. Among them, assessing the proba-
bility of each state of a multi-state system is essential to
the design of a dependable fault tolerant system [14], [16].
Various methods to analyze multi-state systems efficiently
have been proposed. Many existing methods are based on
the Markov model [3]. However, they are impractical for

a large multi-state system, since their time complexity is
O(m3n), where m is the number of states, and n is the
number of components in a multi-state system [2]. To
analyze large multi-state systems efficiently, methods based
on binary decision diagrams (BDDs) [1], [2], [4], [16] and
multi-valued decision diagrams (MDDs) [6], [13], [14] have
attracted much attention.

Since multi-state systems with multi-state components can
be considered as multi-valued functions, called structure
functions, they can be represented by BDDs and MDDs.
Probabilities of states can be computed using BDDs and
MDDs with the time complexity proportional to the number
of nodes in a decision diagram. BDDs represent structure
functions by converting multi-valued variables and function
values into binary vectors using one-hot encoding [16]. By
using BDDs, various analysis methods well-established for
binary-state systems can be directly applied to multi-state
systems. However, converting into binary vectors produces
many binary variables and many binary functions, and
results in large BDDs. Thus, use of MDDs is more natural
and more promising for larger multi-state systems.

For recent large and complex multi-state systems, how-
ever, decision diagrams that represent systems more com-
pactly are desired. Since structure functions are usually
monotone increasing [13], they can be represented com-
pactly using edge-valued MDDs (EVMDDs) [10]. How-
ever, analysis of multi-state systems using EVMDDs is not
straightforward. As far as we know, an analysis method
using EVMDDs has never been reported. Thus, in this paper,
we propose an efficient analysis method using EVMDDs.

This paper is organized as follows: Section II defines
multi-state systems, and EVMDDs. Section III shows repre-
sentations of structure functions using MDDs and EVMDDs,
and in Section IV, we propose an analysis method using
EVMDDs. Experimental results are shown in Section V.

II. PRELIMINARIES

This section defines multi-state systems, structure func-
tions, and MDDs to represent structure functions.

A. Multi-State Systems and Structure Functions

Definition 1: A multi-state system is a model of systems,
which represents performance, capacity, or reliability levels

2012 IEEE 42nd International Symposium on Multiple-Valued Logic

0195-623X/12 $26.00 © 2012 IEEE

DOI 10.1109/ISMVL.2012.28

122



S T
1x 2x

3x 4x

(a) Multi-state system.

x1 x2 x3 x4 f
0 0 0 0 0
0 0 0 1 0
0 0 0 2 0
0 0 1 0 0
0 0 1 1 1

...
...

2 2 2 2 5

(b) Structure function.

Figure 1. Multi-state system for network flow and its structure function.

of the systems as states. It usually has more than two states.
When components in a system are modeled as well, it is
called a multi-state system with multi-state components.
In this paper, it is simply called multi-state system.

Definition 2: A state of a multi-state system depends only
on states of components in the system. The system with n
components can be considered as a multi-valued function
f (x1,x2, . . . ,xn) : R1 × R2 × . . .× Rn → M, where each xi

represents a component with ri states, Ri = {0,1, . . . ,ri−1}
is a set of the states, and M = {0,1, . . . ,m− 1} is a set of
the m system states. This multi-valued function is called a
structure function of the multi-state system.

Definition 3: A multi-valued function f (x1,x2, . . . ,xn) is
a monotone increasing function iff for any xi,

f (x1,x2, . . . ,xi−1,α,xi+1, . . . ,xn)
≤ f (x1,x2, . . . ,xi−1,β,xi+1, . . . ,xn),

where α,β ∈ Ri, and α≤ β.

In many applications, states of a system and its compo-
nents are totally ordered, and deterioration of a component in
the system affects deterioration of the whole system. Thus,
structure functions usually become monotone increasing
functions by assigning a value to each state in ascending
order (i.e. the worst state is 0 and the best state is m−1 or
ri−1).

Example 1: Fig. 1(a) shows a multi-state system for net-
work flow such as water, gas, and electricity distribution
systems. In this figure, each edge xi has three states which
correspond to transmission capacities: 0 unit (disconnected),
3 units (deteriorated), and 5 units (fully transmittable). And,
the system has six states which correspond to the maximum
number of units that the target node T can receive from the
source node S: 0, 3, 5, 6, 8, and 10.

