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Abstract

This paper proposes a new architecture for memory-
based floating-point numeric function generators (NFGs).
The design method uses piecewise-split edge-valued multi-
valued decision diagrams (EVMDDs). To design NFGs with
less memory size, we partition the domain of the floating-
point function into segments, and represent the function
using an EVMDD for each segment. By realizing each
EVMDD with hardware, we obtain the floating-point NFG.
This paper also presents an algorithm that partitions the do-
main by decomposing the edge-valued binary decision dia-
gram (EVBDD) representing the whole floating-point func-
tion. Experimental results show that, for a single-precision
floating-point function, our new NFG requires 40% to 65%
less memory than any previous one for generic function.

1. Introduction

Numeric functions, such as trigonometric, logarithmic,
square root, and combinations of these functions, are widely
used in computer graphics, digital signal processing, com-
munication systems, robotics, etc. [11]. In these applica-
tions, numeric functions are usually used as a basic opera-
tion, along with addition and multiplication. For fast com-
putation of numeric functions, various hardware circuits,
called numeric function generators (NFGs), have been pro-
posed. Fixed-point representation of numeric functions is
often adopted [1,9, 14, 16, 18, 19,21, 22]. However, for nu-
meric functions with a wide domain and range, a fixed-point
representation requires a large number of bits. This pro-
duces large NFGs. To represent a large real value with fewer
bits, floating-point representation is often used. An IEEE
standard for real values exists [5]. However, floating-point
representation tends to produce complex and slow NFGs.
Thus, the design of floating-point NFGs is especially hard,
and only design methods for some numeric functions are
known [2, 3, 6,20,24]. Since these design methods are in-
tended only for specific functions, different functions need

different design methods and architectures. Thus, an archi-
tecture for floating-point NFGs that can realize a large set
of numeric functions is required, along with a systematic
design method.

Large-capacity memories are now available. Like
SRAM-based FPGAs, implementation of logic circuits us-
ing memory has become practical. Thus, we focus on
memory-based floating-point NFGs that can realize various
numeric functions by changing data in memory. A straight-
forward memory-based NFG for an arbitrary floating-point
function f(x) is a single lookup table (LUT), in which
the address is the binary representation of the value of x
and the content of that address is the corresponding value
of f(x). This NFG is very fast because the value of
the function is obtained by only one table lookup. For
high-precision computations, however, it requires too much
memory. To design monotone floating-point numeric func-
tions with less memory, we have proposed a memory-based
NFG using an edge-valued multi-valued decision diagram
(EVMDD) [15]. Unfortunately, it still requires a large mem-
ory for high-precision computations.

Therefore, this paper proposes a new architecture for
memory-based NFGs that requires less memory. To de-
sign an NFG with less memory, we partition the domain
of a floating-point function into segments, and represent the
function using an EVMDD for each segment. By realizing
each EVMDD with memory, we obtain a memory-based
floating-point NFG. This paper also presents an algorithm
that partitions the domain by decomposing the edge-valued
binary decision diagram (EVBDD) representing the whole
floating-point function.

This paper is organized as follows: Section 2 intro-
duces a floating-point representation of a real-valued nu-
meric function, and decision diagrams used in this paper.
Section 3 presents piecewise-split EVMDDs, and an algo-
rithm that partitions the domain of a floating-point func-
tion. Section 4 presents a new architecture for memory-
based floating-point NFGs. Experimental results are shown
in Section 5.



Table 1. Floating-point representation of X
with a-bit exponent and »-bit significand.

Table 2. Tables for the 8-bit precision (3-bit ex-
ponent, 4-bit significand) floating-point v/X.

Type Exponent E | Significand D Value of X (a) Table for v/X. (b) Truth table for f,(X). (c) Table for f(X).
Zero (0,0,...,0)2 | (0,0,...,0), 0 X VX X Hr(X) X | f(X)

Subnormal no. | (0,0,...,0)2 | #(0,0,...,0)2 | (=1)*x275% x0.D 0.000000 | 0.000000 | | 0 000 0000 | 0 000 0000 0] 0
Infinity (1,1,...,1)2 | (0,0,...,0)2 (—1)* X o0 0.015625 | 0.125000 0000 0001 | 0000 1000 1| 8
Notano. (NaN) | (1,1,...,1)2 | #(0,0,...,0)» NaN 0.031250 | 0.171875 0000 0010 | 0000 1011 2 11
Normal no. Others (—1)S x2E~En x 1.D 0.046875 | 0.218750 00000011 [ 0000 1110 3| 14
Bias value for subnormal numbers: E; =291 —2 0.062500 | 0.250000 0000 0100 | 0001 0000 41 16
Bias value for normal numbers: E, =241 — 1 0.078125 | 0.281250 0000 0101 | 0001 0010 51 18
0.093750 | 0.312500 00000110 | 0001 0100 6| 20
0.109375 | 0.328125 00000111 | 0001 0101 7| 21

2. Preliminaries
2.1. Number Representation and Precision

This subsection defines a number representation and a
precision to convert real functions into integer functions.

