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Abstract—Let A and B be integers such that A ≤ B. An n-
variable interval function is a mapping IN [n : A, B] : {0, 1}n →
{0, 1}, where IN [n : A,B](X) = 1 iff A ≤ X ≤ B. Such
function is useful for packet classification in the internet, network
intrusion detection system, etc. This paper considers the number
of products to represent interval functions by sum-of-products
expressions with two-valued and four-valued variables. It shows
that to represent any interval function of n variables, an SOP
with two-valued variables requires up to 2(n − 2) products,
while an SOP with four-valued variables requires at most n − 1
products. These bounds are useful to estimate the size of a content
addressable memory (CAM).

I. INTRODUCTION

A classification function [13] is used for packet classifica-
tion in the internet [4], where internet service providers (ISPs)
provide differentiated services to various users. Classification
functions are also used for network intrusion detection system
(IDS). Since high-speed processing is necessary, various hard-
ware implementations have been proposed [2], [7], [10], [15],
[17].

In this paper, we derive upper bounds on the number of
products in sum-of-products expressions (SOPs) with 2-valued
and 4-valued variables to represent interval functions. With
these bound, we can estimate the size of a circuit for the packet
classification. As for hardware to implement classification
functions, a Ternary Content Addressable Memory (TCAM)
[10] and a CAM with 2-bit encoding [5], [16] are used.
Each product in an SOP corresponds to a word in a CAM.
A classification function is defined by a set of rules, where
each rule is a conjunction of interval functions. For example,
consider the classification function

f : {0, 1, 2, 3}× {0, 1, 2, 3} → {0, 1, 2}
consisting of two rules:

R1 = (0 ≤ X1 ≤ 2) · (1 ≤ X2 ≤ 3),

and
R2 = (1 ≤ X1 ≤ 3) · (0 ≤ X2 ≤ 2).

In this case, (0 ≤ Xi ≤ 2) and (1 ≤ Xi ≤ 3) are interval
functions. f = 1 if R1 holds, f = 2 if R1 does not hold, but
R2 holds, and f = 0 if neither R1 nor R2 holds.
In this example, we use an SOP with 2-valued variables
to represent an interval function. The rules are stored in
the TCAM array in the order of decreasing priority. Let
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Fig. 1.1. Realization of a classification function by TCAM and RAM.

X1 = 2x1 + x2 and X2 = 2x3 + x4, where + denotes an
integer addition. Then, the interval function (0 ≤ X1 ≤ 2)
is represented by the SOP: x̄1 ∨ x̄2. In a similar way, the
interval function (1 ≤ X1 ≤ 3) is represented by the
SOP: x1 ∨ x2. In this example, rules have two fields: X1

and X2, and each field of a rule is represented by an SOP
with two products. For example, R1 can be represented by
R1 = (x̄1 ∨ x̄2)(x3 ∨ x4) = x̄1x3 ∨ x̄1x4 ∨ x̄2x3 ∨ x̄2x4.
Thus, the number of products to represent R1 by an SOP with
2-valued variables is 2 × 2 = 4. Fig. 1.1shows a realization
of the example function by TCAM and RAM. The TCAM
generates the indexes from 1 to 8, that correspond to the first
word to the 8-th word. On the other hand, the RAM converts
the indexes into the values of classification function, that are
{0, 1, 2}. In this example, the upper four words correspond to
the product terms for R1, and the lower four words correspond
to the product terms for R2. When neither of R1 and R2 do
not match, then the TCAM and the RAM generate 0.

In the real packet classification, the numbers of values of
the variable are either 232, 216 or 28, and the numbers of
variables are 5 to 8. So, the size of the SOP can be very
large. This is the reason why we are interested in the number
of products in SOPs for interval functions and classification
functions. Simplification of a set of rules of a classification
function can be done by minimizing SOPs [8].

