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Abstract—This paper compares 6 decision diagram ma-
chines (DDMs) with respect to area-time complexity, through-
put, and compatibility to the existing memory. First, 6 types
of decision diagrams (DDs): BDD, MDD, QRBDD, QRMDD,
heterogeneous MDD (HMDD), and QRHMDD are introduced.
Second, corresponding DDMs are developed. Third, memory sizes
and average path length (APL) for these DDs are compared.
As for area-time complexity, the QDDM is the best; as for
throughput, the QRQDDM is the best; and as for compatibility
to the existing memory, the HMDDM is the best.

I. INTRODUCTION

Various decision diagrams (DDs), e.g., BDD[2], MDD[6],
QRBDD[12], QRMDD[4], heterogeneous MDD (HMDD)[8],
have been proposed. DD machines (DDMs) are special pur-
pose processors that evaluate DDs [1]. Various DDMs have
been proposed [5], [1], [15], [7], [13]. Applications for DDMs
include industrial process controllers [17], and logic simula-
tors [5]. In [11], a parallelized DDM has been proposed. Com-
pared with the Intel’s Core2Duo microprocessor, it requires
a quarter of the memory for the Core2Duo, while is about
100 times faster at its peak performance. As for the area-
time complexity, [10] compares BDD, MDD, and HMDD, and
concludes that, HMDD is the best for logic evaluation.

In this paper, we compare BDD, MDD, HMDD,
QRBDD, QRMDD, and quasi-reduced ordered heterogeneous
MDD (QRHMDD) with respect to the area-time complexity.
Also, we present corresponding DDMs for these six types of
DDs. Finally, we select the best types of DDs for specific
applications and for an economical implementation.

The rest of the paper is organized as follows: Chapter 2
defines important words; Chapter 3 introduces architectures for
6 types of DDMs; Chapter 4 compares these types of DDMs;
and Chapter 5 concludes the paper.

II. PRELIMINARY

Definition 2.1: Let f(X) : Bn → B be a two-valued logic
function, where B = {0, 1}. Let X = (x1, x2, . . . , xn), xi ∈
B be an ordered set of binary variables. Let {X} denote the
unordered set of variables in X . If {X} = {X1}∪{X2}∪· · ·∪
{Xu} and {Xi} ∩ {Xj} = φ(i �= j), then (X1, X2, . . . , Xu)
is a partition of X , where Xi is a super variable. When
ki = |Xi|(i = 1, 2, . . . , u), k1 + k2 + · · · + ku = n.

Definition 2.2: A BDD is obtained by applying Shannon
expansions repeatedly to a logic function f . Each non-
terminal node labeled with a variable xi has two outgoing
edges which indicate nodes representing cofactors of f with
respect to xi. When the Shannon expansions are performed
with respect to k variables, all the non-terminal nodes have
2k edges. In this case, we have a Multi-valued Decision
Diagram (MDD(k)).

Definition 2.3: In a DD, a sequence of edges and non-
terminal nodes leading from the root node to a terminal node
is a path. An ordered BDD (OBDD) has the same variable
order on any path. A reduced ordered BDD (ROBDD) is
derived by applying the following two reduction rules to an
OBDD:

1. Share equivalent sub-graphs.
2. If all the outgoing edges of a non-terminal node v

indicate the same succeeding node u, then delete v and
connect the incoming edges of v to u.

An ROMDD(k) can be similarly defined to the ROBDD.
Note that, MDD(1) means BDD. In this paper, BDD and
MDD(k) means ROBDD and ROMDD(k), respectively, unless
stated otherwise.

For many benchmark functions, MDD(2)s are better than
BDDs with respect to the area-time complexity [10]. Since
each node of a MDD(2) has four edges, it is called a
Quaternary Decision Diagram (QDD). In this paper, we
consider only QDDs among MDD(k)s, since MDD(2) has the
best performance.

Definition 2.4: A Quasi-Reduced ordered
BDD (QRBDD) is derived by applying only the reduction
rule 1 in Definition 2.3.

In other words, the QRBDD has all variables on any path.
A Quasi-Reduced ordered QDD (QRQDD) can be defined
similarly.

Definition 2.5: In a QRBDD, a node with the outgoing
edges indicating the same node is redundant.

