
Index Generation Functions: Recent Developments
Tsutomu Sasao

Department of Computer Science and Electronics,
Kyushu Institute of Technology,

Iizuka 820-8502, Japan

Abstract—This survey first introduces index generation func-
tions, which are useful for pattern matching in communication
circuits. Then, it shows various methods to realize index gener-
ation functions using memories. A linear transformation is used
to reduce the number of variables and thus memory size. An
extension to the multiple-valued case is also presented.

I. INDEX GENERATION FUNCTION

This paper surveys recent results on index generation func-
tions. Applications of index generation functions include: IP
address table lookup, packet filtering, terminal access con-
trollers, memory patch circuits, virus scan circuits, fault maps
for memory, and pattern matching. In addition, this paper
introduces an index generation unit that efficiently realizes
an index generation function by a linear circuit and a pair
of smaller memories. Due to space limitations, definitions of
standard terminology used in switching circuit theory [11] are
omitted.

Definition 1.1: Consider a set of k different binary vectors
of n bits. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A
registered vector table shows the index of each registered
vector. An index generation function produces the corre-
sponding index if the input matches a registered vector, and
produces 0 otherwise. k is the weight of the index generation
function. An index generation function represents a mapping:
Bn → {0, 1, 2, . . . , k}. An index generator is a circuit that
realizes an index generation function.

Example 1.1: Table 1.1 shows a registered vector table with
k = 4 vectors.

An index generation function can be directly implemented
by a content addressable memory (CAM). However, a CAM
dissipates much power. So, in this paper, we use conventional
memories.

The rest of the paper is organized as follows: Section II
discusses applications of index generation functions. Section
III shows properties of incompletely specified index gen-
eration functions. Section IV shows a method to represent

TABLE 1.1
REGISTERED VECTOR TABLE.

Vector Index
x1 x2 x3 x4

0 0 1 0 1
0 1 1 1 2
1 1 0 0 3
1 1 1 1 4

incompletely specified index generation functions using fewer
variables by a linear transformation. Section V shows an effect
of using linear transformation. Section VI explains the oper-
ation of an index generation unit. Section VII shows design
examples of m-out-of-n code converters. Section VIII shows
efficient methods to realize index generation functions. Section
IX extends the theory to multiple-valued input functions.
Section X surveys related works on linear transformations.
Section XI concludes the paper.

II. APPLICATIONS

Index generators are used for address tables in the internet,
terminal access controllers for local area networks, databases,
memory patch circuits, electronic dictionaries, password lists,
etc. [14].

A. Address Table in the Internet

IP addresses of the internet are often represented in 32
bits. An address table for a router stores IP addresses and
corresponding indexes for a memory that stores the details of
the addresses. For example, in a typical problem, the number
of addresses in the table is 40, 000. Thus, the number of inputs
is 32 and the number of outputs is 16, which can represent
65,536 bit patterns. Note that the address table must be updated
frequently.

B. Terminal Access Controller

A terminal access controller (TAC) for a local area
network checks whether the requested terminal has permission
to access Web resources outside the local area network, E-mail,
FTP, Telnet, etc.. In Fig. 2.1, eight terminals are connected
to the TAC. Some can access all the resources. Others can
access only limited resources because of security risks. The
TAC checks whether the requested computer has permission to
access the Web, E-mail, FTP, Telnet, or not. Each terminal has
its unique MAC address represented by 48 bits. We assume
that the number of terminals in the table is at most 255. To
implement the TAC, we use an index generator and a memory.
The memory stores the details of the terminals. The number of
inputs for the index generator is 48 and the number of outputs
is 8. In many cases, the table for the terminal access controller
must be updated frequently.

Example 2.1: Fig. 2.2 shows an example of the terminal
access controller. The first terminal has the MAC address
53:03:74:59:03:02. It is allowed to access everything, includ-
ing is the Web outside the local area network, E-mail, FTP,

2011 41st IEEE International Symposium on Multiple-Valued Logic

0195-623X/11 $26.00 © 2011 IEEE

DOI 10.1109/ISMVL.2011.17

1

TAC

0B:97:26:34:08:76

81:0A:97:26:44:08

83:3A:57:26:46:29
64:6E :41:42:56: 73

73:6E :58:56:73: 52

53:03:74:59:03:32

46:05:76:75:39:89

92:6D:56:26:1E:63

Fig. 2.1. Terminal access controller.