Definition 1 Ler B = {0,1}, Z be the set of the integers,
and R be the set of the real numbers. An n-input m-output
logic function is a mapping: B" — B™, an integer function
is a mapping: 7 — 7, and a real function is a mapping:
R—R

Definition 2 The n-bit precision binary floating-point rep-
resentation of a number X is a binary n-tuple
X = (s,

€a—1,€a—2s--.,€0, dp_1,dp_2,...,dp)2,

where s € B is the sign bit, E = (e,_1,¢4-2,...,€0)2 is the
exponent, and D = (dp_1,dp_2,...,dp)2 is the significand.
a and b are the numbers of bits for the exponent and the
significand respectively, and n = a+ b+ 1. The value of X
is shown in Table 1. When |X| < 22_2071, X is a subnormal
number, in which the exponent E is biased by E; = 2a-1_29
and the significand D represents only fractional bits of a
fixed-point value smaller than 1. When 2¢ < |X|, X is infin-
ity. When X cannot be defined as a number, X is represented
as not a number (NaN). In other cases, X is a normal num-
ber, in which the exponent E is biased by E,, = 20-1_1 and
the significand D represents only fractional bits of a fixed-
point value that is larger than or equal to 1 and smaller
than 2.

According to IEEE Standard 754-2008 [5], half (16-bit)
precision has a =5 and b = 10, single (32-bit) precision
has a = 8 and b = 23, double (64-bit) precision has a =11
and b = 52, and quad (128-bit) precision has a = 15 and
b=112.

Note that by using an n-bit precision floating-point rep-
resentation, we can convert a real function into an n-input
n-output logic function. The logic function, in turn, can

be converted into an integer function by considering bi-
nary vectors as integers. That is, we can convert a real
function into an integer function: P, — P,, where P, =
{0,1,...,2" — 1}. In this paper, numeric functions are con-
verted into integer functions by using a floating-point repre-
sentation, unless stated otherwise. And, for simplicity, each
bit in the floating-point representation of X is denoted by x;,
where xg is the least significant bit.

Example 1 Table 2 (a) is the function table for \/X. The 8-
bit precision (3-bit exponent and 4-bit significand) floating-
point representation of this function is the logic function
fp(X) in Table 2 (b). By converting binary vectors into in-
tegers, we have the integer function f(X) of fp(X) in Ta-
ble 2 (c). That is, our 8-bit precision floating-point repre-
sentation of f(X) = VX corresponds to the integer function
of Table 2 (c). (End of Example)

2.2. Edge-Valued MDDs

This subsection defines the decision diagrams used in
this paper.

Definition 3 An edge-valued binary decision diagram
(EVBDD) [8, 17, 23] is a variant of the BDD [4, 10] that
represents an integer function. The EVBDD is obtained by
repeatedly applying the expansion f = Xjfo+xi(f] + o) to
the integer function, where fi = f| + 0, and o is the con-
stant term of f1. The EVBDD consists of only one terminal
node representing 0 and non-terminal nodes with 1-edges
having integer weights o. In an EVBDD, 0-edges always
have zero weights. The incoming edge into the root node
can have a non-zero weight. The output (integer) value of
an EVBDD is the sum of the weights associated with the
path taken from the root node to the terminal node.

Definition 4 For a set of n binary variables {X}, if {X} =
{Xu} @] {Xu—l} U...U {X[}, {X,} # 0, and {X,} n {Xj} =
0 (i # j), then (X,,X,—1,.-.,X1) is a partition of X. Each



(a) EVBDD (b) EVMDD

Figure 1. EVBDD and EVMDD for an integer
function.
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Figure 2. Architecture for NFG based on a
monolithic EVMDD.

