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Abstract—A heterogeneous multi-valued decision
diagram (HMDD) may have nodes with different numbers
of variables. By partitioning the input variables into optimal
disjoint sets, the HMDDs evaluate the function faster than BDDs
with the same amount of memory. In this paper, we compare
multi-output HMDD machines. First, we introduce three types
of HMDDs: plural single-output HMDDs, Multi-Terminal
HMDD, and HMDD for ECFN. Next, we show three HMDD
machines (HMDDMs). Then, we compare three HMDDMs
with respect to the memory size, the execution time, and the
area-time complexity. The comparison shows that, as for the
area-time complexity, the HMDD for ECFN machine is the best.

I. INTRODUCTION

Decision diagram machines (DDMs) are special purpose
processors that evaluate logic functions [6], [1]. Applications
for DDMs include industrial process controllers [18]; logic
simulators [4]; and packet classifier [9]. The parallel branching
program machine (PBM128) is 21.4-96.1 times faster than
the Core2Duo, and the total (dynamic and static) power
consumption is 23.6% of that for the Core2Duo [10].

The heterogeneous multi-valued decision diagram (HMDD)
may have nodes with different number of variables [7]. By
selecting an optimal partition of the input variables, the
HMDDs can evaluate logic functions about two times faster
than BDDs using the same amount of memory [11]. In the
previous work, we only considered the HMDDs for single
output function. In this paper, we consider HMDDs for
multiple-output functions. For BDDs, various representations
of multiple-output functions are considered: plural single-
output BDDs; a multi-terminal BDD (MT-BDD) [15]; and
BDD for encoded characteristic function for non-zero out-
puts (ECFN) [14]. In this paper, first, we extend these decision
diagrams to HMDDs. Then, we develop HMDD machines for
multiple-output functions. Next, we compare these machines
with respect to the memory size, the execution time. In the
embedded system, since the memory size and the execution
time are limited, compact and fast systems are required. Thus,
we compare these machines with respect to the area-time
complexity.

The rest of the paper is organized as follows: Chapter
2 defines important words; Chapter 3 introduces HMDDs
representing multiple-output functions; Chapter 4 develops the
HMDD machines for multiple-output functions; Chapter 5
compares the HMDD machines; and Chapter 6 concludes the
paper.

II. PRELIMINARY

Definition 2.1: Let f(X) : Bn → B be a two-valued logic
function, where B = {0, 1}. Let X = (x1, x2, . . . , xn), xi ∈
B be an ordered set of binary variables. Let {X} denote the
unordered set of variables in X . If {X} = {X1}∪{X2}∪· · ·∪
{Xu} and {Xi} ∩ {Xj} = φ(i �= j), then (X1, X2, . . . , Xu)
is a partition of X , where Xi is a super variable. When
ki = |Xi|(i = 1, 2, . . . , u), k1 + k2 + · · ·+ ku = n.

Definition 2.2: A BDD is obtained by applying Shannon
expansions repeatedly to a logic function f [2]. Each non-
terminal node labeled with a variable xi has two outgoing
edges which indicate nodes representing cofactors of f with
respect to xi. When the Shannon expansions are performed
with respect to k variables, all the non-terminal nodes have
2k edges. In this case, we have a Multi-valued Decision
Diagram (MDD(k)) [5].

Definition 2.3: In a DD, a sequence of edges and non-
terminal nodes leading from the root node to a terminal node
is a path. An ordered BDD (OBDD) has the same variable
order on any path. A reduced ordered BDD (ROBDD) is
derived by applying the following two reduction rules to an
OBDD:

1. Share equivalent sub-graphs.
2. If all the outgoing edges of a non-terminal node v point

the same succeeding node u, then delete v and connect
the incoming edges of v to u.

An ROMDD(k) can be similarly defined to the ROBDD.
Note that, MDD(1) mean BDD. In this paper, BDD and
MDD(k) means ROBDD and ROMDD(k), respectively, unless
stated otherwise.