Index Generator Memory
Address DATA

MAC Address Index Web E-mail FTP Telnet
53:03:74:59:03:32 1 ⇒ 1 1 1 1 1
92:6D:56:26:1E:63 2 2 1 1 0 0
0B:97:26:34:08:76 3 3 1 0 0 0
73:6E:58:56:73:52 4 4 0 1 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸
48-bit 4-bit

Fig. 2.2. Index generator for terminal access controller.

and Telnet. The second one is allowed to access both the Web
and E-mail. The third one is allowed to access only the Web.
And, the last one is allowed to access only E-mail. The index
generated by the index generator is used as an address to read
the memory which stores the permissions. If we implement
the TAC by a single memory, we need a memory with 256
Tera words, since the number of inputs is 48. To reduce the
size of memory, we use an index generator to produce the
index, and an additional memory to store the permission data
for each internal address.
The index generators in the previous examples have common
properties:

1) The values of the non-zero outputs are distinct.
2) The number of non-zero output values is much smaller

than the total number of the input combinations.
3) High-speed circuits are required.
4) Data must be updated.

The third property is important in the communication net-
works. The last property requires that index generators must
be programmable.

III. INCOMPLETELY SPECIFIED INDEX GENERATION

FUNCTIONS

In this part, we introduce some methods to represent a given
incompletely specified function with fewer variables [15], [16],
[18].

Definition 3.1: Let D = {�a1,�a2, . . . ,�ak} be a set of k
distinct vectors in Bn, where B = {0, 1}. f̂ : Bn →
{1, 2, . . . , k, d} is an incompletely specified index generation

41110

x4x3x2x1

30011

21101

11000

24

1

3

x1

x2

x3

x4

),,,(43211 xxxxf

1f

(a) Registered Vector Table (b) Decomposition Table

^

^

Fig. 3.1. Reduction of variables to represent an incompletely specified index
generation function.

function with weight k if

f̂(�ai) = i, (when �ai ∈ D), and

f̂(�b) = d, (when �b ∈ Bn − D),

where d denotes don’t care or undefined.
The number of variables to represent incompletely specified

index generation functions can be often reduced.
Example 3.1: Consider the registered vector table shown in

Fig. 3.1(a). It defines a 4-variable incompletely specified index
generation function f̂1(X). Let X1 = (x1, x2) and X2 =
(x3, x4). The corresponding decomposition table for f̂1(X) is
shown in Fig. 3.1(b), where blank cells denote don’t cares. In
this function, for the vectors �a1 = (0, 0, 0, 1), �a2 = (1, 0, 1, 1),
�a3 = (1, 1, 0, 0), and �a4 = (0, 1, 1, 1), the values of functions
are f̂1(�a1) = 1, f̂1(�a2) = 2, f̂1(�a3) = 3, and f̂1(�a4) = 4,
respectively. For other inputs, the values of f̂1 are d (don’t
care).

In the decomposition table, when each column has at most
one specified element, then the function can be represented by
column variables only, since, for each column, the values of
all don’t cares can be set to the specified value of the column.
In Fig. 3.1(a), values for (x1, x2) are distinct, and the index
can be specified by using only these two variables:

f1 = 1 · x̄1x̄2 ∨ 2 · x1x̄2 ∨ 3 · x1x2 ∨ 4 · x̄1x2.

Example 3.2: Consider the registered vector table in
Fig. 3.2, and the decomposition table for an incompletely
specified index generation function f̂2. Consider the number
of variables to represent the function. In the decomposition
table in Fig. 3.2(a), two non-zero elements exist in the column
(x1, x2) = (1, 1). Thus, the function f̂2 cannot be represented
by {x1, x2}. Similarly, in the row (x3, x4) = (1, 1), two non-
zero elements exist, and the function f̂2 cannot be represented
by {x3, x4}, either.

Next, let us change the partition of the input variables into
(x1, x4) and (x2, x3) as shown in Fig. 3.2(b). In this case,
each column has at most one specified element. Note that
in the registered vector table in Fig. 3.2(b), values of the
vectors (x1, x4) are all different. Thus, the function f̂2 can
be represented by using only {x1, x4}.

2

41111

x4x3x2x1

30011

21110

10100

1

42

3

x1

x2

x3

x4

41111

x3x2x4x1

30101

21110

11000

3

42

1

x1

x4

x3

x2

),,,(43212 xxxxf

(a) (b)

2f

),,,(43212 xxxxf

2f

^

^

^

^

Fig. 3.2. Reduction of variables to represent an input incompletely specified
index generation function.

TABLE 3.1
AVERAGE NUMBER OF VARIABLES TO REPRESENT INCOMPLETELY

SPECIFIED INDEX GENERATION FUNCTION.

k n = 16 n = 20 n = 24 2�log2(k + 1)� − 3
7 3.052 3.018 3.003 3

15 4.980 4.947 4.878 5
31 6.447 6.115 6.003 7
63 8.257 8.007 8.000 9

127 10.304 10.000 9.963 11
255 12.589 11.996 11.896 13
511 14.890 14.019 13.787 15

1023 15.991 16.293 15.874 17
2047 16.000 18.758 17.965 19
4095 16.000 19.992 20.093 21

As shown in above examples, incompletely specified index
generation functions often can be represented with fewer
variables. Minimization methods of input variables for single-
output incompletely specified functions are considered in [2],
[4], [12], [17].