By assigning six values (0, 1, 2, 3, 4, and 5) to these
states in ascending order, we obtain the 6-valued structure
function f shown in Fig. 1(b). This is a monotone increasing
function. (End of Example)

x4

0 1 2

x4

x3

x2 x2

x1

1
0 2

1 2

0

1 2

0

0 1 2

10 2
0

1
2

x4

1 3 4

x4

x3

0 1 2

10 2
0

1
2

x4

2 4 5

x4

x3

0 1 2

10 2
0

1
2

v1

v2 v3

v4 v5

Figure 2. MDD for the structure function.

2

x4

0

x4

x3

x2 x2

x1

1
0 2

1
2 0

1 20

0 1 2

10 2 0
1 2

x3

0 1 2

111 3

x4 x4
10 2 0

1 2

222

1 1 1 2

Figure 3. EVMDD for the structure function.

B. Multi-Valued Decision Diagrams

Definition 4: A multi-valued decision diagram (MDD)
is a rooted DAG representing a multi-valued function f .
The MDD is obtained by repeatedly applying the Shannon
expansion to the multi-valued function [5]. It consists of non-
terminal nodes representing sub-functions obtained from f
by assigning values to certain variables. It also has terminal
nodes representing function values. Each non-terminal node
has multiple outgoing edges that correspond to the values of
multi-valued variable. The MDD is ordered; i.e., the order
of variables along any path from the root node to a terminal
node is the same. When an MDD represents a function for
which multi-valued variables have different domains, it is a
heterogeneous MDD [8]. In the following, a heterogeneous
MDD is also denoted by the MDD.

Definition 5: An edge-valued MDD (EVMDD) [10] is
an extension of the MDD, and represents a multi-valued
function. It consists of one terminal node representing 0 and
non-terminal nodes with edges having integer weights; 0-
edges always have zero weights. In an EVMDD, the function
value is represented as a sum of weights for edges traversed
from the root node to the terminal node.

Example 2: Fig. 2 and Fig. 3 show an ordinary MDD

123



and an EVMDD for the structure function of Example 1.
(End of Example)

III. MDDS AND EVMDDS FOR STRUCTURE FUNCTIONS

This section derives upper bounds on the number of nodes
in an MDD and an EVMDD for a structure function. For
simplicity, in the following theorems, we assume that all
components xi in a system have the same number r of
states (i.e., all variables xi have the same domain). However,
generalization to a case where all variables xi have different
domains is straightforward.

Theorem 1: For a structure function, the number of nodes
in an MDD is at most

rn−l−1
r−1

+ mrl
,

where l is the largest integer satisfying rn−l ≥mrl
, m is the

number of system states, n is the number of components,
and r is the number of component states.
(Proof) See Appendix.

Theorem 1 shows that the upper bound for an MDD
depends only on m, n, and r. It is independent of mono-
tonicity of structure functions. However, in many applica-
tions, structure functions are usually monotone increasing.
Thus, decision diagrams suitable for monotone functions
are preferable. Since EVMDDs can represent monotone
functions compactly, EVMDDs are preferable for many
monotone structure functions.

Definition 6: Let N0 be the set of nonnegative integers,
and let p be an integer. An integer function f (X) : N0 → Z

such that 0≤ f (X +1)− f (X)≤ p and f (0) = 0 is an Mp-
monotone increasing function on N0, where Z is the set of
integers. That is, an Mp-monotone increasing function f (X)
satisfies f (0) = 0, and the increment of X by one increases
the value of f (X) by at most p.

A monotone multi-valued function can be converted into
an Mp-monotone increasing function by considering the set
of multi-valued variables xi as an r-valued vector:

X = (xn,xn−1, . . . ,x1)r,

and EVMDDs for monotone multi-valued functions have the
same complexity as EVMDDs for Mp-monotone increasing
functions [10]. Thus, we derive an upper bound of an
EVMDD for an Mp-monotone increasing function in the
following:

Theorem 2: For an Mp-monotone increasing function
converted from a multi-valued function, the number of nodes
in an EVMDD is at most

rn−l−1
r−1

+
l

∑
i=1

(p + 1)ri−1− l,

where l is the largest integer satisfying rn−l ≥ (p + 1)rl−1,
and n is the number of variables in the original multi-valued
function.