A direct method to represent an interval [A, B] is to store the
pair of integers. However, this method requires a comparator
of values in each field [15], and conventional memory cannot



be used. Another method is to use a Look-Up-Table (LUT)
for each field [7]. However, this can be expensive when the
number of bits in a field is large. In many cases, we have to
update rules of the classification functions frequently. Due to
this, CAMs are often used in the network applications.

This paper gives tight upper bounds on the numbers of prod-
ucts in SOPs with 2-valued variables and 4-valued variables
for interval functions. Note that a CAM word corresponds to
a product in an SOP.

This paper is organized as follows: Section 2 defines interval
functions, and shows their properties. Section 3 considers
the number of products in SOPs with 2-valued variables to
represent an interval function. Section 4 considers the number
of products in SOPs with 4-valued variables to represent an
interval function. Section 5 reviews TCAM and CAM with
2-bit encoding. Section 6 shows experimental results. And,
finally Section 7 concludes the paper.

II. INTERVAL FUNCTIONS

An interval function is a generalization of a comparator
function. To define an interval function, we use a Greater-than-
or-Equal-to function and a Less-than-or-Equal-to function
[13].

Definition 2.1: An n-input GE function (Greater-than-or-
Equal-to function) is

GE(n : A) =
{

1 if X ≥ A
0 otherwise

where X =
∑n−1

i=0 xi · 2i, �x = (xn−1, xn−2, . . . , x1, x0) is a
binary input vector, X is an integer represented by �x, and A
is an integer such that 0 ≤ A ≤ 2n − 1.

Definition 2.2: An n-input LE function (Less-than-or-
Equal-to function) is

LE(n : B) =
{

1 if X ≤ B
0 otherwise

where X is an integer represented by �x, and B is an integer
such that 0 ≤ B ≤ 2n − 1.

Definition 2.3: An n-input interval function 1 is

IN(n : A, B) =
{

1 if A ≤ X ≤ B
0 otherwise

where X is an integer represented by �x, and A and B are
integers such that 0 ≤ A ≤ B ≤ 2n − 1.

Example 2.1: Consider the case of n = 4, A = 1, and B =
14. Figs. 2.1 and 2.2 show maps for GE(4 : 1), LE(4 : 14),
and IN(4 : 1, 14). In these maps, integers X that satisfy the
relations are shown, where X = 8x3 + 4x2 + 2x1 + x0.
From the definitions, we have the following:

Lemma 2.1:

IN(n : A, B) = GE(n : A) · LE(n : B).

Lemma 2.2: Let N(n) be the number of distinct interval
functions IN(n : A, B), where 1 ≤ A < B ≤ 2n − 1. Then,

N(n) = (2n − 1) · (2n−1 − 1).
1An interval function was called a range function in [13].
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Fig. 2.1. Maps for GE(4:1) and LE(4:14).
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Table 2.1 shows the numbers of interval functions of n
variables for 4 ≤ n ≤ 12.

III. SIZES OF SOPS WITH 2-VALUED VARIABLES

In this part, we consider sum-of-products expressions with
2-valued variables to represent interval functions [13].

Definition 3.1: (Two-valued case) Let x be a variable that
may take one of two values in {0, 1}. Then, x̄ is a complement
of the variable. x and x̄ are literals of a variable x. The AND
of literals is a product. A minterm is a logical product of n
literals where each variable occurs as exactly one literal. The
OR of products is a sum-of-products expression (SOP). Let
two functions be f and g. f implies g if every �x satisfying
f(�x) = 1 also satisfies g(�x) = 1. A minterm that implies f
is a minterm of f . A prime implicant (PI) of a function
f is a product that implies f , such that the deletion of any
literal from the product results in a new product that does
not imply f . An irredundant sum-of-products expression
(ISOP) is an SOP, where each product is a PI, and no PI can
be deleted without changing the function represented by the

TABLE 2.1
NUMBERS OF INTERVAL FUNCTIONS.

n Number
4 105
6 1, 953
8 32, 385

10 522, 753
12 8, 382, 465



expression. The size of an SOP is the number of PIs in the
SOP. Among the ISOPs for f , the ISOP with the minimum
size is a minimum SOP (MSOP). The size of a MSOP with
2-valued variables for function f is denoted as τ2(f).
For a given n, we are interested in the most complicated inter-
val function. That is, the function with the largest τ2(IN(n :
A, B)).