Lemma 3.1: Let p be the number of variables to repre-
sent an incompletely specified index generation function with
weight k. We have the following relation:

p ≥ �log2(k + 1)�.
(Proof) Assume that k +1 = 2p. Consider the binary decision
tree for the function. To distinguish 2p different terminals, at
least p variables are necessary. Note that one terminal node is
used to represent non-registered vectors. �

Definition 3.2: A set of functions is uniformly distributed,
if the probability of occurrence of any function is the same as
any other function.

For example, the set of two-valued input two-valued output
4-variable incompletely specified functions with weight 1
consists of 32 members, 16 having a single 1 and 16 having
a single 0. If the functions are uniformly distributed, the
probability of the occurrence of any one of them is 1

32 .
Table 3.1 shows average numbers of variables to represent
incompletely specified index generation functions for different

n and different weight k. From the table, we have the
following:

Conjecture 3.1: Consider a set of uniformly distributed
incompletely specified index generation functions of n binary
input variables with weight k ≥ 7, then the fraction of the
functions represented with p = 2�log2(k + 1)� − 3 variables
approaches 1.0 as n increases.

Although there exist functions that require more than p =
2�log2(k + 1)� − 3 variables, the fraction of such functions
approaches 0.0 as n increases. When the value of k is large,
the memory with p = 2�log2(k + 1)� − 3 inputs is still too
large to implement.

IV. REPRESENTATION OF INDEX GENERATION FUNCTIONS

USING LINEAR TRANSFORMATIONS

In this part, we show a method to reduce the number of
variables to represent an incompletely specified function by
using a linear transformation of the input variables.

Definition 4.1: Consider a function f(x1, x2, . . . , xn). A
compound variable y has a form

y = c1x1 ⊕ c2x2 ⊕ · · · ⊕ cnxn,

where ci ∈ {0, 1}. The compound degree of y is
∑n

i=1 ci.
A variable with the compound degree 1 is a primitive vari-
able. A variable with compound degree 2 is a bi-compound
variable, and a variable with compound degree 3 is a tri-
compound variable.

Example 4.1: Consider the incompletely specified index
generation function f̂3 shown in Fig. 4.1. Let us consider the
number of variables to represent this function. In Fig. 4.1(a),
the column (x1, x2) = (1, 1) has two non-zero elements. So,
the function cannot be represented by {x1, x2}. In a similar
way, the row (x3, x4) = (1, 1) has two non-zero elements.
So, the function cannot be represented by {x3, x4}. Note
that the decomposition tables with other partitions produce
the same results. Thus, to represent the function f̂3, at least
three variables are necessary. Next, consider the bi-compound
variables y1 = x1⊕x2 and y2 = x2⊕x3. In this case, we have
the function ĝ3(y1, y2, x3, x4) shown in Fig. 4.1(b). Note that,
in the decomposition table shown in Fig. 4.1(b), each column
has at most one specified element. Thus, the function ĝ3 can
be represented by using only two variables {y1, y2}.

As shown in the above example, by using linear transforma-
tion, the number of input variables for incompletely specified
index generation functions can be further reduced. In the rest
of the paper, both a primitive variable xi and and a compound
variables yj are treated as input variables.

Definition 4.2: Given an incompletely specified index gen-
eration function, the linear transformation that minimizes the
number of variables is optimum.

When the number of variables satisfies the relation p =
�log2(k + 1)�, it is an optimum linear transformation.

When only primitive variables are used, the number of
variables for an incompletely specified index generation func-
tion can be minimized by solving a kind of a minimum
covering problem [12], [17]. In principle, the minimization

3

40111

x4x3x2x1

31011

21101

11110

4

21

3

x1

x2

x3

x4

40100

x4x3y2y1

31010

21111

11101

4

12

3

y1

y2

x3

x4

211 xxy =
322 xxy =

),,,(43213 xxxxf),,,(43213 xxyyg

3g

(a) (b)

f3

^

^

^

^

Fig. 4.1. Incompletely specified index generation function represented by
compound variables.

of variables using both primitive and compound variables
can be done in the same way. That is, we can perform the
minimization of the variables, where not only the primitive
variables x1, x2, . . . , xn, but also the compound variables
y1, y2, . . . , yt can be considered as the input variables. When
both the primitive and the bi-compound variables are used, the
number of the input variables to consider is

n +
(

n

2

)
=

n(n + 1)
2

.

When tri-compound variables, in addition to the bi-compound
and the primitive variables are used, the number of the
variables to consider is

n +
(

n

2

)
+

(
n

3

)
=

n(n2 + 5)
6

.

If we consider all the compound variables, the total number of
(compound) variables would be 2n − 1. Thus, an exhaustive
method would be impractical.

In [18], we developed the information gain method, a
heuristic method to select compound variables. The selection
of the compound variables can be considered as the optimiza-
tion of a binary decision tree.