Definition 2.6: Let X = (X1, X2, . . . , Xu) be a partition of
the input variables, and ki = |Xi| be the number of inputs for
node i. When k = |X1| = |X2| = · · · = |Xu|, an ROMDD
is a homogeneous MDD (MDD(k)). On the other hand, if
there exists a pair (i, j) such that |Xi| �= |Xj|, then, it is a
heterogeneous MDD (HMDD).

Definition 2.7: A Quasi-Reduced ordered heterogeneous
MDD (QRHMDD) is derived by applying only the reduction
rule 1 in Definition 2.3 to a heterogeneous MDD.

Example 2.1: Fig. 1 illustrates 6 types of DDs for MCNC
benchmark function C17 [16]. The gray nodes are redundant.

(End of Example)
Suppose that the evaluation time for all the DD nodes are

the same, then the evaluation time for a DD is proportional
to the average path length (APL) [3]. We assume that a DD
machine evaluates each node in a fixed time. In this case, we
can use APL to estimate the computation time.

Definition 2.8: Let (X1, X2, . . . , Xu) be a partition of the
input variables X . Suppose that Xi can take any value c, where
c ∈ {0, 1, . . . , r−1}. Then, P (Xi = c) denotes the probability
that Xi has value c. The Path Probability (PP) of a path
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Fig. 1. Various Decision Diagrams (DDs).
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pi, denoted by PP (pi), is the probability that the path pi is
selected in all assignments of values to the r-valued variables.
Then, we have PP (pi) =

∑
�c∈Ci

P (X1 = c1) · P (X2 =
c2) · . . . ·P (Xu = cu), where Ci denotes a set of assignments
of values to the variables X selecting the path pi, and �c =
(c1, c2, . . . , cu). The average path length (APL) of a DD is
APL =

∑N
i=1 PP (pi) · li, where N denotes the number of

paths, and li denotes the path length of path pi.

III. ARCHITECTURES FOR VARIOUS DD MACHINES

A. BDD Machine (BDDM)

Fig. 2 shows a BDD Machine (BDDM), where the in-
struction memory stores instructions that evaluate nodes for
a BDD; the instruction register stores an instruction from
the instruction memory; the output register stores primary
outputs; the program counter (PC) retains an address of a
node currently evaluated. Fig. 3 shows the instruction set for
the BDDM. The 2-branch instruction evaluates a non-terminal
node, while the output instruction evaluates a terminal node.

Let MBDDM be the size of the instruction memory, n be
the number of inputs, and NBDD be the number of nodes.
Then, we have the relation:

MBDDM = NBDD(1 + �log2n� + 2�log2NBDD�). (1)

B. QDD Machine (QDDM)
Fig. 4 shows a QDD Machine (QDDM). The differences

from the BDDM are the number of branches (four in the
QDDM) and the number of inputs for each node (two in the
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Fig. 4. QDDM.
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Fig. 5. Instruction for the QDDM.

QDDM). Fig. 5 shows the instruction set for the QDDM. The
QDDM uses the 4-branch instruction that evaluates a non-
terminal node, and the output instruction.

Let MQDDM be the size of the instruction memory,
(X1, X2, . . . , Xu) be a partition of the inputs X , and NQDD

be the number of the nodes. Then, we have the relation:

MQDDM = NQDD(1 + �log2u� + 4�log2NQDD�), (2)

where the first term corresponds to the opecode; the second
term corresponds to the index; and the last term corresponds
to the four pointers.

C. QRBDD Machine (QRBDDM)

Fig. 6 shows a QRBDD Machine (QRBDDM), where the
instruction memory, the instruction register, the output register,
and the PC are the same as those of the BDDM shown in
Fig. 2. In the QRBDD, all the variables appear on any path.
The QRBDDM uses a counter and a shift register. The counter
keeps the current index, while the shift register keeps the input
variables. The controller generates signals to change between
the branch mode and the output mode. Fig. 7 shows the
instruction set for the QRBDDM. Since the indices of nodes
to be evaluated are known in advance, the opcode and the
index fields can be omitted. Thus, the QRBDDM has shorter
instruction words than the BDDM.