Definition 2.4: Let X = (X1, X2, . . . , Xu) be a partition of
the input variables, and ki = |Xi| be the number of inputs for
node i. When k = |X1| = |X2| = · · · = |Xu|, an ROMDD
is a homogeneous MDD (MDD(k)). On the other hand, if
there exists a pair (i, j) such that |Xi| �= |Xj|, then, it is a
heterogeneous MDD (HMDD).

If the evaluation time for all the DD nodes are the same, then
the evaluation time for a DD is proportional to the average
path length (APL) [3]. We assume that a DD machine
evaluates each node in a fixed time. In this case, we can use
APL to estimate the computation time.

Definition 2.5: Let (X1, X2, . . . , Xu) be a partition of the
input variables X . Suppose that Xi can take any value c, where
c ∈ {0, 1, . . . , r − 1}, r = 2ki . Then, P (Xi = c) denotes the
probability that Xi has the value c. The Path Probability (PP)
of a path pi, denoted by PP (pi), is the probability that the
path pi is selected in all assignments of values to the r-valued
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Fig. 1. An example of SO-BDDs for 2-bit adder.
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Fig. 2. An example of SO-HMDDs for 2-bit adder.

variables. Then, we have PP (pi) =
∑

�c∈Ci
P (X1 = c1) ·

P (X2 = c2) · . . . · P (Xu = cu), where Ci denotes a set of
assignments of values to the variables X selecting the path
pi, and �c = (c1, c2, . . . , cu). The average path length (APL)
of a DD is APL =

∑N
i=1 PP (pi) · li, where N denotes the

number of paths, and li denotes the path length of path pi.

III. HMDDS FOR MULTIPLE-OUTPUT FUNCTIONS

The HMDD machine for single-output function has been
shown [11]. However, many practical applications use
multiple-output functions. In this paper, we consider the
following multiple-output representations for decision dia-
grams (DDs).

· Plural single-output DDs [11]
· Multi-Terminal DD [15]
· DD for encoded characteristic function for non-zero
outputs (ECFN) [14]

First, we introduce DDs for multiple-output functions. Then,
we extend them to the HMDD. Note that, in this paper, m
denotes the number of outputs.

A. Plural single-output HMDDs

The simplest method to represent a multi-output function is
to use plural Single-Output HMDDs (SO-HMDDs). For the
SO-HMDDs, each HMDD can be optimized by using its own
variable order, independently.

Example 3.1: Fig. 1 shows the plural single-output
BDDs (SO-BDDs) for a 2-bit adder. Note that, these BDDs
have different variable orders. Also, Fig. 2 shows the SO-
HMDDs for the 2-bit adder. For SO-DDs, since the variable
order for DDs can be different, the nodes cannot be shared
among different DDs.

B. Multi-Terminal HMDD

A multi-terminal BDD (MTBDD) is the BDD that has
m-bit terminal nodes. Also, we can define a multi-terminal
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Fig. 3. An example of the MTBDD
for 2-bit adder.
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Fig. 4. An example of the MT-
HMDD for 2-bit adder.

heterogeneous MDD (MT-HMDD). Since each terminal node
stores m output values, the output values are obtained by just
traversing the MT-HMDD from the root node to the terminal
node. Since many outputs are evaluated by one traversal of
the MT-HMDD, the evaluation is fast. However, the numbers
of nodes tend to be too large to store in a memory for many
practical applications [13].

Example 3.2: Fig. 3 shows the MTBDD for the 2-bit adder,
and Fig. 4 shows the MT-HMDD for the 2-bit adder.

C. HMDD for ECFN

A BDD for ECFN (Encoded Characteristic Function for
Non-zero outputs) [14] requires smaller amount of memory
than MT-HMDDs. A BDD for ECFN is considered as a
generalization of a shared BDD (SBDD) [13]. BDDs for
ECFNs are often smaller than corresponding SBDDs. This part
shows the properties of the BDD for ECFN.