Definition 4.3: In an incompletely specified index genera-
tion function, the partition difference with respect to xi is
|hi0−hi1|, where hi0 is the number of registered vectors such
that xi = 0, and hi1 is the number of registered vectors such
that xi = 1.

Variables with a smaller partition difference tend to partition
the set of registered vectors such that the bits among registered
vectors tend to have nearly the same 0’s and 1’s. Let k be the
number of registered vectors. When the given set of variables
partitions the set of vectors into balanced sets, the number of
variables to represent the function is reduced to �log2(k+1)�.

When selecting compound variables, the smaller the parti-
tion difference of a variable, the larger the information gain
we obtain. Thus, a variable with a large information gain (i.e.,

TABLE 5.1
1-OUT-OF-15 TO BINARY CONVERTER.

1-out-of-15 code Index
x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 6
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

a variable with a small partition difference) tends to reduce
the number of variables needed to represent the function.

V. EFFECT OF LINEAR TRANSFORMATIONS

Consider index generation functions with weight k. When
the probabilities of 0’s and 1’s in the registered vector table
are nearly the same, the function may be represented with
p = �log2(k + 1)� variables. On the other hand, when the
probabilities of 0’s and 1’s are quite different, many variables
are necessary to represent the function. As an example of
functions where the probability of 0’s and 1’s in the registered
vector table are quite different, we consider a class of code
converters.

Definition 5.1: An m-out-of-n code consists of
(

n
m

)
binary

code words whose weights are m.
Definition 5.2: An m-out-of-n to binary converter real-

izes an index generation function with
(

n
m

)
non-zero elements.

It has n inputs and �log2[
(

n
m

)
+1]� outputs. When the number

of 1’s in the inputs is not m, the converter produces the all
0 code. The m-out-of-n code is produced in ascending lexi-
cographical order. That is, the smallest number is denoted by
(0, 0, . . . , 0, 1, 1, . . . , 1), while the largest number is denoted
by (1, 1, . . . 1, 0, 0, . . . , 0).

Example 5.1: Consider the 1-out-of-15 code to binary con-
verter f̂(x1, x2, . . . , x15). It is an index generation function
with weight k = 15, whose registered vector table is shown
in Table 5.1. When only the primitive variables are used, at
least 14 variables are necessary to represent the function. Next,
consider the linear transformation:

y1 = x1 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x13 ⊕ x15,

y2 = x2 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x14 ⊕ x15,

y3 = x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x12 ⊕ x13 ⊕ x14 ⊕ x15,

y4 = x8 ⊕ x9 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x13 ⊕ x14 ⊕ x15.

Then, f̂ can be represented by g(y1, y2, y3, y4) as shown in
Table 5.2. In this case, we can assume that, in the inputs
(x1, x2, . . . , x15), only one variable takes the value 1, while
the other variables take the value 0. Note that in the original
registered vector table in Table 5.1, the probability of 1’s
is 1/15, while in the transformed registered vector table
shown in Table 5.2, the probability of 1’s is 8/15. The linear
transformation makes the height of the decision tree small,

4

TABLE 5.2
TRANSFORMED 1-OUT-OF-15 TO BINARY CONVERTER.

Transformed code Index
y4 y3 y2 y1

0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

and reduces the number of variable to represent the function.
Since the function is represented with p = �log2(k + 1)� = 4
variables, it is an optimum linear transformation.

The next theorem shows how a linear transformation
changes the probability of a variable taking the value 1.

Theorem 5.1: Let x1, x2, . . . , xn be independent variables.
Let xi take the value 1 with the probability α. Then, the
probability that the function

y = x1 ⊕ x2 ⊕ · · · ⊕ xt

takes the value 1 is

γt(α) =
∑

i=1,3,5,...,t−1

(
t

i

)
αiβt−i (when t is even),

γt(α) =
∑

i=1,3,5,...,t

(
t

i

)
αiβt−i (when t is odd),

where β = 1 − α.
Example 5.2: In the 1-out-of-15 code to binary converter,

xi takes the value 1 with the probability 1/15 = 0.066666.
After the linear transformation, yi takes the value 1 with the
probability

γt(α) =
∑

i=1,3,5,...,7

(
8
i

)
αiβ8−i = 0.340857.

The linear transformation gives a more balanced decision tree,
and reduces the number of variables needed to represent the
function.

VI. INDEX GENERATION UNIT

Fig. 6.1 shows an index generation unit (IGU) [15], [16],
[17]. The linear circuit has n inputs and p outputs, where
p < n. It produces functions:

y1 = c1,1x1 ⊕ c1,2x2 ⊕ c1,3x3 ⊕ · · · ⊕ c1,nxn

y2 = c2,1x1 ⊕ c2,2x2 ⊕ c2,3x3 ⊕ · · · ⊕ c2,nxn

y3 = c3,1x1 ⊕ c3,2x2 ⊕ c3,3x3 ⊕ · · · ⊕ c3,nxn

. . . = . . .

yp = cp,1x1 ⊕ cp,2x2 ⊕ cp,3x3 ⊕ · · · ⊕ cp,nxn,

where ci,j ∈ {0, 1}, and ci,i = 1. It is used to reduce the size
of the main memory. Let X1 = (x1, x2, . . . , xp) and X2 =
(xp+1, xp+2, . . . , xn).