Definition 3.2: µ2(n) denotes the number of products in
an MSOP with 2-valued variables for the n-variable interval
function with the largest number of products.
By exhaustive examination, we have the following:

Theorem 3.1: µ2(n) = n, (n = 1, 2, 3, 4).
Example 3.1: In SOPs with 2-valued variables, the most

complicated interval functions up to n = 4 include:

IN(1 : 1, 1) = x0,

IN(2 : 1, 2) = x1x̄0 ∨ x̄1x0,

IN(3 : 1, 7) = x2 ∨ x1 ∨ x0,

IN(3 : 1, 6) = x̄2x1 ∨ x̄1x0 ∨ x̄0x2,

IN(4 : 1, 15) = x3 ∨ x2 ∨ x1 ∨ x0,

IN(4 : 5, 10) = x̄3x2x0 ∨ x̄3x2x1 ∨ x3x̄2x̄0 ∨ x3x̄2x̄1.

One might conjecture that Theorem 3.1 is true for larger n,
but it is not. As will be shown, µ2(n) = 2(n − 2) for n ≥ 5
(Theorem 3.2).

Lemma 3.1: GE(n : A) can be represented by an SOP
with 2-valued variables having at most 1 +

∑n−1
i=1 āi disjoint

products, where �a = (an−1, an−2, . . . , a1, a0) is the binary
representation of A.

Lemma 3.2: LE(n : B) can be represented by an SOP
with 2-valued variables having at most 1 +

∑n−1
i=1 bi disjoint

products, where �b = (bn−1, bn−2, . . . , b1, b0) is the binary
representation of B.

Lemma 3.3: For n ≥ 4, IN(n : A, B) can be represented
by an SOP with 2-valued variables having at most 2(n − 2)
products.

Up to here, we have shown that any interval function can be
represented by 2(n−2) products, when n ≥ 5. Similar results
were obtained in [14], independently. From here, we are going
to show that there exist interval functions that require 2(n−2)
products, when n ≥ 5. To show the lower bound, we use an
idea of independent sets of minterms [12].

Definition 3.3: A set of minterms MI for f is independent
if no implicant of f contains a pair of minterms in MI .

Lemma 3.4: Let MI be an independent set of minterms for
f . Then, any SOP for f requires at least |MI| products.

Lemma 3.5: τ2(IN(n : 2n−3 +1, 7 ·2n−3−2)) = 2(n−2).
Lemma 3.6: τ2(IN(n : 2n−2 +1, 3 ·2n−2−2)) = 2(n−2).

From Lemmas 3.3, 3.5 and 3.6, we have:
Theorem 3.2: µ2(n) = 2(n − 2), where n ≥ 5.

Furthermore, we have the following:
Conjecture 3.1: For n ≥ 5, among the interval functions,
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Fig. 4.1. Map for IN(4:1,14):4-valued variables

only

IN(n : 2n−3 + 1, 7 · 2n−3 − 2) and

IN(n : 2n−2 + 1, 3 · 2n−2 − 2)

require 2(n−2) products, and other interval functions require
fewer products.

IV. SIZES OF SOPS WITH 4-VALUED VARIABLES

Let X =
∑n−1

i=0 xi2i. If n is an even number, i.e. n is written
as n = 2r, where r is an integer, then X can be represented
by the base-4 instead of the base-2. That is, X is represented
by �y = (yr−1, yr−1, . . . , y1, y0), where X = Σr−1

i=0 yi4i and
yi ∈ {0, 1, 2, 3}. In this case, SOPs with 4-valued variables
can be used to represent interval functions as follows:

Definition 4.1: (Four-valued case) Let yi may take one of
4 values in {0, 1, 2, 3}. ySi

i is a literal of a variable yi,
where Si ⊆ {0, 1, 2, 3}. ySi

i = 1 if yi ∈ Si and ySi

i = 0
otherwise. The AND of literals is a product. A minterm is
logical product of n literals where |Si| = 1 for all i. The
size of an SOP is the number of PIs in the SOP. The size
of a minimum SOP with 4-valued variables for function f is
denoted as τ4(f).
The following lemma is well known [11].