Definition 3.6: Let n be the number of the inputs, and m be
the number of the outputs. An ECFN represents the mapping:
F : Bn × Bu → B, where u = �log2m�. F (�a,�b) = 1 iff
fν(�b)(�a) = 1, where ν(�b) is an integer represented by the

binary vector �b.
Definition 3.7: x0 = x̄, x1 = x.
Definition 3.8: For an m-output function fi (i=0, 1, . . . ,

m-1), the ECFN is

F =
m−1∨

i=0

z
bu−1
u−1 z

bu−2
u−2 · · · zb0

0 fi, (1)

where �b = (bu−1, bu−2, . . . , b0) is a binary representation of
the integer i, z0, z1, . . . , zu−1 are the auxiliary variables that
represent the outputs, and u = �log2m�.

Example 3.3: The four-output function (f0, f1, f2, f3) can
be represented by the ECFN as follows: F = z̄1z̄0f0∨z̄1z0f1∨
z1z̄0f2 ∨ z1z0f3.

Example 3.4: Fig. 5 shows the BDD for ECFN for the 2-bit
adder, and Fig. 6 shows the HMDD for ECFN for the 2-bit
adder.

The evaluation for the HMDD for ECFN is more complex
than the SO-HMDDs and the MT-HMDD. The following
algorithm shows the evaluation of the HMDD for ECFN.

Algorithm 3.1: (Evaluation of HMDD for ECFN)
1. Reset the auxiliary variables to zeros.
2. Evaluate the HMDD for ECFN corresponding to primary

inputs and auxiliary variables.
3. Increment the value represented by the auxiliary vari-

ables.
4. If all outputs are evaluated, then Terminate. Otherwise,

go to Step 2.
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Fig. 8. An example of evaluation of the HMDD for ECFN for 2-bit adder.
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Example 3.5: Let the primary input be (x0, x1, x2, x3) =
(1, 1, 0, 1). Fig. 8 illustrates the evaluation of the HMDD for
ECFN shown in Fig. 6. First, we set (z1, z0) = (0, 0), and
obtain f0 = 1. Then, we increment the value to (z1, z0) =
(0, 1), and obtain f1 = 0. Finally, we increment the value to
(z1, z0) = (1, 0), and obtain f2 = 1.

From above example, to evaluate the ECFN by the hard-
ware, the register that retains the auxiliary variables, the
counter, and its controller are necessary.

D. Output Encoding of ECFN

In Definition 3.8, the integer i is represented by a binary
vector �b using the natural binary encoding. However, different
encodings can simplify the HMDD for ECFN. To find an
optimal encoding of the output is not easy. So, to construct
HMDDs for ECFNs, a heuristic method that finds a suboptimal
encoding is used [16].

Example 3.6: Fig. 7 shows the optimal encoding of the
BDD for ECFN, that is different from the natural encoding
shown in Fig. 5. In these cases, the variable orders are the
same. This example shows that the output encoding influences
the sizes of the ECFNs.

IV. MULTI-OUTPUT HMDD MACHINES

A. Direct and Indirect Branch Address Placement [11]

In homogeneous DDs (e.g. BDD, MDD (k)), the numbers of
branches are the same for all nodes. Thus, the lengths of fields
for the branch instructions are also the same. These machines
can directly get the branch address by reading input variables
and the branch instruction. Since the HMDD can accept
different numbers of input variables for nodes, the numbers of
branch addresses can be different. Two types of branch address

placements exits: one is a direct branch address placement;
and the other is a indirect branch address placement [11].
In the direct branch address placement, the index and branch
addresses are located to the same word. Although the field
lengths are different for different k, the direct branch address
placement can directly get the branch address. On the other
hand, in the indirect branch address placement, the index
and branch addresses are stored in the separated words. To
evaluate a node, first, the current index is read. Then, the
jump address corresponding to the value of the current input
variables is read. Although the machine using indirect branch
address placement is slower than the machine using direct
branch placement, it uses the memory efficiently, since the
words have the same length.

Example 4.7: Fig. 9 compares the indirect branch address
placement with the direct branch address placement for k-input
HMDD node. Although, the indirect branch address placement
requires 2k + 1 words, the length for the words are the same.

The indirect jump can use the memory efficiently for
heterogeneous DDs. In this paper, to evaluate a node for the
HMDD, we use the indirect branch.