(Proof) This is the straightforward generalization of the
theorem for edge-valued binary decision diagrams (EVB-
DDs) [9] (i.e., r = 2). Thus, we can also extend the proof
for EVBDDs to EVMDDs trivially.

Theorem 2 shows that the upper bound for an EVMDD
depends on the value of p, not on the number of system
states m. Thus, even if m is large, EVMDDs have a small
number of nodes when the value of p is small. In the future,
systems will become more complex, and thus, m will become
larger. For such systems, MDDs require many nodes. On
the other hand, EVMDDs can represent even such systems
compactly if the value of p is small.

IV. ANALYSIS METHODS USING MDDS AND EVMDDS

This section formulates a problem of system analysis,
and then proposes an algorithm to solve the problem using
EVMDDs.

Definition 7: The probability that a structure function
f has the value s is denoted by Ps( f = s), where s ∈
{0,1, . . . ,m−1}. The probability that a component xi has the
value c is denoted by Pc(xi = c), where c∈ {0,1, . . . ,ri−1}.

Problem 1: Given a structure function f of a multi-state
system and the probability of each state of each component
in the system Pc(xi = c), compute the probability of each
state of the multi-state system Ps( f = s).

In this problem, we assume that all components are
independent of each other. That is, each state of a component
appears independently of the states of other components.

A. Analysis Method Using MDDs

Problem 1 can be solved efficiently using node traversing
probabilities in an MDD that are introduced to compute the
average path length on an MDD [7].

Definition 8: In an MDD, a sequence of edges and nodes
leading from the root node to a terminal node is a path. The
node traversing probability, denoted by NT P(vi), is the
probability that an assignment of values to variables selects
a path that includes the node vi.

Since terminal nodes of an MDD for a structure function
represent system states, node traversing probabilities of
terminal nodes correspond to the probabilities of system
states. The node traversing probabilities can be computed by
visiting each node only once in the breadth first order from
the root node. Thus, the time complexity of this analysis
method is O(NM), where NM is the number of nodes in
an MDD. Other existing methods whose time complexity is
O(NM) also analyze multi-state systems in a similar way [6],
[13], [14].

Example 3: Let us compute node traversing probabil-
ities for the MDD in Fig. 2. In this example, we as-
sume that all states of each component occur with the
same probability 1/3. First, we have NT P(v1) = 1 for
the root node v1 since the root node occurs in all
paths. Then, we compute NT P(v2) = NT P(v1)× 1/3 and

124



Input: An EVMDD for a structure function of a multi-state system, and the probability of each state of each
component in the system Pc(xi = c).

Output: Probability of each state of the multi-state system Ps( f = s).
Step: The following procedures are applied to each node recursively from the root node.

1. If a node v has been already visited, then return probabilities for the sub-function fv that have been already
computed. Else, go to the next step.

2. If the node v is the terminal node T , then return the probability for the constant zero function: Ps( fT = 0) = 1.
Else, go to the next step.

3. Visit all child nodes ui of v, and obtain probabilities for the sub-functions fui represented by ui.
4. Multiply the obtained probabilities for a sub-function Ps( fui = s) by the probability that the component xi

selects the sub-function Pc(xi = c).
5. Each function value fui = s at each child node ui becomes a function value fv = s+ei at the node v because

of its edge value ei. Thus, the probabilities Ps( fui = s)×Pc(xi = c) obtained by the step 4 are added to
Ps( fv = s+ ei), and they are summed up (merged) in each function value at v.

6. Return the merged probabilities to a parent node.

Figure 4. Proposed analysis algorithm using EVMDDs.

NT P(v3) = NT P(v1)× 1/3 in a breadth first order. Sim-
ilarly, NT P(v4) = NT P(v1)/3 + NT P(v2)/3 + NT P(v3)/3,
NT P(v5) = 2NTP(v2)/3 + NT P(v3)/3, and finally we
have the node traversing probabilities of terminal nodes:
NT P(0) = 25/81, NT P(1) = 10/27, NT P(2) = 10/81,
NT P(3) = 1/9, NT P(4) = 2/27, and NT P(5) = 1/81.