Fig. 6.1. Index Generation Unit.

The main memory has p inputs and �log2(k +1)� outputs.
The main memory produces correct indices only for registered
vectors. However, it may produce incorrect indices for non-
registered vectors, because the number of input variables is
reduced by using don’t care conditions. In an index generation
function, if the input vector is non-registered, then it should
produce 0 outputs. To check whether the main memory pro-
duces the correct index or not, we use the AUX memory. The
AUX memory has �log2(k + 1)� inputs and n − p outputs: It
stores the X2 part of the registered vectors for each index.
The comparator checks if the X2 part of the inputs are the
same as the X2 part of the registered vector. If they are the
same, the main memory produces a correct index. Otherwise,
the main memory produces a wrong index, and the input
vector is non-registered. In this case, the output AND gates
produce 0, showing that the input vector is non-registered.
Note that the main memory produces the correct index only
for the registered vectors. In this way, we can implement an
incompletely specified index generation function instead of a
completely specified one The size of the main memory is p2p,
and the size of the AUX memory is (n−p)2p. Thus, the total
memory size is

p2p + (n − p)2p = n2p.

Example 6.1: Consider the registered vectors in Table 1.1.
The number of variables is four, but only two variables x1

and x4 are necessary to distinguish these four registered
vectors. Fig. 6.2 shows the IGU. In this case, the linear circuit
produces Y1 = (x1, x4) from X = (x1, x2, x3, x4). The main
memory stores the indices for X1 = Y1 = (x1, x4), and the
AUX memory stores the values of X2 = (x2, x3) for the
corresponding registered vector. Consider two cases:
When the input vector is registered:
Suppose that a registered vector (x1, x2, x3, x4) = (1, 1, 0, 0)
is applied to the IGU in Fig. 6.2. First, the linear circuit
selects two variables, x1 and x4, and produces the value
X1 = (x1, x4) = (1, 0). Second, the main memory produces
the corresponding index (0, 1, 1). Third, the AUX memory
produces the values of X2 = (x2, x3) = (1, 0) corresponding
registered vector (1, 1, 0, 0). Fourth, the comparator confirms
that the values of X2 = (x2, x3) of the input vector are equal

5

Fig. 6.2. When the input vector is registered.

Fig. 6.3. When the input vector is not registered.

to the output of the AUX memory. And, finally, the AND gate
produces the index for the input vector.
When the input vector is not registered:
Suppose that a non-registered vector (x1, x2, x3, x4) =
(1, 0, 1, 0) is applied to the IGU in Fig. 6.3. Also in this
case, the main memory produces the vector (0, 1, 1), and the
AUX memory produces the values of X2 = (x2, x3) for the
corresponding registered vector (1, 1, 0, 0). However, in this
case, the comparator shows that X2 = (x2, x3) = (0, 1) is
different from the output X2 = (x2, x3) of the AUX memory.
Thus, the AND gate produces 0, which shows that the input
vector is not registered.

VII. DESIGN OF CODE CONVERTERS

In this part, we design m-out-of-n to binary converters.
Example 7.1: When n = 6 and m = 2, we have the

function shown in Table 7.1. This is an index generation
function with weight k =

(
n
m

)
=

(
6
2

)
= 15. When only

the primitive variables are used, the number of inputs can be
reduced up to five. However, when the inputs are transformed
as:

y4 = x6 ⊕ x5

y3 = x5 ⊕ x4

y2 = x4 ⊕ x3

TABLE 7.1
2-OUT-OF-6 TO BINARY CONVERTER.

2-out-of-6 code Index
x6 x5 x4 x3 x2 x1

0 0 0 0 1 1 1
0 0 0 1 0 1 2
0 0 0 1 1 0 3
0 0 1 0 0 1 4
0 0 1 0 1 0 5
0 0 1 1 0 0 6
0 1 0 0 0 1 7
0 1 0 0 1 0 8
0 1 0 1 0 0 9
0 1 1 0 0 0 10
1 0 0 0 0 1 11
1 0 0 0 1 0 12
1 0 0 1 0 0 13
1 0 1 0 0 0 14
1 1 0 0 0 0 15

TABLE 7.2
TRANSFORMED 2-OUT-OF-6 TO BINARY CONVERTER.