The input variable and the jump addresses can be read
concurrently. Thus, the QRBDDM can perform the branch
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operation in one clock cycle. In contrast, since in a BDDM,
a branches to a node with an arbitrary index is permitted, the
BDDM must read the jump addresses after reading the index.
The QRBDDM can be pipelined, while the BDDM cannot be.

Let MQRBDDM be the size of the instruction memory, and
NQRBDD be the number of nodes. Then, we have the relation:

MQRBDDM = 2 · NQRBDD · �log2NQRBDD�. (3)

D. QRQDD Machine (QRQDDM)

In a QRBDDM, by extending the number of branches to
four, and by using two shift registers, we have the QRQDD
Machine (QRQDDM) shown in Fig. 8. The QRQDDM has the
branch mode and the output mode, similarly to the QRBDDM.
Fig. 9 shows the instruction set for the QRQDDM. The
QRQDDM has four jump addresses in the branch instruction.
In the QRQDDM, the opcode and the index field can be
omitted, since the indices are known in advance.

Let MQRQDDM be the size of the instruction memory, and
NQRQDD be the number of nodes. Then, we have the relation:

MQRQDDM = 4 · NQRQDD · �log2NQRQDD�. (4)

E. Direct Branch and Indirect Branch

Four machines (BDDM, QDDM, QRBDDM, QRQDDM)
are homogeneous, that is, the numbers of branches are the
same for each node. Thus, the word lengths of the branch

Instruction
Memory

PC

Output Register

Instruction Register

Primary
Inputs

enable signal

Counter

Controller

2bit parallel in
parallel out
shift register

shift

enable

X1
X2
Xn

2 Xi

clear

Fig. 8. QRQDDM.
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Fig. 10. Direct branch instructions for the HMDD.

instruction are also the same. These machines can directly get
the jump address by reading input variables and the branch
instruction. We call this direct branch. On the other hand,
since the HMDD and the QRHMDD accept the arbitrary
number of input variables for each node, the numbers of
branch addresses can be different. Thus, the word lengths for
the branch instruction can be different as follows:

Example 3.2: Fig. 10 shows the direct branch instructions
for the HMDDM that evaluates non-terminal nodes. When the
number of inputs for a node is k, the number of branches is
2k. Thus, the word length for the branch instruction of nodes
can be different. (End of Example)

To use the memory efficiently for the HMDDM and the
QRHMDDM, we use indirect branch that reads the index
and the jump address separately. First, the machine reads the
current index. Then, it reads the jump address corresponding to
the value of the current input variables. Although the indirect
branch is slower than the direct branch, it uses the memory
efficiently, since the words have the same length. Next example
explains it.

Example 3.3: Fig. 11 shows the indirect branch instructions
for the HMDDM that evaluates a non-terminal node. In
Fig. 11, the index stores the index for the input variable.

(End of Example)
The indirect branch is performed as follows:
Algorithm 3.1: 1. Read the index, then compute the in-

direct address for the jump address.
2. Read the jump address using the address obtained in

Step 1.
3. Perform the jump operation.
Even the sizes of super variables are different, the word

lengths for the indirect branch are the same. So, the indirect
jump can use the memory efficiently for heterogeneous DDs.
In this paper, for the HMDD and the QRHMDD, we use the
indirect branch.
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Fig. 11. Indirect branch instructions for the HMDDM.
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F. HMDD Machine (HMDDM)

Fig. 12 shows an HMDD Machine (HMDDM). The
HMDDM consists of the instruction memory, the instruction
register, the output register, and the PC. It uses indirect 2k-
branch instructions and output instructions. To execute the
indirect 2k-branch instruction, the HMDDM uses the fetch
mode and the jump mode. In the fetch mode, input variables
are selected. In the jump mode, the jump addresses are read
and the branch operations are performed. To execute the output
instruction, the HMDDM uses the output mode. To change
the modes, the controller generates control signals, and two
multiplexors select the mode. The HMDDM uses an adder
to compute the address in the jump mode, and an increment
circuit in the output mode.

Since the size of the super variables can be different, the
HMDDM uses input registers with max

i
{ki} bits. Fig. 13

shows the input selector for the HMDDM.
Algorithm 3.2: (Indirect 2k-branch instruction)

Step 1. Fetch mode.
1) 1.1 Read the instruction memory specified by the PC.

1.2 To add the input variable and the content of the PC,
the controller generates signals. Then, the indirect
address is sent to the PC.