(End of Example)

B. Analysis Method Using EVMDDs

In an EVMDD, a function value is represented by a sum
of edge values, rather than a terminal node. Thus, we cannot
solve Problem 1 using only node traversing probabilities, and
another analysis method is needed.

Fig. 4 shows the proposed analysis algorithm. This al-
gorithm visits each node only once in depth first order
starting from the root node, and analyzes a sub-function
represented by each node recursively. Probabilities for a
function represented by a node can be computed by merging
probabilities for sub-functions represented by its child nodes.
Thus, the algorithm shown in Fig. 4 can compute the
probability of each state of a multi-state system correctly
and efficiently. Since the algorithm visits each node only
once, its time complexity is O(NE), where NE is the number
of nodes in an EVMDD.

Example 4: Let us compute the probability of each state
of the multi-state system using the EVMDD in Fig. 3. As
with the previous example, we assume that all states of
each component appear in the same probability 1/3. First,
we have Ps( fT = 0) = 1 at the terminal node T . Then, we
compute probabilities for a sub-function at the node v1.
Since this node has two edges pointing to T whose values
are 1, we have

Ps( fT = 0)×Pc(x4 = 1) = 1/3,

Ps( fT = 0)×Pc(x4 = 2) = 1/3,and thus,

2

x4

0

x4

x3

x2 x2

x1

1
0 2

1
2 0

1 20

0 1 2

10 2 0
1 2

x3

0 1 2

111 3

x4 x4
10 2 0

1 2

222

1 1 1 2

v1 v2

v3

P  (f     =0) = 1/3
P  (f     =1) = 2/3

P  (f     =0) = 5/9
P  (f     =1) = 1/3
P  (f     =2) = 1/9

P  (f=0) = 25/81
P  (f=1) = 10/27
P  (f=2) = 10/81
P  (f=3) =   1/9
P  (f=4) =   2/27
P  (f=5) =   1/81

s
s

v
v
1
1

T

s
s
s
s
s
s

s
s
s

v2
v2
v2

Figure 5. Analysis of the multi-state system using EVMDD.

Ps( fv1 = 0 + 1) = Ps( fT = 0)×Pc(x4 = 1)
+Ps( fT = 0)×Pc(x4 = 2) = 2/3

Similarly, at the node v2, we have

Ps( fv2 = 0 + 0) = Ps( fT = 0)×Pc(x4 = 0) = 1/3,

Ps( fv2 = 0 + 1) = Ps( fT = 0)×Pc(x4 = 1) = 1/3,and

Ps( fv2 = 0 + 2) = Ps( fT = 0)×Pc(x4 = 2) = 1/3.

At v3, the probabilities at the terminal node, v1, and v2

are multiplied by 1/3, and are summed up. Thus, we have
Ps( fv3 = 0) = 5/9, Ps( fv3 = 1) = 1/3, and Ps( fv3 = 2) = 1/9.
By performing the same computation at each node in the
depth first order, we have the following at the root node:
Ps( f = 0) = 25/81, Ps( f = 1) = 10/27, Ps( f = 2) = 10/81,
Ps( f = 3) = 1/9, Ps( f = 4) = 2/27, and Ps( f = 5) = 1/81.

125



Table I
MDDS AND EVMDDS FOR m-STATE SYSTEMS WITH n 3-STATE COMPONENTS.

n m Number of nodes Computation time (μsec.)
MDD EVMDD Ratio MDD EVMDD Ratio

5 3 12 10 83% 0.30 1.20 406%
5 10 36 18 50% 1.10 2.52 230%
10 3 17 15 88% 0.52 1.85 355%
10 10 77 57 74% 2.83 7.84 277%
10 100 599 265 44% 26.41 49.27 187%
10 1,000 4,201 907 22% 231.10 317.79 138%
15 3 32 30 94% 1.16 3.72 320%
15 10 120 105 88% 4.94 14.07 285%
15 100 1,098 708 64% 59.43 110.72 186%
15 1,000 9,010 3,362 37% 589.10 744.59 126%
15 10,000 70,140 11,474 16% 4,705.00 4,701.00 100%
15 100,000 495,224 62,759 13% 65,303.00 60,901.00 93%
n: Number of 3-state components. m: Number of states for systems.
Ratio: EVMDD / MDD × 100 (%)
The computation time is an average time obtained by running the same computation
a million times, and dividing its total time by a million.

