39th International Symposium on Multiple-Valued Logic

A Quaternary Decision Diagram Machine and the Optimization of Its Code

Tsutomu Sasao !, Hiroki Nakahara !, Munehiro Matsuura®

Yoshifumi Kawamura 2, Jon T. Butler *

! Kyushu Institute of Technology, lizuka 820-8502, Japan
2 Renesas Technology Corp., Tokyo 100-0004, Japan
3 Naval Postgraduate School, Monterey, CA 93943-5121, USA

Abstract

We show the advantage of Quarternary Decision Dia-
grams (QDDs) in representing and evaluating logic func-
tions. That is, we show how QDDs are used to implement
ODD machines, which yield high-speed implementations.
We compare QDD machines with binary decision diagram
(BDD) machines, and show a speed improvement of 1.28-
2.02 times when QDDs are chosen. We consider 1-and 2-
address BDD machines, and 3- and 4-address QDD ma-
chines, and we show a method to minimize the number of
instructions.

1 Introduction

Branching program machines for BDDs have been used
in control applications [2, 5, 7, 6]. Fast response is espe-
cially important in control applications in which there are
usually hundreds of inputs. For such applications, a gen-
eral purpose microprocessor (MPU) cannot meet the speed
requirements. A branching program machine can be sev-
eral times faster than an MPU: An ordinary MPU requires
two or three machine instructions to read and test one in-
put variable, while the branching program machine requires
just one instruction [3].

In this paper, we present a Quarternary Decision Dia-
gram (QDD) to implement a branching program machine.
Although the QDD machine requires longer instruction
words than the BDD machine, the QDD machine is 1.3—2.0
times faster than the corresponding BDD machine. In the
past, when the price of memory was high, 16-bit controllers
were popular [13, 25]. However, nowadays, the price of
memory is lower, and a 32-bit or wider architecture is often
used to increase the performance of controllers. So, in this
paper, we show a method to increase the performance by
increasing the number of bits in a word.

The rest of this paper is organized as follows: Section

0195-623X/09 $25.00 © 2009 IEEE
DOI 10.1109/ISMVL.2009.35

362

2 introduces a method to represent multi-output logic func-
tions by multi-valued decision diagrams. Section 3 intro-
duces branching program machines: It introduces both a 4-
address QDD machine and a 3-address QDD machine. The
3-address QDD machine requires less memory than the 4-
address QDD machine. Section 4 shows an optimization
problem of codes for 3-address QDD machines. Section 5
shows the experimental results. And finally, Section 6 con-
cludes the paper.

2 Representation of Multiple-Output Func-
tions

2.1 Multi-Valued Decision Diagrams

An arbitrary n variable logic function can be represented
by a binary decision diagram (BDD). Evaluation of a BDD
requires 7 table look-ups. Fig. 2.1 shows an example of an
MTBDD (multi-terminal binary decision diagram). In this
case, many outputs can be evaluated at the same time. To
further speed up the evaluation, a multiple-valued decision
diagram (MDD) is used. In the MDD(k), k variables are
grouped to form a 2¥-valued super variable. To evaluate
the MDD(k), we need at most [7] table look-ups [15, 19].
When the function is represented by an MDD(k), the evalu-
ation of a logic function can be k times faster than the corre-
sponding BDD !. Thus, a larger k yields a faster evaluation
of the MDD(k). Unfortunately, the size of memory to repre-
sent a node for an MDD(k) is proportional to 2%, as shown
in Fig. 2.2. For many benchmark functions, the total size
of the memory for an MDD(k) achieves its minimum when
k = 2 [19]. Therefore, in logic evaluation, MDD(2)s are
more suitable than BDDs. Since nodes in an MDD(2) have
4 branches, it is termed a Quarternary Decision Diagram

(QDD).

I'This is true only when the MDD(k) and the BDD are quasi reduced.

IEEE
computer
® psouety

Xy =(x1,x2)

Xp =(x3,x4)

X3 =(x5,x6)

X4 =(x7,x8)

Figure 2.2. Nodes for MDD(k).