B. SO-HMDDs Machine (SO-HMDDsM)

In the SO-HMDDs, the non-terminal node is evaluated by
an indirect branch instruction shown in Fig. 10, while the
terminal node is evaluated by a single-output and jump
instruction shown in Fig. 11. Fig. 12 shows a SO-HMDDs
Machine (SO-HMDDsM). In Fig. 12, the instruction mem-
ory stores the instructions; the instruction register stores
the instruction from the instruction memory; the program
counter (PC) retains the address for the instruction memory;
the output counter (OC) in the controller retains the assigned
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number for each HMDD; the double-rank shift register
retains the output value; and the input selector shown in
Fig. 14 selects an arbitrary size of super variables.

Fig. 13 shows the double-rank shift register consisting of the
shift register and the output register. In the double-rank shift
register, each flip-flop consists of a double-rank flip-flop [12].
The shift register retains outputs of the SO-HMDDs. When all
outputs are evaluated, the value of the shift register is sent to
the output register.

The following examples show the execution of the branch
instruction and the output instruction for the SO-HMDDsM.

Algorithm 4.2: (2k indirect branch instruction for the SO-
HMDDsM)

1. Read indirect branch address
1.1 Read the index corresponding to index filed in the

branch instruction.
1.2 To obtain the indirect branch address, add it to the

PC.
2. Perform the jump operation

2.1 Read the jump address corresponding to the PC.
2.2 Set the jump address to the PC.

Algorithm 4.3: (Single-output and jump instruction for the
SO-HMDDsM) Let OC be the value of the output counter,
and m be the number of outputs.

1. After reset of the machine, OC ← 0.
2. Output the value

2.1 Read the output value and the jump address corre-
sponding to the PC.

2.2 Set the output value to the shift register in the
double-rank shift register.

2.3 OC ← OC + 1.
2.4 If all outputs are evaluated (OC = m), then the

values of the shift register are sent to the output
register, and OC ← 0.

3. Perform the jump operation, similarly to the Step 2 of
Algorithm 4.2.

Let n be the number of the primary inputs, m be the number
of the primary outputs, p(q) be the number of the non-terminal

FF

FF

FF

FF

FF

FF
Fetch

Shift

`VALUE’ from the output instruction

Double-Rank
Filp Flop

Shift Register

Output Register

Fig. 13. Double-rank shift register.
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nodes for the SO-HMDD that represents the function fq (1 ≤
q ≤ m), si(q) be the size of index for the node i. Then, the
number of addresses of the HMDD for fq is

2 +
p(q)∑

i=1

(2si(q) + 1),

where the first term denotes the number of addresses for
two terminal nodes, and the second term denotes the number
of addresses for non-terminal nodes. Thus, the number of
addresses ASO of the SO-HMDDsM for m output functions
is

ASO =
m∑

q=1

(2 +
p(q)∑

i=1

(2si(q) + 1)).

Therefore, the word length for the SO-HMDDsM WSO is

WSO = max(�log2ASO�+ 2, �log2n�+ 1).

From above expressions, the memory size for the SO-
HMDDsM is

ASOWSO. (2)

C. MT-HMDD Machine (MT-HMDDM)

In an MT-HMDD, a non-terminal node is evaluated by the
indirect branch instruction, similar to the case of the SO-
HMDDs. However, the terminal node is evaluated by a multi-
output and jump instruction shown in Fig. 15. Fig. 16
shows an MT-HMDD machine (MT-HMDDM). In Fig. 16,
the instruction memory, the instruction register, and the input
selector are the same as that of the SO-HMDDsM. For the
MT-HMDD, since m outputs are evaluated at a time, only
the output register is used. Also, the output counter is not
necessary. Thus, the controller for the MT-HMDDM is simpler
than that for the SO-HMDDsM.

The indirect branch instruction is executed in the similar
way to the SO-HMDDsM shown in Algorithm 4.2. The
following example shows the execution of the multi-output
and jump instruction.
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Algorithm 4.4: (Multi-output and jump instruction for the
MT-HMDDM)

1. Output the value.
1.1 Read the output value corresponding to the PC.
1.2 Set the output value to the output register. Also,

increment the PC.
2. Perform the jump operation, similarly to the Step 2 of

Algorithm 4.2.
Let p be the number of nodes for the MT-HMDD, and si

1

be the size of node i. The number of addresses AMT for the
MT-HMDDM is

AMT =
p∑

i=1

(2si + 1).