Step 2. Jump mode.
2) 2.1 Read the jump address specified by the PC.

2.2 To perform the jump, the controller generates sig-
nals. Then, the jump address is sent to the PC.

Algorithm 3.3: (Output instruction)
Step 1. Output mode.

1) 1.1 Read the instruction memory specified by the PC.
1.2 The controller generates signals, and the output

data is sent to the output register. Concurrently,
it increments the PC.

Step 2. Perform the jump mode shown in Algorithm 3.2 Step 2.
Let MHMDDM be the memory size for the instruction

memory, ki be the number of inputs for a node i, and NHMDD

be the number of nodes. Since in the HMDD, each node has an
index and 2ki branch edges, the necessary number of addresses
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Controller
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Fig. 14. QRHMDDM.

for each node is 2ki +1. So, the total number of addresses for
the HMDDM is a =

∑NHMDD

i=1 (2ki + 1). Thus, we have the
relation:

MHMDDM = a · �log2a�. (5)

G. QRHMDD Machine (QRHMDDM)

Fig. 14 shows the QRHMDD Machine (QRHMDDM),
where the instruction memory, the output register, and the PC
are same as those for the HMDDM shown in Fig. 12. In the
QRHMDD, all the super variables appear on any path. The
QRHMDDM uses a counter and a shift register. The counter
keeps the current index, while the shift register keeps the
input variable. The controller generates the control signals.
The QRHMDDM uses the branch mode and the output mode.
Since the QRHMDDM uses fewer modes than the HMDDM,
its controller for the QRHMDDM is simpler. Fig. 15 shows
the indirect 2k-branch instructions for the QRHMDDM. Since
the QRHMDDM knows the index of the super variables in
advance, the opcode and the index fields can be omitted.

Algorithm 3.4: (Branch mode for the QRHMDDM)

1. To obtain the indirect address, first, add the content of
the PC and the value of the input variables. Next, read
the jump address from the instruction memory, and send
it to the instruction register.

2. Store the jump address to the PC. Concurrently, incre-
ment the counter for the index, and perform the shift
operation.

Algorithm 3.5: (Output mode for the QRHMDDM)

1. To perform the indirect addressing, first, get the con-
tent of the PC. Then, read the output value from the
instruction memory.

2. Store it to the output register. Concurrently, increment
the PC.

3. Clear the counter for the index to zero, and store the
input variables to the shift register.

Let MQRHMDDM be the memory size, ki be the number
of inputs for a node i, and NQRHMDD be the number
of nodes. Since the number of branches for each node is
2ki , the total number of address for the QRHMDDM is
b =

∑NQRHMDD

i=1 (2ki). Thus, we have the relation:

MQRHMDDM = b · �log2b� (6)
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TABLE I

COMPARISON OF THE MEMORY SIZES [BYTES].

Name BDD QDD QRBDD QRQDD HMDD QRHMDD
C880 77760 82892 93724 86835 80557 74898
C1908 114136 106320 105323 101094 117515 84150
C432 4611 4400 7542 6380 4736 6543
apex2 2015 2274 3231 3130 2048 3234
too large 2015 2274 3231 3130 2048 3525
apex1 9254 12208 31973 31499 9031 27846
apex3 6177 7248 30947 29926 6126 26334
apex7 1893 2241 3647 3895 2034 4104
chkn 987 931 1735 1593 1203 2079
duke2 2337 2473 4029 3840 2596 4344
frg1 223 302 736 696 260 978
misex3 2959 3139 3594 3335 3469 3891
pcle 313 340 610 560 337 804
ratio 1.00 1.11 2.10 2.01 1.07 2.17

IV. COMPARISON OF VARIOUS DD MACHINES

A. Construction of DDs

We constructed various DDs from selected MCNC bench-
mark functions [16]. Then, we obtained the memory size and
APL. As for a multi-output function, we partition the function
into single output functions. We used the variable order that
minimizes the memory size of the BDD. For the HMDDM
and the QRHMDDM, different partitions of the input X and
variable orders produce different memory sizes and APL. In
this experiment, we built the DD that minimizes APL with
the memory size limitation [9]. To construct the HMDDMs
and the QRHMDDMs, the memory size limitations are set to
those of the BDDs and the QRBDDs, respectively.