Lemma 4.1: For any n = 2r variable logic function f ,

τ4(f) ≤ τ2(f).

Example 4.1: Consider IN(4 : 1, 14). The map in the
left of Fig. 4.1 shows the interval function using 4-valued
variables. In this map, integers X that satisfy the relation are
shown, where X = 4y1 + y0. In this case, only two products
are necessary to represent the function, as shown in the map
in the right. Let y1 = 2x3 + x2 and y0 = 2x1 + x0. Then, the
SOP with 4-valued variables is

IN(4 : 1, 14) = y
{0,1,2}
1 · y{1,2,3}

0 ∨ y
{1,2,3}
1 · y{0,1,2}

0 .

Note that an SOP with two-valued variables requires four
products to represent the same function as shown in Fig. 2.2.

From here, we are going to derive the value of τ4(f) for an
interval function f .



Lemma 4.2: GE(n : A) can be represented by an SOP with
4-valued variables having at most 1 +

∑r−1
i=1 (αi �= 3) disjoint

products, where �α = (αr−1, αr−2, . . . , α1, α0) is the base-4
representation of A, and n = 2r.
(Proof) GE(n : A) can be represented as:
GE(n : A) = (yr−1 > αr−1) ∨ (yr−1 ≡ αr−1)(yr−2 >

αr−2) ∨ (yr−1 ≡ αr−1)(yr−2 ≡ αr−2)(yr−3 > αr−3) ∨ (yr−1 ≡
αr−1)(yr−2 ≡ αr−2)(yr−3 ≡ αn−3)(yn−4 > αn−4) ∨ · · · ∨
(yr−1 ≡ αr−1)(yn−2 ≡ αr−2)(yr−3 ≡ αr−3) · · · (y1 ≡ α1)(y0 ≥
α0), where A =

∑r−1
i=0 αi4i. Here, the symbol ≡ denotes the

equivalence operator. Note that the number of products in the
SOP is at most 1 +

∑r−1
i=1 (αi �= 3). �

Lemma 4.3: LE(n : B) can be represented by an SOP with
4-valued variables having at most 1 +

∑r−1
i=1 (βi �= 0) disjoint

products, where �β = (βr−1, βr−2, . . . , β1, β0) is the base-4
representation of B, and n = 2r.
(Proof) LE(n : B) can be represented as
LE(n, B) = (yr−1 < βr−1) ∨ (yr−1 ≡ βr−1)(yr−2 < βn−2) ∨

(yr−1 ≡ βr−1)(yn−2 ≡ βn−2)(yn−3 < βn−3) ∨ (yr−1 ≡
βr−1)(yn−2 ≡ βn−2)(yn−3 ≡ βn−3)(yn−4 < βn−4) ∨ · · · ∨
(yr−1 ≡ βr−1)(yn−2 ≡ βr−2)(yr−3 ≡ βr−3) · · · (y1 ≡ β1)(y0 ≥
β0), where B =

∑0
i=r−1 βi4i. Note that the number of

products in the SOP is at most 1 +
∑r−1

i=1 (βi �= 0). �

Lemma 4.4: IN(4 : A, B) can be represented by an SOP
with 4-valued variables having at most 3 products.
(Proof) This can be done by exhaustive minimization SOPs
for all the 105 interval functions of 4-variables. �

Theorem 4.1: For n ≥ 4, IN(n : A, B) can be represented
by an SOP with 4-valued variables having at most n − 1
products, where n = 2r.
(Proof) We use mathematical induction to prove the theorem.
When n = 4, by Lemma 4.4 any interval function can be
represented with at most three products, and the theorem
holds. Assume that the theorem holds for the SOPs with 4-
valued variables representing k(= 2t)-variable interval func-
tions. That is, any interval function with k variables can be
represented by an SOP with 4-valued variables having k − 1
products. Next, consider the case of k + 2 variables. Let
(αt, αt−1, . . . , α0) and (βt, βt−1, . . . , β0) be base-4 represen-
tations of A and B, respectively. Since A ≤ B, we need only
to consider the following two cases:

1) When αt = βt.
IN(k + 2 : A, B) = (yt ≡ αt)GE(t : A′)LE(t : B′) =
(yt ≡ αt)IN(t : A′, B′),
where A′ = A − αt4t and B′ = B − βt4t. In this
case, the number of products is at most k − 1, by the
hypothesis of the induction.

2) When αt < βt.
IN(k + 2 : A, B) = [(yt > αt) ∨ (yt ≡ αt)GE(t :
A′)] · [(yt < βt) ∨ (yt ≡ βt)LE(t : B′)] = (αt < yt <
βt) ∨ (yt ≡ αt)GE(t : A′) ∨ (yt ≡ βt)LE(t : B′),
where A′ = A − αt4t and B′ = B − βt4t.
In this case, the number of products is at most
1+2+

∑t−1
i=1((α �= 3)+(β �= 0)) ≤ 1+2t = (k+2)−1.

TABLE 4.1
INDEPENDENT SET OF VECTORS.

Vector
Num yt−1 yt−2 yt−3 yt−4 y3 y2 y1 y0

1 0 1 1 1 1 1 1 2
2 0 1 1 1 1 1 2 0
3 0 1 1 1 1 2 0 0
4 0 1 1 1 2 0 0 0

5 0 1 1 2 0 0 0 0
6 0 1 2 0 0 0 0 0
7 0 2 0 0 0 0 0 0

8 1 1 1 1 1 1 1 1

9 2 0 1 1 1 1 1 1
10 2 1 0 1 1 1 1 1
11 2 1 1 0 1 1 1 1

12 2 1 1 1 0 1 1 1
13 2 1 1 1 1 0 1 1
14 2 1 1 1 1 1 0 1
15 2 1 1 1 1 1 1 0

So, the theorem holds for k + 2 = 2(t + 1)-variable interval
functions. Thus, by mathematical induction, the theorem holds
for all X . Hence, the number of the products in an SOP with
4-valued variables representing an n-variable interval function
is at most n − 1. �

Example 4.2: Consider GE(6 : 6). In this case,
(α2, α1, α0) = (0, 1, 2).
With arithmetic operators, it is represented as
GE(6 : 6) = (y2 > 0)∨ (y2 ≡ 0) · (y1 > 1)∨ (y2 ≡ 0) · (y1 ≡
1) · (y0 ≥ 2).
With logical operators, it is represented as
GE(6 : 6) = y

{1,2,3}
2 ∨ y

{0}
2 y

{2,3}
1 ∨ y

{0}
2 y

{1}
1 y

{2,3}
0 .

Consider LE(6 : 36). In this case, (β2, β1, β0) = (2, 1, 0).
With arithmetic operators, it is represented as
LE(6 : 6) = (y2 < 2)∨ (y2 ≡ 2) · (y1 < 1)∨ (y2 ≡ 2) · (y1 ≡
1) · (y0 ≤ 0).
With logical operators, it is represented as
LE(6 : 6) = y

{3}
2 ∨ y

{2}
2 y

{0}
1 ∨ y

{2}
2 y

{1}
1 y

{0}
0 .