Let n be the number of primary inputs, and m be the number
of primary outputs. The word length WMT for the MT-
HMDDM is

WMT = max(�log2AMT �, �log2n�+ 1, m + 1).

Therefore, the memory size for the MT-HMDDM is

AMT WMT . (3)

D. HMDD for ECFN Machine (HMDDM for ECFN)

In the HMDD for ECFN, the non-terminal node is eval-
uated by the indirect branch instruction shown in Fig. 10.
On the other hand, the terminal node is evaluated by the
single-output and jump instruction shown in Fig. 11. In the
HMDD for ECFN machine (HMDDM for ECFN) shown
in Fig. 17, the instruction memory, the instruction register,
and the double-rank shift register are the same as Fig. 13. To
evaluate the HMDD for ECFN, we use the auxiliary variable
counter (AC) that retains the value of the auxiliary variable.
The input selector for the HMDDM for ECFN selects both the
primary inputs and the auxiliary variables from the AC.

The indirect branch instruction is executed in a similar
way to the SO-HMDDsM. The following example shows the
execution of the single-output and jump instruction for the
HMDDM for ECFN.

Algorithm 4.5: (Single-output and jump instruction for the
HMDDM for ECFN). Let AC be the value of the auxiliary
counter, and m be the number of outputs.

1. After reset of the machine, AC ← 0.
2. Output the value.

2.1 Read the value and the jump address corresponding
to the PC.

1For the terminal node, si = 0
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Fig. 17. HMDD for ECFN machine (HMDDM for ECFN).

TABLE I
COMPARISON OF THREE HMDDMS.

HMDD LEs Max.
Machine Comb. Reg. Freq.[MHz]

SO-HMDDsM 354 89 92.11
MT-HMDDM 348 57 93.10
HMDDM for ECFN 399 95 90.31

2.2 Set the value to the double-rank shift register, and
AC ← AC + 1.

2.3 If all outputs are evaluated (AC = m), then send
the values of the shift register to the output register,
and AC ← 0.

3. Perform the jump operation, similarly to the Step 2 of
Algorithm 4.2.

Let n be the number of primary inputs, m be the number
of outputs, p be the number of non-terminal nodes for the
HMDDM for ECFN, si be the size of node i. Similarly to the
case of SO-HMDDsM, the number of addresses AECFN for
the HMDDM for ECFN is obtained as

AECFN = 2 +
p∑

i=1

(2si + 1).

Since the ECFN has n+ �log2m� bits inputs, the word length
WECFN is

WECFN = max(�log2AECFN�+ 2, �log2(n + �log2m�)�+ 1).

Therefore, the memory size for the HMDDM for ECFN is

AECFNWECFN . (4)

V. COMPARISON OF MULTI-OUTPUT HMDDMS

A. Implementation of HMDDMs

We implemented three types of HMDDMs on the Altera’s
Cyclone III FPGA (EP3C25, 24,624 LEs, 66 M9Ks). Table I
compares three types of HMDDMs. From Table I, the number
of LEs for three machines are slightly different. However, their
LE usages are quite small compared with the available LEs in
the FPGA. Also, the clock frequencies for their machines are
slightly different.

B. Comparison of HMDDMs

We generated SO-HMDDs, MTHMDDs, and HMDDs for
ECFN for selected MCNC benchmark functions [17]. Then,
we compared their memory size (area), execution time (time),
and the area-time complexity. To generate HMDDs, we
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TABLE II
COMPARISON OF MEMORY

SIZE ([KB]).

Name I/O SO MT ECFN
alu4 14/8 2.7 16.4 2.2
apex2 39/3 2.7 2.7 2.6
cc 21/26 0.9 3,370.7 0.6
lal 26/19 1.4 912.5 1.3
pcler8 27/17 1.3 38.3 1.0
spla 24/21 7.6 230.7 3.7
ttt2 16/46 2.0 22,140.7 1.2
ts10 22/16 2.5 6.459.7 1.2
C1355 41/32 14,936.5 — 406.3
C1908 33/25 5,339.6 — 101.2
C3540 50/22 14,978.4 — 844.4

TABLE III
COMPARISON OF EXECUTION

TIME ([NSEC]).

