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Abstract—This paper proposes new architectures for nu-
meric function generators (NFGs) using piecewise arithmetic
expressions. The proposed architectures are programmable,
and they realize a wide range of numeric functions. To design
an NFG for a given function, we partition the domain of
the function into uniform segments, and transform a sub-
function in each segment into an arithmetic spectrum. From
this arithmetic spectrum, we derive an arithmetic expression,
and realize the arithmetic expression with hardware. Since the
arithmetic spectrum has many zero coefficients and repeated
coefficients, by storing only distinct nonzero coefficients in a
table, we can significantly reduce the table size needed to
store arithmetic coefficients. Experimental results show that
the table size can be reduced to only a small percent of the
table size needed to store all the arithmetic coefficients. We also
propose techniques to reduce table size further and to improve
performance.

Keywords-numeric function generators; piecewise arithmetic
expressions; nonzero arithmetic coefficients; programmable
architectures.

I. INTRODUCTION

Numeric functions, such as trigonometric, logarithmic,
square root, and combinations of these functions, are widely
used in computer graphics, digital signal processing, com-
munication systems, robotics, etc. [5]. In these applications,
as well as addition and multiplication, numeric functions are
usually used as a basic operation. Particularly, in graphics
applications, about half of the total processing time is used
to compute numeric functions [12]. Thus, for numerically
intensive or real-time applications, hardware accelerators,
called numeric function generators (NFGs), are often re-
quired. The computation of numeric functions has been
studied for more than 150 years [21], and various NFGs
have been proposed [2], [4], [13], [16], [17]. Many existing
NFGs are based on polynomial approximations.

For design and verification of arithmetic circuits such
as adders and multipliers, the arithmetic transform is often
used due to its compactness [1], [3], [14], [20], [22].
However, for the design of NFGs, it is rarely used. Only
a few studies on NFGs using the arithmetic transform have
been reported [15], [19]. However, in both papers, different
architectures are required for different numeric functions.

Although a dedicated NFG for a specific numeric function
is fast, many NFGs have to be designed for a wide range
of numeric functions. Since this consumes chip area and
accounts for much of the design and production costs, a
programmable NFG, which can compute various numeric
functions at high-speed with a single architecture, is re-
quired, along with a systematic design method. To satisfy
this requirement, this paper proposes new architectures and
a design method for programmable NFGs using the arith-
metic transform. In [15], [19], the arithmetic transform is
applied to the whole of a numeric function. However, this is
unsuitable for design of programmable NFGs because they
require too many additions. To design an efficient NFG, we
uniformly partition the domain of a given numeric function
into segments, and apply the arithmetic transform to a sub-
function for each segment. From the arithmetic spectrum ob-
tained by the transform, we derive an arithmetic expression,
and realize the arithmetic expression with memories and an
accumulator. By changing the memory data, we can realize
a wide range of numeric functions with a single architecture.

This paper is organized as follows: Section II introduces
a numeric representation of a real numeric function, and
the arithmetic transform. Section III presents piecewise
arithmetic expressions, and architectures for NFGs based on
them. Experimental results are shown in Section IV. And,
Section V presents techniques to reduce memory size and
to improve the performance of NFGs.

II. PRELIMINARIES

A. Number Representation

This subsection defines a number representation and de-
scribes how to convert real functions into integer functions.

Definition 1: Let B = {0,1}, Z be the set of the integers,
and R be the set of the real numbers. An n-input m-output
logic function is a mapping: Bn → Bm, a (binary-input)
integer function is a mapping: Bn →Z, and a real function
is a mapping: R → R.

Definition 2: A value X represented by the binary fixed-
point representation is denoted by

X = (xn int−1 xn int−2 . . . x1 x0. x−1 x−2 . . . x−n f rac)2,
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Table I
FUNCTION TABLE FOR 3-BIT sin(X).

(a) Table for sin(X).

X sin(X)
0.000 0.000
0.125 0.125
0.250 0.247
0.375 0.366
0.500 0.479
0.625 0.585
0.750 0.682
0.875 0.768

(b) Truth table for fb(X).

X fb(X)
0.000 0.000
0.001 0.001
0.010 0.010
0.011 0.011
0.100 0.100
0.101 0.101
0.110 0.101
0.111 0.110

(c) Table for f (X).

X f (X)
000 0
001 1
010 2
011 3
100 4
101 5
110 5
111 6

where xi ∈ {0,1} for −n f rac ≤ i ≤ n int −1, n int is the
number of bits for the integer part, and n f rac is the number
of bits for the fractional part of X . We call

X =
n int−1

∑
i=−n f rac

2ixi

an n-bit fixed-point representation in which n bits are used
to represent the value, where n = n int + n f rac. In this
paper, an n-bit function f (X) means that the input variable
X has n bits.