2.2 Optimization of MDDs

In an MDD(k), the evaluation of an n-variable logic
function can be done by at most [| table look-ups. So, the
major problem is the minimization of the number of nodes.
In general, it is not so easy to obtain an MDD(k) with the
minimum number of nodes. The following heuristic method
is used to obtain near minimal MDDs:

1. Minimize the number of nodes of the BDD by a heuris-
tic method [21].

2. Partition the input variables to generate an MDD(k)
[22].

Fig. 2.3 shows an example of a conversion from a BDD into
an MDD(2). In the above MDDs, we assume each group of
variables has the same size. Such MDDs are homogeneous
MDDs. When the groups have different sizes, the MDD
is a heterogeneous MDD. For simplicity, in this paper, we
consider only homogeneous MDDs.

3 Branching Program Machine

Special machines to evaluate MDDs have been devel-
oped [8, 9, 10]. Unfortunately, they are unsuitable for prac-
tical applications. Here, we consider a machine whose ar-

363

MDD(2)

Figure 2.3. Conversion of BDD to MDD(2).

chitecture is well-suited for evaluating MDDs, but is easily
programmed.

3.1 2-Address BDD Machine

A branching program for BDDs uses only two kinds of
instructions:

B_Branch (ADDRO,
Output DATA,

ADDR1), INDEX
and GOTO ADDR.

The first one is the binary branch instruction that is sim-
ilar to the computed GOTO statement of the FORTRAN
language: If the value of the variable specified by INDEX
is equal to 0, then go to ADDRO, otherwise goto ADDRI1.
The second one performs the output operation followed by
an unconditional GOTO operation.

Example 3.1 Consider the MTBDD shown in Fig. 2.1. The
following code evaluates the MTBDD:

NO
N1
N2
N3
N4
TO

:B_Branch (), X1
:B_Branch (N2, T4), X2
:B_Branch (N3,N4), X3
:B_Branch (), X4
:B_Branch (T2,T3), X4

0, and GOTO NO
9, and GOTO NO
10, and GOTO NO
11, and GOTO NO

15, and GOTO NO

:Output
T1l:0utput
T2 :0utput
T3:0utput
T4 :0utput

In this example, DATA in Output DATA is the decimal equiv-
alent of the function output values expressed in binary as

13, f2, f1, fo. (End of Example)

Memory

PC

COM | INDEX | ADDRO | ADDR1

Input Variables
Xi

Input selector

Figure 3.1. 2-address BDD Machine.

Fig. 3.1 shows the architecture of the 2-address BDD ma-
chine, where only the circuit for the branching operation is
shown. The first field of the branching instruction specifies
the branch command. The second field, INDEX, specifies
the index ¢ of the input variables z;. It determines which
variables to select. The input selector in Fig. 3.1 produces
the value of the variable x; selecting the next branch ad-
dress. When x; = 0, ADDRO is selected. Otherwise,
ADDRI is selected. The selected address is then loaded
into the program counter (PC). In this way, the next address
is specified. To reduce the width of the instruction words,
1-address BDD machines shown in Fig. 3.2 have been de-
veloped [2, 6, 25, 13]. In this case, when the value specified
by INDEX is 1, the machine works similarly to the case of
the 2-address BDD machine. Otherwise, the content of the
program counter (PC) is incremented by one, to access the
next address. In this case, the size of the instruction word
is reduced, but unconditional GOTO instructions are neces-
sary, as shown later.

3.2 4-Address QDD Machine

By evaluating two binary variables and by increasing the
number of branch addresses to four, we have a branch in-
struction for a 4-address QDD machine. Since it evaluates
two binary variables at a time, it can reduce the evaluation
time to half that of the 2-address BDD machine.

A branching program for 4-address QDD machines con-
sists of two kind of instructions:

Q_Branch (ADDRO, ADDR1, ADDR2, ADDR3) , INDEX
Output DATA, and GOTO ADDR

364

PC # Memory
+1 i
CoM [INDEX | ADDRI1

Input variables

\
\

Input selector

Figure 3.2. 1-address BDD Machine.