B. Comparison of the Memory Size

Table I compares the memory sizes, where memory sizes
for the DDs were obtained from Exprs. (1),(2),(3),(4),(5), and
(6). From Table I, we have the following observations: The
memory size of Quasi-Reduced DDs is 2.1 times of other DDs.
The memory sizes of the BDDs are nearly equal to that of the
QDDs. The number of edges for each node of the QDD is
twice of the BDD. However, the number of the nodes for the
QDD is about half of that for the BDD. Thus, BDDs and
QDDs have nearly the same size of memory.

C. Comparison of APL

Table II compares APL. From Table II, we have the fol-
lowing observations: APL of Quasi-Reduced DDs are 3.7
times (BDD to QRBDD), 2.8 times (QDD to QRQDD), and
3.4 times (HMDD to QRHMDD), respectively. APL of QDDs
is 33% smaller than BDDs. APL of HMDDs is 27% smaller
than QDDs. APL of QRQDDs is 48% smaller than QRBDDs.
APL of QRHMDDs is 14% smaller than QRQDDs.

D. Discussions

Table III compares various DDMs. We can find the best
DDMs with respect to the area-time complexity, throughput,
and memory compatibility.

TABLE II
COMPARISON OF APL.

Name BDD QDD QRBDD QRQDD HMDD QRHMDD
C880 145.5 98.2 419 218 64.9 155
C1908 260.8 151.9 753 390 85.6 289
C432 86.6 59.6 225 113 48.4 152
apex2 21.4 15.4 107 56 14.3 67
too large 21.4 15.4 107 56 14.3 45
apex1 173.6 116.9 783 412 67.9 341
apex3 187.1 114.3 605 311 67.4 261
apex7 135.3 97.5 374 216 80.7 171
chkn 19.9 13.1 136 70 9.6 60
duke2 91.1 58.5 324 169 40.2 138
frg1 9.2 6.8 34 18 5.2 15
misex3 87.0 51.3 195 99 25.8 71
pcle 27.0 19.4 79 42 15.8 30
ratio 1.00 0.67 3.70 1.94 0.49 1.68

TABLE III
COMPARISON OF VARIOUS DDMS.

DDM Branch Architecture Mem APL Pipeline Clk
Method Size Cycle

BDDM Direct Boute[1] 1.00 1.00 impossible 1
QRBDDM Direct Iguchi[4] 2.10 3.70 possible 1
QDDM Direct Thayse[15] 1.11 0.67 impossible 1
QRQDDM Direct Iguchi[4] 2.01 1.94 possible 1
HMDDM Indirect This work 1.07 0.49 impossible 2
QRHMDDM Indirect This work 2.17 1.68 possible 1

a) Area-time complexity: Area-time complexity is impor-
tant for the embedded system, such as a sequencer, a controller,
and so on. The power consumption can be divided into the
static power and the dynamic power. The area for the DDM
is related to the static power, while the APL (time) is related
to the dynamic power. A processor with low area-time com-
plexity dissipates low power. In a DDM, APL and architecture
affect the performance (time). Since the instruction memory
occupies the most area for the DDM, we assume that the area
is proportional to the memory size. We consider the area-time
complexity for each DDM.

The memory sizes for QRDDs (QRBDD, QRQDD,
QRHMDD) are twice of other DDs (BDD, QDD, HMDD).
APL for QRDDs is 1.68-3.70 times of other DDs. Since
a QRDDM (QRBDDM, QRQDDM, QRHMDDM) uses the
shift register instead of the input selector, the amount of
hardware for the QRDDM is lower than that for other
DDMs (BDDM, QDDM, HMDDM). Evaluation time for a
node of the QRDDM is shorter than that of other DDMs.
However, to match the area-time complexity for the QRDDM
to that for the DDM, the evaluation for a node of the QRDDM
must be 3.64-7.77 times faster than that of the DDM. Unfor-
tunately, it is difficult in the current technology. Therefore, as
for area-time complexity, the DDM outperforms the QRDDM.

APL for the BDD is 1.5 times of the QDD, and the memory
size for the BDD is nearly equal to that for the QDD. Thus,
as for the area-time complexity, the QDDM outperforms the
BDDM.