We can convert a real function in fixed-point represen-
tation to an n-input m-output logic function. The logic
function, in turn, can be converted into an integer function by
considering binary vectors as integers. That is, we can con-
vert a real function into an integer function: Bn →Pm, where
Pm = {0,1, . . . ,2m − 1}. In this paper, numeric functions
are converted into integer functions by using a fixed-point
representation, unless stated otherwise. And, for simplicity,
each bit in the fixed-point representation of X is denoted by
xi; x0 is the least significant bit.

Example 1: Table I (a) shows values of sin(X) for eight
values of X . Using a 3-bit fixed-point representation, this
function is converted into the logic function fb(X) in Ta-
ble I (b). By representing the output vectors as integers,
we have the integer function f (X) in Table I (c). In this
paper, the 3-bit sin(X) denotes the integer function f (X) in
Table I (c). (End of Example)

B. Arithmetic Transform

This subsection introduces the arithmetic transform, the
arithmetic spectrum, and the arithmetic expression [18].

First, define a matrix operation and some notation.
Definition 3: Let A be an (n×n) square matrix, where

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎤
⎥⎥⎥⎦ .

Let B be an (n× n) square matrix. Then, the Kronecker
product of A and B is the (n2 ×n2) matrix:

A⊗B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

an1B an2B . . . annB

⎤
⎥⎥⎥⎦ .

Definition 4: Given a matrix M, the transposed ma-
trix Mt is obtained by interchanging rows and columns
of M. For an n-bit integer function f (X), the function-
vector F is the column vector of the function values F
= [ f (00 . . .0), f (00 . . .01), . . . , f (11 . . .1)]t .

We define the arithmetic transform and the arithmetic
spectrum as follows:

Definition 5: The arithmetic transform matrix is

A(n) =
nO

i=1

A(1), where A(1) =
[

1 0
−1 1

]
,

such that addition and multiplication are done in integer
arithmetic. For an integer function f given by the function-
vector F , the arithmetic spectrum A f = [a0,a1, . . . ,a2n−1]t

is

A f = A(n)F .

Each ai in the spectrum is called an arithmetic coefficient.
Example 2: Consider the 1-bit adder function f (x1,x2) =

x1 +x2. The function-vector is F= [0,1,1,2]t . The arithmetic
spectrum is

A f = A(2)F =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
1
1
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦ .

(End of Example)
Similarly, we define the inverse arithmetic transform as

follows:
Definition 6: Let A−1(n) be the inverse arithmetic

transform matrix defined by

A−1(n) =
nO

i=1

A−1(1), A−1(1) =
[

1 0
1 1

]
.

Definition 7: In a symbolic representation,

A−1(1) =
[

1 xi
]
.

Therefore, the inverse arithmetic transform is defined as

f = XaA f , Xa =
nO

i=1

[
1 xi

]
.

Example 3: By the inverse arithmetic transform from the
arithmetic spectrum obtained in Example 2, the integer
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Figure 1. 3-bit programmable NFG based on the arithmetic expression.

function f is represented as follows:

f = XaA f =
[

1 x2 x1 x1x2
]
⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦

= x1 + x2.

(End of Example)
From Definitions 6 and 7, we can see that an integer

function f (X) can be represented by the arithmetic spectrum
and the inverse arithmetic transform. That is,

Lemma 1: Using A−1(1) and A(1), an integer function
f is represented as follows:

f = A−1(1)A(1)F =
[

1 xi
][

1 0
−1 1

][
f0

f1

]

=
[

1 xi
][

f0

f1 − f0

]

= f0 + xi( f1 − f0), (1)

where f0 = f (xi = 0), f1 = f (xi = 1). (1) is the arithmetic
transform expansion (also called A-expansion or moment
decomposition [1]). The arithmetic expression for f is
obtained by the arithmetic transform expansion. The arith-
metic coefficients correspond to coefficients of the arithmetic
expression for f .

III. NFGS BASED ON PIECEWISE ARITHMETIC

EXPRESSIONS

This section introduces piecewise arithmetic expressions,
and presents programmable architectures for NFGs based on
them.

A. Piecewise Arithmetic Expressions

Since a numeric function can be converted into an inte-
ger function using the fixed-point representation, it can be

arithmetic coefficients table
(set of the arithmetic spectra)

f(X)

adder tree

product terms

X
MSBs

LSBs

arithmetic spectrum

Figure 2. Programmable NFG based on the piecewise arithmetic expres-
sion.

represented by the arithmetic expression:

a0 + a1x0 + a2x1 + a3x1x0 + . . .+ a2n−1xn−1xn−2 . . .x0.