Fig. 3.4 shows the format for the branch instruction. Fig. 3.3
shows the architecture of the 4-address QDD machine,
where only the circuit for the branching operation is shown.
The first field of the branching instruction specifies the
branch command. The second field, INDEX, specifies the
index % of the input variable X;. It determines which vari-
ables to select. In the case of a QDD, two consecutive bi-
nary variables are selected at a time. The input selector
shown in Fig. 3.3 producesX;. The upper multiplexer se-
lects the variable. When X; = (0,0), ADDRO is selected;
when X; = (0, 1), ADDRI is selected; when X; = (1,0),
ADDR? is selected; and when X; = (1,1), ADDR3 is se-
lected. The selected address is then loaded into the program
counter (PC). In this way, the next address is specified as a
function of INDEX ¢ and the input variable X;. Note that
this instruction requires a rather long word, which would be
expensive for embedded applications.

Fig. 3.5 shows the format for the output instruction. The
left field specifies the instruction type: Output. The mid-
dle field contains the address to which this program should
jump. The right field is the output value, as shown at the
bottom of the QDD.

3.3 3-Address QDD Machine

Since the 4-address QDD instruction requires a long
word, we developed a 3-address QDD machine. The branch
instruction for the 3-address QDD machine contains only
three address fields. For example, consider the instruction
shown in Fig. 3.6. This instruction is symbolically denoted
by

o

Memory

COM (INDEX| ADDRO | ADDR1 | ADDR2 | ADDR3

Input variables

Input selector

Figure 3.3. 4-address QDD Machine.

[Branch[Index[ADDR0O[ADDR1]ADDR2[ADDR3]

Figure 3.4. Branch Instruction for 4-address
QDD Machine.

Q_Branch (+1,ADDR1, ADDRZ2, ADDR3) , INDEX.

In this instruction, ADDR1, ADDR?2, and ADDR3 are spec-
ified, but ADDRO is missing. ADDRO is replaced by “+17,
which shows the next address of the current instruction.
This instruction performs the following operations:

e Let i be the value specified by INDEX. If (¢ = 0) then
goto the next address of the current instruction, else
goto ADDRG.

Lemma 3.1 An arbitrary QDD can be evaluated by a pro-
gram consisting of the following instructions:

QO_Branch (+1, ADDR1, ADDR2, ADDR3) , INDEX
GOTO ADDR
Output DATA, and GOTO ADDR

For example, the instruction for the 4-address QDD ma-
chine

| Output [Address | Output Values |

Figure 3.5. Output Instruction for a QDD Ma-
chine.

| Branch0 | Index | ADDRI1 | ADDR2 | ADDR3 |

Figure 3.6. Branch Instruction for a 3-address
QDD Machine.

PC Memory

y L

} COM ‘INDEX‘ ADDRI1 ‘ ADDR2 ‘ADDRS ‘

~N

~ ~N~ ~N~

Input variables

X1 ;
Pt Xi

X3

2

Xn

Input selector

Figure 3.7. 3-address QDD Machine.

QO_Branch (ADDRO, ADDR1, ADDR2, ADDR3) , INDEX

can be simulated by the pair of instructions:

O_Branch(+1,ADDR1,ADDR2, ADDR3) , INDEX
GOTO ADDRO

Note that the last instruction is an unconditional GOTO
statement. As shown in the next section, the number of un-
conditional GOTO statements can be minimized by an opti-
mization algorithm. Fig. 3.7 shows the architecture of the 3-
address QDD machine, where only the circuit for branching
operations is shown. Consider the instruction in Fig. 3.6.
When the value specified by INDEX and the input variables
is non-zero, the machine works similarly to the case of the
4-address QDD machine. When the value specified by IN-
DEX and the input variables is equal to 0, the content of the
program counter (PC) is incremented by one, to access the
next address.