Name I/O SO MT ECFN
alu4 14/8 565 81 876
apex2 39/3 592 286 731
cc 21/26 1,035 172 2,731
lal 26/19 1,494 258 2,921
pcler8 27/17 1,031 130 1,929
spla 24/21 2,685 92 3,578
ttt2 16/46 1,676 215 3,618
ts10 22/16 944 86 1,150
C1355 41/32 9,095 — 10,608
C1908 33/25 3,238 — 5,811
C3540 50/22 2,731 — 5,362

TABLE IV
COMPARISON OF AREA-TIME COMPLEXITY.

Name I/O SO MT ECFN
alu4 14/8 1,544 1,333 1,998
apex2 39/3 1,637 775 1,912
cc 21/26 1,015 579,287 1,432
lal 26/19 2,166 235,251 3,860
pcler8 27/17 1,423 4,973 1,973
spla 24/21 20,602 21,114 13,292
ttt2 16/46 3,514 4,756,318 4,586
ts10 22/16 2,422 555,081 1,430
C1355 41/32 135,850,851 — 4,310,247
C1908 33/25 17,291,736 — 587,491
C3540 50/22 40,907,235 — 4,528,292

used the CPU (Intel’s Core2Duo U7600@1.2GHz); DDR2-
SODIMM 3GBytes memory; and Windows XP SP2. For each
function, we built the DD that minimizes APL with the
memory size limitation [8]. To construct the HMDDM, the
memory size limitation is set to that of the BDD. To obtain the
memory size, we used Exprs. (2), (3), and (4). Note that, we
could not generate MT-HMDDs for several functions (C1355,
C1908, C3540), since the memory size exceeded 3 GBytes.
The implemented HMDDM performs one instruction per four
clocks, thus, the execution time is APL

F × 4, where F is the
maximum clock frequency shown in Table I, and APL is
generated from HMDDs. Table II compares the memory sizes,
Table III compares the execution time, and Table IV compares
the area-time complexity.

C. Discussions

a) Memory Size: Table II shows that, for all functions,
the HMDD for ECFN requires the minimum memory. Al-
though the SO-HMDDs can reduce the number of nodes
by changing variable order for each BDD, for large func-
tions (C1355, C1908, C3540), the reduction technique does
not work. For some MT-HMDDs, the numbers of nodes are
too large to implement. So, the MT-HMDDs is limited to
small applications. On the other hand, since the HMDD for
ECFN reduces the number of nodes by sharing the subgraph,
all functions can be represented compactly. Thus, the HMDD
for ECFN is the best for the memory size.

b) Execution Time: Table III shows that, for small func-
tions, the MT-HMDDM is faster. Since many outputs are
evaluated by one traversal of the MT-HMDD, the evaluation
is fast. However, as shown in Table II, the number of nodes
are too large to store in a memory. For large functions,
the SO-HMDDsM is faster. An SO-HMDDsM evaluates the
input variables m times, while an HMDDM for ECFN eval-
uates both the input variables and the auxiliary variables m
times. Thus, the SO-HMDDsM is faster than the HMDDM
for ECFN. Therefore, for practical applications, the SO-
HMDDsM is the best for the execution time.

c) Area-Time Complexity: Table IV shows that, for small
functions (alu4, apex2) with small MT-HMDDs, the MT-
HMDDM is the best. On the other hand, for large func-
tions (C1355, C1908, C3540), since the HMDD for ECFN
is relatively fast to evaluate the function and is compact, the
HMDDM for ECFN is the best.

From these discussion, we can conclude that, for practical
applications, the HMDDM for ECFN is fast and compact.

VI. CONCLUSION

In this paper, we showed three types of HMDDMs: SO-
HMDDsM, MT-HMDDM, and HMDDM for ECFN. We com-
pared three machines with respect to the memory size, the
execution time, and the area-time complexity. The comparison
shows that, as for the area-time complexity, the HMDDM for
ECFN is the best.
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