The arithmetic expression can be realized with only AND
gates and adders, and thus, it is realized with a compact
circuit when many arithmetic coefficients ai are zero. Since
many elementary functions, such as sin(x) and log(x), have
many zero arithmetic coefficients, we can design compact
NFGs for them [15], [19]. However, fixed-point represen-
tations with many bits necessarily produce the arithmetic
expressions with too many product terms resulting in large
and slow NFGs. In addition, a straightforward programmable
implementation of the NFGs proposed in [15], [19], as
shown in Fig. 1, needs too many adders (2n −1 adders).

To reduce the number of product terms (adders), we
transform sub-functions into a set of the arithmetic spectra,
instead of transforming the whole domain of a function into
the single arithmetic spectrum, and represent the function
using a set of the arithmetic expressions. Then, we design a
programmable NFG using the set of the arithmetic expres-
sions.

To produce a set of the arithmetic expressions, we parti-
tion the domain of a given numeric function into uniform
segments, and apply the arithmetic transform to a sub-
function for each segment. Hence, we call the set of arith-
metic expressions a piecewise arithmetic expression. Note
that, in the piecewise arithmetic expression, we partition the
domain into segments using the most significant bits (MSBs)
of X .

B. Architectures for Programmable NFGs

By realizing a set of the arithmetic spectra for the piece-
wise arithmetic expression with a memory (called arithmetic
coefficients table) we obtain the NFG in Fig. 2. The MSBs
of X select a segment (an arithmetic spectrum), and then an
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don’t care
bit pattern LSBs of Xai

bitwise OR

==AND

(b) Generalized product term

Figure 3. Programmable NFG based on a sequential computation.
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Figure 4. Improved architecture for programmable NFG.

arithmetic expression is computed using the least significant
bits (LSBs) of X . This NFG requires 2k − 1 adders, where
k is the number of the LSBs. Thus, it is more compact
and faster than the NFG based on the single arithmetic
expression in Fig. 1, in which 2n −1 adders are required.

Unfortunately, the number of adders is still large, and
this design is inefficient. Since the arithmetic spectra usually
have many zero coefficients, the arithmetic coefficients table
is sparse, and many unnecessary additions are performed. To
perform only necessary additions, and to reduce the number
of adders, we propose the architecture shown in Fig. 3.
Note that for readability of the figures, the enable signal
(an external input) to start the computation (reset registers),
the done signal (an external output) to denote finish of the
computation, and multiplexers are omitted from Fig. 3.

In this architecture, only the nonzero arithmetic coeffi-
cients are stored in a table. By reading out each coefficient
sequentially, it computes the arithmetic expression using an

accumulator. Each product term is computed with the circuit
in Fig. 3(b) using a don’t care bit pattern. In the don’t care
bit pattern, bits corresponding to input variables that do not
appear in a product term are set to 1. For example, for a 5-bit
function, the bit pattern for the product term x3x0 is 10110.
The start address table stores a start address of the nonzero
arithmetic coefficients table and the don’t care bits table
for each segment. In this architecture, the evaluation time
of an arithmetic expression is proportional to the number
of nonzero arithmetic coefficients. Thus, a numeric function
that has many zero arithmetic coefficients can be computed
at high speed.

To further reduce the number of arithmetic coefficients to
be stored in a table, we omit repeated coefficients in a table.
Fig. 4 shows the improved architecture. By using pointers to
the distinct arithmetic coefficients instead of directly storing
the coefficients, we can significantly reduce the bit width of
the table if the number of distinct coefficients is small.

IV. EXPERIMENTAL RESULTS

To show the efficiency of the proposed NFGs, we compare
the table size and the number of additions for the three
proposed NFGs. Table II shows the experimental results. In
this table, the column “No. of additions” denotes the number
of additions needed to compute an arithmetic expression for
each segment. Since, in the NFGs in Figs. 3 and 4, the
number of product terms for different arithmetic expressions
are different, the average number of additions for each
expression is shown.

Since the programmable NFG based on the single arith-
metic expression in Fig. 1 requires 216 = 65,536 registers
and 216 −1 = 65,535 adders, the proposed NFGs based on
the piecewise arithmetic expression require several orders
of magnitude fewer adders, and much less storage size. As
shown in Table II, for many numeric functions, the number
of nonzero arithmetic coefficients and the number of distinct
arithmetic coefficients are small. Thus, by storing only these,
we significantly reduce size of the arithmetic coefficients
table, resulting in a reduction of total size of tables.