In the real system, we use four types of branch instruc-
tions shown in Fig. 3.8 . To distinguish four branch instruc-
tions, we use two additional bits in the instruction field.
However, as shown in the experimental results, by using
four branch instructions, we can reduce the number of in-
structions and the total bit size. So, the cost of these extra
bits is fully compensated.

| Branch0 | Index | ADDR1 | ADDR2 | ADDR3 |
[Branchl | Index | ADDRO | ADDR2 | ADDR3 |
[Branch2 | Index | ADDRO | ADDRI | ADDR3 |
| Branch3 | Index | ADDRO | ADDR1 | ADDR2 |

Figure 3.8. Four Types of Branch Instructions
for 3-address QDD Machine.

4 Optimization of Codes for QDD Machines

In this section, we consider a method to reduce the num-
ber of instructions for QDD machines.

Definition 4.1 Given the QDD and an order of the input
variables (e.g. x1,%2,... and xy), the code size CSIZE
is the number of instructions needed to compute the Deci-
sion diagram on a given machine. Let 4aQDDM denote
a 4-address QDD machine, and let 3aQDDM denote a 3-
address QDD machine.

Lemma 4.1 Let Ny be the number of non-terminal nodes,
and let N1 be the number of terminal nodes in a QDD. We
have the following relation:
CSIZE(4aQDDM) = Ny + Nr. “4.1)
(Proof) In a 4-address QDD machine, a non-terminal node

is represented by a branch instruction, and a terminal node
is represented by an output instruction. (Q.EE.D.)

Lemma 4.2 Let Ny be the number of non-terminal nodes
and let Nt be the number of terminal nodes in a QDD.
Let Ny be the number of unconditional GOTO statements
that are not part of output statements. Then, we have the
following relations:

CSIZE(3aQDDM) = Ny + Ny + Nr 4.2)

0< Ny <Ny (4.3)

(Proof) In a 3-address QDD machine, a non-terminal node
is represented by either a branch instruction or a pair con-
sisting of a branch instruction and an unconditional GOTO
statement. Also, a terminal node is represented by an out-
put instruction. Thus, the number of unconditional GOTO
statements is at most the number of non-terminal nodes.
(QED)
In the case of a 4-address QDD machine, there is no code
optimization problem, i.e., the instructions can be generated
in any order. However, in the case of a 3-address QDD
machine, the length of the program depends on the order of
instructions.

366

Figure 4.1. QDD for Example Function.

Example 4.1 Consider the QDD shown in Fig. 4.1. It has
five non-terminal nodes, and four terminal nodes. When the
code is generated in the breadth-first order, i.e., in the order
of X1, Xo and X3, we have the following:

/x* Code with Unconditional GOTO %=/
NO:Q_Branch (+1,N1,N1,N1), X1
Q_Branch (+1,N3,N3,N3), X2

GOTO N2
N1:Q_Branch(+1,T3,T3,T3),X2
GOTO N3
N2:Q_Branch(+1,T1,T1,T1), X3
GOTO TO
N3:Q_Branch (+1,T2,T2,T2),X3
GOTO T1
TO:Output 0, and GOTO NO
Tl:Output 1, and GOTO NO
T2:0utput 2, and GOTO NO
T3:0utput 3, and GOTO NO

Note that, the above program has four unconditional GOTO
statements that are not part of output statements. However,
when the code is generated in the depth-first order, it has no
unconditional GOTO statements that are not part of output
statements.:

/x* Code without Unconditional GOTO *x*/
NO:Q_Branch (+1,N1,N1,N1), X1

Q_Branch (+1,N3,N3,N3), X2

Q_Branch (+1,T1,T1,T1),X3

:Output 0, and GOTO NO
N1:Q_Branch(+1,T3,T3,T3),X2

N3:Q_Branch (+1,T2,T2,T2),X3

T1l:Output 1, and GOTO NO

T2:0utput 2, and GOTO NO

T3:0utput 3, and GOTO NO

TO

Note that the first four instructions correspond to the left-
most path from the root node to the terminal node TO.

The next three instructions correspond to the path from the
the node N1, the node N3, and to the terminal node TI.
(End of Example)

The code optimization problem for a 3-address QDD ma-
chine can be reduced to a graph covering problem as fol-
lows:

Definition 4.2 A path cover of a QDD is a set of paths such
that every node in the QDD belongs to exactly one path. A
minimal path cover is a path cover with the fewest paths.
A path in a QDD can consist of just one node.