Transformed code Index
y4 y3 y2 y1

0 0 0 1 1
0 0 1 1 2
0 0 1 0 3
0 1 1 0 4
0 1 1 1 5
0 1 0 1 6
1 1 0 0 7
1 1 0 1 8
1 1 1 1 9
1 0 1 0 10
1 0 0 0 11
1 0 0 1 12
1 0 1 1 13
1 1 1 0 14
0 1 0 0 15

y1 = x3 ⊕ x2

then, the code converter can be represented with only four
variables: y1, y2, y3, and y4, as shown in Table 7.2. Since the
function is represented with p = �log2(k + 1)� = 4 variables,
it is an optimum linear transformation.
In this example, the advantage of using a linear transformation
is not so great. However, when n is large, a linear transfor-
mation can drastically reduce the memory size.

Example 7.2: Consider the case of m = 2 and n = 20. This
is an index generation function with the weight k =

(
n
m

)
=(

20
2

)
= 190. In the single-memory realization, the memory

size is
�log2(k + 1)�2n = 8 × 220,

which is too large. To obtain a decomposed realization,
partition the inputs into X1 = (x1, x2, . . . , x10) and X2 =
(x11, x12, . . . , x20). The column multiplicity with the decom-
position with respect to (X1,X2) and (X2,X1) are the same
and are both 57. Thus, it can be realized by the circuit shown
in Fig. 7.1. In this realization, the total memory size is

2 × 6 × 210 + 8 × 212 = 44 × 210.

When we use an IGU to implement the function, the number
of inputs to the main memory can be reduced to p = �log(k+
1)�+ 1 = 9. In this case, the total memory size in the IGU is

n2p = 20 × 29 = 10 × 210.

6

Fig. 7.1. Tree-type realization of 2-out-of-20 to binary converter.

Fig. 7.2. Tree-type realization of 3-out-of-20 to binary converter.

Example 7.3: Consider the case of m = 3 and n = 20.
This is an index generation function with weight k =

(
n
m

)
=(

20
3

)
= 1140. In the single-memory realization, the memory

size is
�log2(k + 1)�2n = 11 × 220,

which is also too large. To realize a tree-type circuit, we
partition the inputs into X1 = (x1, x2, . . . , x10) and X2 =
(x11, x12, . . . , x20). The column multiplicity with the decom-
position with respect to (X1,X2) and (X2,X1) are the same
and are both 177. Thus, we have the circuit shown in Fig. 7.2.
In this realization, the total memory size is

2 × 8 × 210 + 11 × 216 = 720 × 210.

When we use the IGU, the number of inputs to the main
memory is reduced to p = �log(k + 1)� = 11. Thus, it is an
optimum linear transformation. In this case, the total memory
size in the IGU is

n2p = 20 × 211 = 40 × 210.

VIII. EFFICIENT REALIZATIONS OF INDEX GENERATION

FUNCTIONS

We assume that the non-zero elements in the index gener-
ation function are uniformly distributed in the decomposition
chart. In this case, we can estimate the fraction of registered
vectors realized by the main memory.

Theorem 8.1: Consider a set of uniformly distributed index
generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,
and xp. Then, the expected number of registered vectors of f
that can be realized by the IGU is 2p(1−e−ξ), where ξ = k

2p .
Corollary 8.1: Consider a set of uniformly distributed index

generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,

Fig. 8.1. Index generator implemented by the hybrid method.

and xp. Then, the fraction of registered vectors of f that can
be realized by the IGU is

δ =
1 − e−ξ

ξ
,

where ξ = k
2p .

Example 8.1: When ξ = 1
4 , we have δ
 0.8848, when

ξ = 1
2 , we have δ
 0.7869, and when ξ = 1, we have

δ
 0.63212.
We now show efficient methods to implement index gener-
ation functions using memories [16]. In an index generation
function, the number of registered vectors k, is usually much
smaller than 2n, the total number of the input combinations.

Definition 8.1: The hybrid method is an implementation
of an index generation function using the circuit consisting
of IGU1 as shown in Fig. 8.1. IGU1 is used to realize most
of the registered vectors, while a rewritable PLA is used to
realize the remaining registered vectors. The OR gate in the
output combines the indices to form a single output.

A rewritable PLA is necessary in most applications, since
we often need to update the data. A rewritable PLA can be
replaced by another circuit, such as an LUT cascade or a CAM.

In the hybrid method, when the main memory of IGU1

has p = �log2(k + 1)� + 2 inputs, we have ξ = k
2p = 1

4 .
From Example 8.1, about 88% of the registered vectors
are implemented by IGU1, and the remaining 12% of the
registered vectors are implemented by the PLA.

Definition 8.2: The super hybrid method is an imple-
mentation of an index generation function using the circuit
consisting of two IGUs as shown in Fig. 8.2. IGU1 is used to
realize most of the registered vectors, IGU2 is used to realize
the registered vectors not realized by IGU1, and the rewritable
PLA is used to realize registered vectors not realized by either
IGU. The OR gate in the output combines the indices to form
a single output.