Note that these are consistent with the results obtained by
MDDs in Example 3. (End of Example)

When a structure function is monotone increasing, the
number of nodes in an EVMDD NE is smaller than for
non-monotone increasing functions, and thus, computation
time is shorter. Of course, the proposed method can be
applied to nonmonotonic structure functions used in some
applications [14], [16] as well.

V. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed method, we
used various structure functions. Unfortunately, however,
benchmark structure functions of multi-state systems were
unavailable. Since structure functions are usually monotone
increasing, we randomly generated M1-monotone increas-
ing functions, and used them as structure functions for
experiments in this paper. The analysis algorithms based on
MDDs and EVMDDs are implemented using the follow-
ing computer environment: CPU: Intel Core2 Quad Q6600
2.4GHz, memory: 4GB, OS: CentOS 5.7, and C-compiler:
gcc -O2 (version 4.1.2). Table I shows the experimental
results for randomly generated m-state systems with n 3-
state components.

From this table, we can see that EVMDDs have fewer
nodes than MDDs for all the functions. Especially, as the
number of states m becomes larger, EVMDDs are much
smaller than MDDs. We expect that systems will become
more complex in the future, and that m would become larger.
Thus, EVMDDs whose size is independent of the number
of states are more promising. However, when m is very
small, MDDs are better, since they are small enough and
computation time is shorter. In Table I, when m = 3, only
two terminal nodes are reduced in EVMDDs. Thus, using
EVMDDs for such systems is not effective.

As for computation time, the proposed method using
EVMDDs is comparable to methods using MDDs. There-

fore, we can say that EVMDDs are suitable for compact
representation and efficient analysis of many-state systems.

VI. CONCLUSION AND COMMENTS

This paper proposes an efficient analysis method of
multi-state systems using EVMDDs. The proposed analysis
method is somewhat more complicated than existing meth-
ods using ordinary MDDs because a state of the system
is represented by a sum of edge values. However, actual
computation time of the proposed method is comparable to
methods using MDDs since the time complexity is asymp-
totically proportional to the number of nodes in an EVMDD,
and EVMDDs have fewer nodes than MDDs. Especially, for
systems with many states, the proposed method is effective
because EVMDDs are much smaller than MDDs. Even if
structure functions are not monotone, EVMDDs are not
larger than MDDs. Thus, the proposed method is effective
for a wide range of structure functions.

In this paper, we used randomly generated M1-monotone
increasing functions for our experiments, since benchmarks
of multi-state systems were unavailable. However, there
could be functions more suitable for multi-state systems.
Thus, we will study such functions. We will also study
how to generate EVMDDs directly from multi-state systems
without using MDDs for structure functions.

ACKNOWLEDGMENTS

This research is partly supported by the Grant in Aid for
Scientific Research of the Japan Society for the Promotion of
Science (JSPS), funds from Ministry of Education, Culture,
Sports, Science, and Technology (MEXT) via Knowledge
Cluster Project, the MEXT Grant-in-Aid for Scientific Re-
search (C), (No. 22500050), 2011, and Hiroshima City
University Grant for Special Academic Research (General
Studies), (No. 0206), 2011.

126



REFERENCES

[1] J. D. Andrews and S. J. Dunnett, “Event-tree analysis using
binary decision diagrams,” IEEE Transactions on Reliability,
Vol. 49, No. 2, pp. 230–238, June 2000.

[2] Y.-R. Chang, S. V. Amari, and S.-Y. Kuo, “Reliability eval-
uation of multi-state systems subject to imperfect coverage
using OBDD,” Proc. of the 2002 Pacific Rim International
Symposium on Dependable Computing (PRDC’02), pp. 193–
200, 2002.

[3] S. A. Doyle, J. B. Dugan, and F. A. Patterson-Hine, “A
combinatorial approach to modeling imperfect coverage,”
IEEE Transactions on Reliability, Vol. 44, No. 1, pp. 87–94,
Mar. 1995.