Consider IN(6 : 6, 36).
With arithmetic operators, it is represented as
IN(6 : 6, 36) = [(y2 > 0) ∨ (y2 ≡ 0) · (y1 > 1) ∨ (y2 ≡
0) · (y1 ≡ 1) · (y0 ≥ 2)] · [(y2 < 2) ∨ (y2 ≡ 2) · (y1 <
1) ∨ (y2 ≡ 2) · (y1 ≡ 1) · (y0 ≤ 0)] = (y ≡ 1) ∨ (y2 ≡
0) · (y1 > 1)∨ (y2 ≡ 0) · (y1 ≡ 1) · (y0 ≥ 2)∨ (y2 ≡ 2) · (y1 <
1) ∨ (y2 ≡ 2) · (y1 ≡ 1) · (y0 ≤ 0).
With logical operators, it is represented as
IN(6 : 6, 36) = y

{1}
2 ∨y

{0}
2 y

{2,3}
1 ∨y

{0}
2 y

{1}
1 y

{2,3}
0 ∨y

{2}
2 y

{0}
1 ∨

y
{2}
2 y

{1}
1 y

{0}
0 .

Lemma 4.5: Let A = 1
3 (4r−1+2) and B = 4

3 (7 ·4r−2−1).
Then, IN(n : A, B) requires at least n − 1 products in the
SOP with 4-valued variables, where n = 2r.
(Proof) We show an independent set of n − 1 vectors.
Note that the base-4 representations of A, and B are �α =
(0, 1, 1, . . . , 1, 2) and �β = (2, 1, 1, . . . , 1, 0), respectively.
It is clear that A < B. Consider the set of n−1 vectors shown
in Table 4.1. We can verify that no pair of vectors form an



Match
Address

Search Line Drivers

1 0

11

1

1

1 1

1

0 0

0

0 X

X

X

1

0

X

X

E
nc

od
er

00

01

10

11

Match Line
Sense Amps

Match

01

Search Data=01101

Search Lines Match Lines

Match

Fig. 5.1. TCAM architecture.

implicant of the function. Thus, the function requires at least
n − 1 products in an SOP. �

By Theorem 4.1 and Lemma 4.5, we have the following:
Theorem 4.2: Let µ4(n) be the number of products in an

MSOP with 4-valued variables for the n-variable interval func-
tion with the largest number of products. Then, µ4(n) = n−1,
where n = 2r.

V. CAM HARDWARE

This section reviews operations of CAMs. Each word in a
TCAM corresponds to a products in an SOP with two-valued
variables. On the other hand, each word in a CAM with 2-bit
encoding corresponds to a products in an SOP with four-valued
variables.

A. TCAM [10], [1]

A Ternary Content Addressable Memory (TCAM) can treat
three states 0,1, and don’t care. In spite of the term ternary, a
TCAM performs purely binary operations. Fig. 5.1 illustrates
an architecture of a TCAM. It operates as follows:

1) During a search operation, all the bits in the TCAM cells
are compared with the data in the search lines.

2) After a search operation, matched lines are set to high,
while mismatched lines are set to low.

3) The priority encoder produces the address of the first
matched line.

Fig. 5.2 shows the detail of TCAM cell. A logical zero is
stored in the TCAM cell as (B0, B1) = (0, 1). A logical one is
stored in the TCAM cell as (B0, B1) = (1, 0). A logical don’t
care is stored in the TCAM cell as (B0, B1) = (0, 0). The
cells B0 and B1 can be either static TCAM cells (4 CMOS
transistors) or dynamic TCAM cells (1 CMOS transistor). It
operates as follows:

1) Before the search operation, all the search lines (SL0 and
SL1) are set low to make the match lines are separated
from the ground. The match lines are then precharged
to be high, but then disconnected from power supply so

Match Line

BL1SL0 BL0

Word Line

B0 B1

SL1

Fig. 5.2. TCAM cell.

that the values of the lines are stored in the capacitance
of the match lines.

2) After precharging the match lines, the search lines are
driven to perform a search operation. To search for a
logical zero, SL0 (search line) is set to high, while SL1
is set to low; to search a logical one, SL1 is set to high,
while SL0 is set to low; and to perform the don’t care
search, both SL0 and SL1 are set to low.

3) If there is a mismatch, then the search line is high, and
the stored bit is high to make a path from the match line
to ground. Thus, the charge stored in the match line will
remain intact only if there are no mismatch.

In the TCAM, a pair of cells (B0, B1) stores only three
distinct states (0,1), (1,0), and (0,0).