APL for the QDD is 1.36 of the HMDD, and the memory
size for the QDD is nearly equal to that for the HMDD.
The HMDDM evaluates a node by the indirect branch that
accesses the instruction memory twice. Thus, the HMDDM
requires two clocks to evaluate a node1. On the other hand,
the QDDM requires only one clock by the direct branch. In
the HMDDM, an adder is used to compute an indirect address.

1By storing the jump address and its index, we can perform fetch and jump
modes at a time. Thus, we can evaluate a node in each clock. However, it
increases the word length and complicates the architecture.
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So, the architecture for the HMDDM is more complex than
that for the QDDM. Therefore, the QDDM evaluates a node
faster than the HMDDM. Thus, as for area-time complexity,
the QDDM outperforms the HMDDM.

From the above discussions, as for area-time complexity,
the QDDM is the best.

b) Throughput: QRDDMs (QRBDDM, QRQDDM, and
QRHMDDM) can use the pipeline architecture [5]. Let q be
the number of units in the pipelined QRDDM. Although the
hardware for the pipelined QRDDM is q times of the non-
pipelined QRDDM, throughput for the pipelined QRDDM is
at most q times of the non-pipelined ones. We consider a high-
throughput machine for each pipelined QRDDM.

APL for the QRBDD is 1.90 times of the QRQDD. If
the QRQDDM and the QRBDDM have the same number of
pipeline stages, then the QRQDDM has higher throughput than
the QRBDDM. By increasing the pipeline stage for the QRB-
DDM, throughput for the pipelined QRBDDM approaches
to that for the pipelined QRQDDM. However, the hardware
becomes large, and the controller for the pipeline operation
also becomes complex. Thus, as for throughput, the pipelined
QRQDDM outperforms the pipelined QRBDDM.

The sizes of the super variables for the QRHMDD can be
different. Thus, the unification of the delay time for units to
evaluate the super variables is difficult. On the other hand,
in the QRQDD, since the size of the super variable is two,
unification of the delay time for units is simple. Therefore,
as for throughput, the pipelined QRQDDM outperforms the
pipelined QRHMDDM.

From the above discussions, as for throughput, the
QRQDDM is the best.

c) Compatibility to the Existing Memory: For the direct
branch machines (BDDM, QDDM, QRBDDM, QRQDDM),
the word length for the instruction depends on the number
of nodes for the function. Thus, the word length for the
direct branch machine may not match to the existing memory
whose word length is multiple of 8. For example, in our
experiment, the word lengths for the QDDM obtained by
Expr. (2) are 34-63. Although we can use irregular sized
memories, it is unrealistic. In FPGAs, we can configure the
memory whose words have different lengths by combining
embedded memories. However, the memory size for the FPGA
is at most a few mega bits, so it cannot store the function
requiring more nodes. On the other hand, in the indirect branch
machines (HMDDM, QRHMDDM), the word lengths for the
instruction are relatively short. Also, these machines can use
all the given memory by selecting the optimal size of the
super node. Therefore, as for the compatibility to the existing
memory, the indirect branch machines are better.

APL for the QRHMDD is 3.42 times of the HMDD. The
QRHMDDM uses one clock to evaluate a node, while the
HMDDM uses two clocks. Thus, as for the evaluation of
a path, the HMDDM is about 1.71 times faster than the
QRHMDDM. On the other hand, the memory size for the
QRHMDDM is about twice of the HMDDM. Thus, as for area-
time complexity, the HMDDM outperforms the QRHMDDM.

From above discussion, for compatibility to the existing
memory, the HMDDM is the best.

V. CONCLUSION AND COMMENTS

This paper compared DDMs with respect to area-time com-
plexity, throughput, and compatibility to the existing memory.
First, it considered 6 types of decision diagrams (DDs): BDD,
MDD, QRBDD, QRMDD, HMDD, and QRHMDD. Second,
it presented corresponding DDMs. Third, it compared the
memory size and APL for these DDs by using benchmark
functions. The QDDM is the best for area-time complexity;
the QRQDDM is the best for throughput; and the HMDDM
is the best for compatibility to the existing memory.

For the HMDD, the memory size limitation is set to that
of the BDD. However, in many cases, the actual memory size
is power-of-two. We can minimize the APL with an enough
memory by increasing the size of the super variables.
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