V. IMPROVEMENT TECHNIQUES FOR NFGS

A. Piecewise Polynomial Approximation

By using a polynomial approximation, we can reduce the
number of nonzero arithmetic coefficients, and thus, the table
size and the number of additions can be further reduced. This
is based on the following lemma:

Lemma 2: [8] For an n-bit kth-degree polynomial func-
tion f (X) = ckXk + ck−1Xk−1 + . . . + c0, the number of
nonzero arithmetic coefficients is at most

k

∑
i=0

(
n
i

)
.
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Table II
TABLE SIZE AND THE NUMBER OF ADDITIONS FOR 16-BIT NFGS.

Functions No. of stored coefficients Size of coefficients table Total size of tables No. of additions
f (X) NFG1 NFG2 NFG3 NFG1 NFG2 NFG3 NFG1 NFG2 NFG3 NFG1 NFG2,3

(all) (nonzero) (distinct) (bits) (bits) (bits) (bits) (bits) (bits) (average)
2X 65,536 35,524 445 1,048,576 568,384 7,120 1,048,576 892,196 651,093 255 138.8
eX 65,536 36,590 587 1,048,576 585,440 9,392 1,048,576 918,846 709,872 255 142.9

ln(X +1) 65,536 36,914 402 1,048,576 590,624 6,432 1,048,576 926,946 674,980 255 144.2
log2(X +1) 65,536 35,069 451 1,048,576 561,104 7,216 1,048,576 880,821 642,554 255 137.0
1/(X +1) 65,536 37,702 401 1,048,576 603,232 6,416 1,048,576 946,646 689,549 255 147.3√

X +1 65,536 37,316 323 1,048,576 597,056 5,168 1,048,576 936,996 681,275 255 145.8
sin(X) 65,536 31,327 391 1,048,576 501,232 6,256 1,048,576 787,015 573,982 255 122.4
tan(X) 65,536 33,397 548 1,048,576 534,352 8,768 1,048,576 839,021 647,955 255 130.5

sin−1(X) 65,536 32,059 532 1,048,576 512,944 8,512 1,048,576 805,315 622,005 255 125.2
tan−1(X) 65,536 32,463 401 1,048,576 519,408 6,416 1,048,576 815,415 594,590 255 126.8

NFG1: the NFG shown in Fig. 2. NFG2: the NFG shown in Fig. 3. NFG3: the NFG shown in Fig. 4.
No. of additions: the number of additions needed to compute each arithmetic expression.
The number of MSBs for uniform segmentation is 8. The domain of all functions is 0 ≤ X ≤ 1.

We approximate a given numeric function using a piece-
wise polynomial within a desired error, and then transform
the polynomial into an arithmetic expression in each seg-
ment. The piecewise arithmetic expression obtained in this
way is realized with a compact NFGs.

Example 4: Consider a piecewise quadratic polynomial
approximation of a 16-bit numeric function using 256
uniform segments. Then, a polynomial in each segment
has 8 bits. Thus, the total number of nonzero arithmetic
coefficients is at most

256×
2

∑
i=0

(
8
i

)
= 256×37 = 9,472,

and the number of additions is only 36. (End of Example)
In this way, by using piecewise polynomial approxima-

tion, more compact and faster programmable NFGs based
on the piecewise arithmetic expression can be produced.

B. Parallel Computation

The proposed NFGs based on a sequential computation in
Figs. 3 and 4 produce an arithmetic coefficient one by one,
and compute each product term of an arithmetic expression
sequentially. Thus, they require O(N) computation time,
and are obviously slower than the NFG in Fig. 2 which
requires O(logN) computation time, where N is the number
of product terms.

On the other hand, the NFG in Fig. 2 produces all arith-
metic coefficients simultaneously, and adds all terms of an
arithmetic expression at once. Thus, it is faster but requires
many more adders. Note that the adders have different sizes.
However, in an FPGA or ASIC, this is not a problem because
different size adders can be easily accommodated.

These two designs are extreme cases. By changing the
number of terms to be computed in parallel, we can explore
the design space taking into account a tradeoff between the

number of adders and the computation time, and can produce
an optimum NFG depending on applications.

VI. CONCLUSION AND COMMENTS

This paper proposes new architectures for programmable
NFGs using piecewise arithmetic expressions, and design
methods for them. We also propose techniques to reduce
table size and to improve performance. Experimental results
show that the size of the arithmetic coefficients table can be
reduced to only a few percent of the table size needed to
store all the arithmetic coefficients. By using the proposed
NFGs, we can realize a wide range of numeric functions
with a single architecture, and we can switch the functions
by only changing the contents of tables.

In this paper, we used about one-half of input bits to
partition the domain of a function into uniform segments.
However, there could be an optimum number of bits for
each function. Thus, we will study optimum segmentations
as future work. We will also analyze the relation between
the number of nonzero arithmetic coefficients and the char-
acteristic of functions.
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