X; forms a super variable. Let |X;| = k; and ky, + k,—1 +
...+ k1 = n. Then, by considering each super variable as
a multi-valued variable, an integer function f(X) :7Z — 7Z
can be converted into a multi-valued input integer function
S(XuXu—1,..-,X1) : Py X Py X ... X Pl = Z, where P; =
{0,1,2,...,2k —1}.

Definition 5 An edge-valued multi-valued decision dia-
gram (EVMDD) [13] is an extension of the MDD [7, 12,
25], and represents a multi-valued input integer function.
It consists of one terminal node representing O and non-
terminal nodes. Edges have integer weights. Edges labeled
by a logic 0 have integer O weight.

Example 2 Fig. 1 (a) and (b) show the EVBDD and the
EVMDD, respectively, for the same integer function. In

fiX)

EVMDDO EVMDD1 EVMDD2 EVMDD3

Figure 3. Example of a piecewise-split
EVMDD.

Fig. 1 (a), dashed lines and solid lines denote 0-edges and
weighted 1-edges, respectively. In the EVMDD, the set of
binary variables {X} is partitioned into {X2} = {x3,x2,x1}
and {X,} = {x0}. To obtain the function value 3 for X =
(1,0,1,0)2, we traverse the EVBDD or the EVMDD from
the root node to the terminal node according to the input
values, and obtain the function value as the sum of the
weights for the traversed edges. Note that we traverse the
EVMDD using X, =5 and X; = 0. (End of Example)

3. Representation
EVMDDs

Using Piecewise-Split

This section introduces a piecewise-split EVMDD, and
presents an algorithm that partitions the domain of a
floating-point function.

3.1. Piecewise-Split EVMDDs

Since floating-point numeric functions can be converted
into integer functions, they can be compactly represented
using EVMDDs. Fig. 2 shows their architecture, which is
the result of a decomposition of an EVMDD [15]. How-
ever, high-precision (a large number of bits) floating-point
functions necessarily require large EVMDDs resulting in
NFGs with large memory size. Also, they are slow. To
reduce memory size, we represent a floating-point numeric
function using a set of smaller EVMDDs, instead of using a
monolithic EVMDD. Then, we design a floating-point NFG
using the smaller EVMDDs.

In this paper, we produce a set of EVMDDs by parti-
tioning the domain of a floating-point function into seg-
ments, and representing the function using an EVMDD for



Input: EVBDD for floating-point numeric function f(X) and
threshold value 7 for the number of nodes.

Output: Piecewise-split EVMDD (set of EVMDDs).

Step:
1. Compute the numbers of nodes in all the sub-
EVBDDs.
2. Traverse the EVBDD recursively from the root node.

2.1. Decompose the EVBDD when the number of nodes in
a sub-EVBDD is smaller than or equal to ¢.

2.2. Assign a segment number to the sub-EVBDD, which

represents the numeric function in the segment.

Convert the produced sub-EVBDDs into EVMDDs.

4. Construct a multi-terminal EVBDD by considering
each segment number as a terminal node, where the
root node of the multi-terminal EVBDD is the same as
the original one.

5. Convert the multi-terminal EVBDD into a multi-

hed

terminal EVMDD.

Figure 4. Segmentation algorithm using
EVBDD.

each segment, as shown in Fig. 3. Hence, we call the set
of EVMDDs a piecewise-split EVMDD. Note that, in a
piecewise-split EVMDD, we need an EVMDD which se-
lects a segment from input X, in addition to the EVMDD
for each segment.

3.2. Segmentation
EVBDD

Algorithm  Using

In a piecewise-split EVMDD, the number of EVMDDs
and size of each EVMDD depend on how the domain of the
function is segmented. Thus, an effective segmentation al-
gorithm which makes the sizes of all the EVMDDs the same
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(a) Decomposed EVBDD (b) Piecewise-split EVMDD

Figure 5. Decomposition of EVBDD and
piecewise-split EVMDD.
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Figure 6. Architecture for NFG based on a
piecewise-split EVMDD.

is desired to reduce memory size of NFG. In this paper, we
propose a segmentation algorithm that partitions the domain
into segments by decomposing the EVBDD representing the
whole floating-point function. By using the EVBDD, we
can simultaneously produce a segmentation of the domain
and the piecewise-split EVMDD.