[4] S. A. Doyle and J. B. Dugan, “Dependability assessment
using binary decision diagrams (BDDs),” 25th International
Symposium on Fault-Tolerant Computing (FTCS), pp. 249–
258, June 1995.

[5] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and ap-
plications,” Multiple-Valued Logic: An International Journal,
Vol. 4, No. 1-2, pp. 9–62, 1998.

[6] T. W. Manikas, M. A. Thornton, and D. Y. Feinstein,
“Using multiple-valued logic decision diagrams to model
system threat probabilities,” 41th International Symposium on
Multiple-Valued Logic, pp. 263–267, May 2011.

[7] S. Nagayama A. Mishchenko, T. Sasao, and J. T. Butler,
“Exact and heuristic minimization of the average path length
in decision diagrams,” Journal of Multiple-Valued Logic and
Soft Computing, Vol. 11, No. 5-6, pp. 437–465, Aug. 2005.

[8] S. Nagayama and T. Sasao, “On the optimization of het-
erogeneous MDDs,” IEEE Trans. on CAD, Vol. 24, No. 11,
pp. 1645–1659, Nov. 2005.

[9] S. Nagayama and T. Sasao, “Complexities of graph-based
representations for elementary functions,” IEEE Trans. on
Computers, Vol. 58, No. 1, pp. 106–119, Jan. 2009.

[10] S. Nagayama, T. Sasao, and J. T. Butler, “A systematic
design method for two-variable numeric function generators
using multiple-valued decision diagrams,” IEICE Trans. on
Information and Systems, Vol. E93-D, No. 8, pp. 2059–2067,
Aug. 2010.

[11] J. E. Ramirez-Marquez and D. W. Coit, “Composite impor-
tance measures for multi-state systems with multi-state com-
ponents,” IEEE Transactions on Reliability, Vol. 54, No. 3,
pp. 517–529, Sept. 2005.

[12] T. Sasao and M. Fujita (eds.), Representations of Discrete
Functions, Kluwer Academic Publishers 1996.

[13] L. Xing and J. B. Dugan, “Dependability analysis using
multiple-valued decision diagrams,” Proc. of 6th International
Conference on Probabilistic Safety Assessment and Manage-
ment, June 2002.

0

n - l

l
...

1 m-1

Figure A.1. Partition of MDD.

[14] L. Xing and Y. Dai, “A new decision-diagram-based method
for efficient analysis on multistate systems,” IEEE Transac-
tions on Dependable and Secure Computing, Vol. 6, No. 3,
pp. 161–174, 2009.

[15] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and
R. S. Stankovic, Decision Diagram Techniques for Micro- and
Nanoelectronic Design, CRC Press, Taylor & Francis Group,
2006.

[16] X. Zang, D. Wang, H. Sun, and K. S. Trivedi, “A BDD-based
algorithm for analysis of multistate systems with multistate
components,” IEEE Transactions on Computers, Vol. 52,
No. 12, pp. 1608–1618, Dec. 2003.

APPENDIX

Proof for Theorem 1: Suppose that an MDD is parti-
tioned into two parts: the upper and the lower parts as shown
in Fig. A.1. In this case, the lower part represents l-variable
multi-valued functions, and the upper part represents the
function that chooses one from them. The upper part has the
maximum number of nodes when it forms a complete multi-
valued tree. The number of nodes in the complete multi-
valued tree is 1 + r + r2 + . . .+ rn−l−1. Thus, the maximum
number of nodes in the upper part is

rn−l−1
r−1

. (A.1)

The lower part has the maximum number of nodes when
it represents all l-variable multi-valued functions. Since the
number of all l-variable multi-valued functions is

mrl
, (A.2)

that is the maximum number of nodes in the lower part
including terminal nodes. From (A.1) and (A.2), the number
of nodes in the MDD is at most

rn−l−1
r−1

+ mrl
.

The number of multi-valued functions which can be rep-
resented in the lower part does not exceed the number of
functions which can be chosen by the upper part: rn−l .
Therefore, we have the relation:

rn−l ≥ mrl
.

127