The super hybrid method shown in Fig. 8.2 is more compli-
cated than the hybrid method, but requires smaller memories.
In the super hybrid method, when the main memory of the
IGU1 has p1 = �log2(k + 1)� + 1 inputs, and the main
memory of the IGU2 has p2 = �log2(k+1)�−1 inputs, from
Example 8.1, we have ξ1 = k1

2p1 = 1
2 , δ1 = 1−eξ1

ξ1
=0.7869; and

ξ2 = k2
2p2 = 1

2 , δ2 = 1−eξ2

ξ2
=0.7869. In this case, k1 = k and

k2 = k1(1−δ1). Thus, about 80% of the registered vectors are

7

Fig. 8.2. Index generator implemented by the super hybrid method.

IGU1

IGU2

IGU3

IGUr

OR

Fig. 8.3. Index generator implemented by the parallel sieve method.

implemented by IGU1, about 16% of the registered vectors are
implemented by IGU2, and the remaining 4% of the registered
vectors are implemented by the PLA.

By increasing the number of IGU’s, we have the parallel
sieve method, which is especially useful when the number of
the registered vectors is very large [10].

Definition 8.3: The parallel sieve method is an imple-
mentation of an index generation function using the circuit
consisting of multiple IGUs as shown in Fig. 8.3. IGUi+1 is
used to realize a part of the registered vectors not realized
by IGU1, IGU2, . . . , or IGUi. The OR gate in the output
combines the indices to form a single output. In the standard
parallel sieve method, the number of inputs to the main
memory is chosen as pi = �log2(ki + 1)�, where ki denotes
the number of registered vectors to be implemented by IGUi,
IGUi+1, . . . , and IGUr.

IX. EXTENSION TO MULTIPLE-VALUED CASE

Index generation functions can be extended into multiple-
valued input functions as follows:

Definition 9.1: A multi-valued input index generation
function f is a mapping {0, 1, . . . , r−1}n → {0, 1, . . . , k−1}.

Experimental results [20] suggest the following:
Conjecture 9.1: Consider a set of uniformly distributed

incompletely specified r-valued input n-variable index gen-

TABLE 9.1
4-VALUED INPUT INDEX GENERATION FUNCTION.

x1 x2 x3 x4 x5 x6 x7 x8 f
A A G A G C T A 1
A A G C A C G C 2
G A A G A T C A 3
C T G G A G G G 4
T A G G G A T A 5
T A T G C C A G 6
T G A C C G C G 7

Fig. 9.1. Index generation unit for DNA matching.

eration functions with weight k. If

p ≥ 2 logr k − logr 4.158,

then more than 95% of the functions can be represented with
p variables.

Note that there exist functions that require more variables.
However, the fraction of such functions approaches to 0.0 as
n increases.

Example 9.1: Deoxyribonucleic acid (DNA) contains the
genetic instructions used in the development and functioning
of all known living organisms. The four bases found in DNA
are adenine (abbreviated A), cytosine (C), guanine (G) and
thymine (T). To represent DNA, we use 4-valued logic. Con-
sider the circuit to detect DNA patterns shown in Table 9.1.
Since each pattern consists of 8 characters, a single-memory
realization requires a memory with 2 × 8 = 16 inputs. Since,
it has three outputs, the memory size is 216 × 3 = 192 × 210

bits. However, these patterns can be distinguished by using
only two characters: x4 and x7. Fig. 9.1 shows the circuit
to detect the DNA patterns. In Fig. 9.1, the total amount of
memory is only 42 × 3 + 8 × 6 × 2 = 144 bits.

X. RELATED WORK

The use of linear transformations in the logic design was
first considered by Nechiporuk in 1958 [9]. Later, Lechner
[7] presented an extensive survey of the methods, and Varma
and Trachtenberg [24] showed the usefulness of the linear
transformation for logic synthesis benchmark functions. In
these design methods, the cost measure of the circuits was
the gate count. And, autocorrelation was used to estimate

8

the cost of the function. Recently, linear transformation is
considered in [6] to reduce circuit complexity. In these works,
the methods seem to be effective for totally or partially
symmetric functions, including adders. However, for other
functions, linearization are not so effective. Reductions of the
sizes of BDDs using linear transformations were considered
in [8], [1], [5]. In these cases, the methods are useful for
error-correcting circuits (C499, C1355, C1908) in addition
to totally and partially symmetric functions including adders
(C7552). In [15], the author presented a method to reduce the
number of variables for incompletely specified function by
linear transformation. In this case, the circuit is implemented
by memories, and the cost measure is the memory size or the
number of the variables for the main memory. Minimization
of variables for multiple-valued index generation functions are
also considered in [22].

XI. CONCLUSIONS

In this paper, we introduced index generation functions,
which have wide applications in pattern matching circuits for
the Internet. We also presented a method to implement an
index generation function using an IGU. Reduction of the
number of variables using linear transformation is shown. To
implement functions with many vectors, we developed the
hybrid method, the super-hybrid method and the parallel sieve
method. An extension to multiple-valued input case is also
shown. This survey is based on [21].