B. CAM with 2-bit encoding [5], [16]

Next, consider a CAM with 2-bit encoding, where two
bits are represented by a 1-out-of-4 code shown in Table 5.1.
Fig. 5.3 show the cells for a CAM with 2-bit encoding. This
circuit corresponds to two bits of a TCAM. In the cells, B0,B1,
B2, and B3, complemented data are stored. To search 00, only
SL0 is set to high, to search 01, only SL1 is set to high, to
search 10, only SL2 is set to high, and to search 11, only SL3
is set to high. Since the complemented data is stored in the
cells Bi (i=0,1,2,3), when the searched data mismatches the
data stored in the cells, the mismatched lines are discharged to
low. For example, to store the value 00, CAM cells are sat to
(B0, B1, B2, B3) = (0, 1, 1, 1). Thus, when only SL0 is set
to high, the match line remains high. However, if SL1 is set to
high, the match line becomes low, which shows a mismatch.

In the CAM with 2-bit encoding, the CAM
cells (B0, B1, B2, B3) can take 15 different states:
(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1). Note that the states
(1, 1, 1, 1) is not used. This is the reason why a CAM with
2-bit encoding is more efficient than the TCAM. Note that
in a TCAM, cells for a pair of variable can take at most
3 × 3 = 9 states.

VI. EXPERIMENTAL RESULTS

Lemma 4.1, shows that a CAM with 2-bit encoding never
requires more products than a TCAM to represent interval
functions. To compare the average numbers of products, SOPs



TABLE 5.1
1-OUT-OF-4 CODE.

Binary 1-out-of-4
00 0001
01 0010
10 0100
11 1000

Match Line

SL1SL0

B0 B1 B2

SL2

B3

SL3

Fig. 5.3. CAM with 2-bit encoding.

with 2-valued and 4-valued variables for interval functions
were minimized. We generated all the interval functions of
for n = 4, 6, 8, and 10 variables, and minimized the SOPs
for them, and obtained average numbers of products. Min-
imization program for multi-valued logic [11] was used to
obtain exact minimum solutions. Table 6.1 compares the size
of SOPs of two-valued variables and 4-valued variables. On
the average, SOPs with 4-valued variables require about 30%
fewer products than SOPs with 2-valued variables. One of
the most interesting interval functions of n = 10 variables
is IN(10 : 257, 766), which requires 16 products in an SOP
with two-valued variables, while only 5 products in an SOP
with four-valued variables.

VII. CONCLUSION AND COMMENTS

In this paper, upper bounds on the number of products in
SOPs with 2-valued and 4-valued variables to represent inter-
val functions are derived. To represent any interval function of
n = 2r variables, an SOP with 2-valued variables requires up
to 2(n − 2) products, while an SOP with 4-valued variables
requires at most n−1 products. Since, a TCAM implements an
SOP with 2-valued variables, and a CAM with 2-bit encoding
implements an SOP with 4-valued variable, CAM with 2-bit
encoding is promising for compact implementation of packet
classifiers.

In this paper, two bits are grouped to represent a 1-out-of-4
code. However, three bits can be grouped to represent a 1-out-

TABLE 6.1
AVERAGE NUMBER OF PRODUCTS TO REPRESENT INTERVAL FUNCTION

n SOP SOP Ratio
2-valued 4-valued

4 2.648 1.857 0.7014
6 4.069 2.899 0.7124
8 5.778 4.146 0.7176

10 7.638 5.512 0.7216

of-8 code. In this case, 8-valued logic is used to represent the
function. The number of products often can be further reduces.
However, 8 lines are used to represent a three-bit number by a
1-out-of-8 code. So, the number of the search lines increases
by 8

6 = 1.33. Thus, the total area increases if the number of
products remains same. Note that the use of 1-out-of-4 code
never increases the total area, but often reduces the area.

In the practical applications, CAM data must be updated
frequently. So, we need a fast logic minimization algorithm.
Also, evaluation using practical rule sets should be necessary.
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