Fig. 4 shows the proposed segmentation algorithm. This
algorithm decomposes a given EVBDD so that sizes of all
sub-EVBDDs are smaller than or equal to a given thresh-
old value, as shown in Fig. 5(a). And then, it produces a
piecewise-split EVMDD as shown in Fig. 5(b). In Fig. 5(a),
sub-EVBDDs whose heights are lower (i.e. in which fewer
input variables are used) mean that their segments are nar-
rower. In such segments, the floating-point function values
rapidly change, and so, sizes of EVBDDs are large [15].
In Fig. 5(b), the multi-terminal EVMDD is used to select a
segment, and the other EVMDDs are used to represent the
floating-point function in each segment.

4. NFGs Based on Piecewise-Split EVMDDs

By realizing each EVMDD produced by the proposed
segmentation algorithm using the architecture shown in
Fig. 2, we obtain the NFG in Fig. 6. A value of the nu-
meric function in each segment is computed using the least
significant bits of X in parallel, and then an appropriate
value is selected by the segment selector, which realizes a
multi-terminal EVMDD. Since a piecewise-split EVMDD
uses the most significant bits of X in parallel with function
values, it is faster than the monolithic EVMDD.

In addition, the proposed NFG has the following advan-
tages:

1. Since the proposed NFG just traverses a set of



Table 3. Memory size needed for NFGs based
on a monolithic EVMDD and a piecewise-split
EVMDD for single-precision (32-bit) floating-
point numeric functions.

Functions || Memory size (Mbits) || Number || Ratio
f(X) Monolithic | Piecewise of (%)
EVMDD | EVMDD || segments
sin 1 (X) 34 12 28| 35
In(X) 564 337 25 60
1/X 31 15 31 51
vX 34 13 23 39
—In(X) 271 160 32 59
Ratio = §1crcTiic EVMDD) * 100 ()

EVMDDs, and computes the sum of edge weights (in-
tegers) in parallel, it requires only integer adders to
compute function values of a floating-point function.
That is, it requires neither the rounding circuit nor the
normalization circuit (which are complex).

2. Since the NFG is a memory-based architecture, a wide
range of numeric functions can be realized by chang-
ing only the data in the LUT memories.

3. Since the NFG directly realizes the function table
of a floating-point function using a piecewise-split
EVMDD, it is more accurate than existing NFGs us-
ing polynomial approximation [2, 3,6, 20, 24].

4. The NFG is suitable for pipeline processing, and thus
it can achieve a high throughput.

5. Experimental Results

To show the effectiveness of piecewise-split EVMDDs,
we realize single-precision floating-point numeric functions
using two types of NFGs, an NFG based on a monolithic
EVMDD and an NFG based on a piecewise-split EVMDD.
We compare memory size needed for the two types of
NFGs. Table 3 shows memory size needed for the NFGs, in
mega bits, and the number of segments for piecewise-split
EVMDDs.

Since a single LUT that realizes a whole single-precision
floating-point function requires 232 x 32 = 128 Gbits, mem-
ory size needed for both types of NFGs is three or four
orders of magnitude less than the single LUT-based NFG.
And, by using piecewise-split EVMDDs, we can achieve
a further reduction to 35% to 60% of memory size needed
for the NFGs based on the monolithic EVMDDs. Table 3
shows that we can reduce memory size significantly with a

small number of segments. Thus, the size of the multiplexer
used in the NFG is also small. Further, we can generate such
compact NFGs automatically.

6. Conclusion and Comments

This paper proposes a new architecture for memory-
based floating-point NFGs, and a design method using
piecewise-split EVMDDs. We also present an algorithm to
produce efficient piecewise-split EVMDDs by decompos-
ing the EVBDD representing a given floating-point func-
tion. Experimental results show that, for single-precision
floating-point functions, our new NFGs based on piecewise-
split EVMDDs require 40% to 65% less memory than ones
based on monolithic EVMDDs. By using piecewise-split
EVMDDs, we can automatically generate compact NFGs.
Since our memory-based NFG is quite general, it can realize
not only floating-point functions, but also discrete functions
and even two-variable functions.

Future work includes 1) reducing memory size further,
and 2) developing an optimization algorithm for decompos-
ing an EVBDD. Our NFG requires still large memory size
for FPGA implementation. We will further reduce memory
size so that our single-precision floating-point NFG can be
implemented with an FPGA. The proposed algorithm de-
composes an EVBDD using a threshold value for the num-
ber of nodes. But, an algorithm that can find an optimum
decomposition of EVBDD in terms of memory size or de-
lay time of NFG is more practical.
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