ACKNOWLEDGMENTS

This research is partly supported by the MEXT Regional
Innovation Cluster Program (Global Type, 2nd Stage). The
author thanks Prof. Jon T. Butler, Dr. Hiroki Nakahara, and
Mr. M. Matsuura for discussion. Prof. R. S. Stankovic provided
us [9] and [23].

REFERENCES

[1] W. Gunther and R. Drechsler, “Efficient minimization and manipulation
of linearly transformed binary decision diagrams,” IEEE Transactions
on Computers, vol.52. No. 9, pp.1196-1209, September, 2003.

[2] C. Halatsis and N. Gaitanis, “Irredundant normal forms and minimal de-
pendence sets of a Boolean function,” IEEE Transactions on Computers,
Vol. C-27, No. 11, pp. 1064-1068, November, 1978.

[3] Y. Iguchi, T. Sasao, and M. Matsuura, “Design methods of radix con-
verters using arithmetic decompositions,” IEICE Trans. on Information
and Systems, Vol. E90-D, No. 6, June 2007, pp. 905-914.

[4] Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE
Trans. on Computers, Vol. C-28, No. 9, pp. 609-617, September 1979.

[5] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, “Reduction of sizes
of decision diagrams by autocorrelation functions,” IEEE Transactions
on Computers, Vol. 52, No.5, pp. 592-606, May, 2003.

[6] O. Keren and I. Levin, “Linearization of multi-output logic functions by
ordering of the autocorrelation values,” FACTA UNIVERSITATIS (NIS),
Vol. 20, no. 3, December 2007, pp. 479-498.

[7] R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, 1971.

[8] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision
diagrams and its application in synthesis,” IEEE Trans. CAD, vol. 19,
no. 5, pp. 521-533, 2000.

[9] E. I. Nechiporuk, “On the synthesis of networks using linear transfor-
mations of variables,” Dokl. AN SSSR, vol. 123, no. 4, pp. 610-612, Dec.
1958.

[10] H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawamura, “A parallel sieve
method for a virus scanning engine,” 12th EUROMICRO Conference on
Digital System Design, Architectures, Methods and Tools, Patras, Greece
(DSD-2009), Aug. 2009, pp.809-816.

[11] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[12] T. Sasao, “On the number of dependent variables for incompletely
specified multiple-valued functions,” 30th International Symposium on
Multiple-Valued Logic, pp. 91-97, Portland, Oregon, U.S.A., May 23-25,
2000.

[13] T. Sasao, “Radix converters: Complexity and implementation by LUT
cascades,” ISMVL-2005, pp. 256-263.

[14] T. Sasao, “Design methods for multiple-valued input address genera-
tors,”(invited paper) International Symposium on Multiple-Valued Logic
(ISMVL-2006), Singapore, May 2006.

[15] T. Sasao, “A Design method of address generators using hash memories,”
IWLS-2006, Vail, Colorado, U.S.A, June 7-9, 2006, pp.102-109.

[16] T. Sasao and M. Matsuura, “An implementation of an address gener-
ator using hash memories,” DSD-2007, Aug. 27 - 31, 2007, Lubeck,
Germany, pp.69-76.

[17] T. Sasao, “On the number of variables to represent sparse logic func-
tions,” ICCAD-2008, San Jose, California, USA, Nov.10-13, 2008, pp.
45-51.

[18] T. Sasao, T. Nakamura, and M. Matsuura, “Representation of incom-
pletely specified index generation functions using minimal number of
compound variables,” DSD-2009, Aug. 2009, pp.765-772.

[19] T. Sasao, M. Matsuura, and H. Nakahara, “A Realization of index
generation functions using modules of uniform sizes,” International
Workshop on Logic and Synthesis (IWLS-2010), Irvine, California, June
11-13, 2010, pp.201-208.

[20] T. Sasao, “On the numbers of variables to represent multi-valued
incompletely specified functions,” 13th EUROMICRO Conference on
Digital System Design, Architectures, Methods and Tools, Lille, France
DSD-2010, Sept. 2010, pp.420-423.

[21] T. Sasao, Memory Based Logic Synthesis, Springer, 2011 (to be pub-
lished).

[22] D. A. Simovici, D. Pletea, and R. Vetro, “Information-theoretical mining
of determining sets for partially defined functions,” ISMVL-2010, May
2010, pp.294-299.

[23] R. S. Stankovic and J. Astola (eds.) E.I. Nechiporuk, ”Network synthesis
by using linear transformation of variables,” in Reprints from the Early
Days of Information Sciences, Tampere International Center for Signal
Processing, Tampere 2007.

[24] D. Varma and E. Trachtenberg, “Design automation tools for efficient
implementation of logic functions by decomposition,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
Vol.8, No.8, pp.901-916, 1989.

9