Theorem 4.1 An optimal code for a 3-address QDD ma-
chine corresponds to a minimal disjoint path cover of the
ODD.

(Proof) A path in a QDD corresponds to a sequence of
Q_Branch instructions followed by an output instruction.
A sequence of Q_Branch instructions without an output in-
struction requires an unconditional GOTO statement. By
Lemma 4.2, minimization of the number of unconditional
GOTO statements minimizes the code size. (Q.E.D)

S Experiment and Observation
5.1 Benchmark Results

To see the effectiveness of QDDs over BDDs, and the
effectiveness of the code optimization, we realized certain
benchmark functions by BDDs and QDDs. First,we com-
pare QDDs and BDDs with respect to the number of nodes.
Then, we convert these into code for BDD and QDD ma-
chines, and compare QDD’s and BDD’s with respect to the
number of instructions.

Table 5.1 shows the experimental results. Func. name
denotes the name of the benchmark functions; # Inp. de-
notes the number of input variables; # Out. denotes the num-
ber of outputs; BDD Nodes denotes the number of nodes
of the MTBDD including both terminal and non-terminal
nodes; Opt. Codes under BDD denotes the number of in-
structions of the optimized code for the 1-address BDD
machine (near optimal solution); Term. Nodes denotes the
number of terminal nodes; Aver. Inst. under BDD denotes
the average number of instructions to evaluate an input vec-
tor by a 1-address BDD machine; QDD Nodes denotes the
number of nodes of the MTQDD including both terminal
and non-terminal nodes, that is the same as the number of
instructions for a 4-address QDD machine; X=00 Codes un-
der QDD denotes the number of instructions in the code
for 3-address QDD machine, when only the first type of
instruction in Fig. 3.8 is used; Opt. Codes under QDD de-
notes the number of instructions of the optimized code for
the 3-address QDD machine, when all four types of instruc-
tions in Fig. 3.8 are used to minimize the number of GOTO

367

statements; X = 00 GOTO denotes the number of GOTO
statements, when only one type of branching instruction is
used; Opt. GOTO=(Opt. Codes -QDD. Nodes) under QDD
denotes the number of GOTO statements, when four types
branching instructions are used; Aver. Inst. in QDD denotes
the average number of instructions to evaluate an input vec-
tor by a 3-address QDD machine; and Ratio denotes the
value: (Aver. Inst. in 1-address BDD machine)/(Aver. Inst.
in 3-address QDD machine).

5.2 Detail of the Experiment

Optimization of Decision Diagrams: First, the order-
ing that minimizes the size of the MTBDD is obtained.
Then, the input variables are partitioned into groups of two
variables in the natural order to obtain the MTQDDs.
Optimization of Codes: Theorem 4.1 shows how to mini-
mize the number of GOTO statements. The algorithm given
by [11] is only applicable to the program with nodes whose
in-degrees and out-degrees are both two. So, we developed
our own algorithm to obtain near optimal solutions for our
more general case.

5.3 Observations

From the table, we can observe the following:

e The number of nodes in QDDs is smaller than that of
BDDs.

e The number of instructions for the 3-address QDD ma-
chine can be considerably reduced by an optimization
algorithm.

e For C432, in3, misex2, misj, and risc, the number of
GOTO statements in the optimized QDD codes is zero.
This means that optimal code is generated for these
functions. Also, for these functions, optimal code for
BDD machines are generated.

e signet requires many GOTO statements in both BDD
and QDD machines. The number of GOTO statements
for a BDD machine is given by
(Opt. Codes)-(BDD Nodes)=8671-7347=1324.

e Opt. Codes, the number of instructions for a 3-address
QDD machines is often larger than QDD Nodes, the
number of instructions for a 4-address QDD machine.
The column headed by Opt. GOTO (=OPT. Codes -
ODD. Nodes) shows the extra GOTOs. Except for a
few functions, the extra GOTOs are rather small.

e Consider the value: (Sum of X=00 Codes)-(Sum of
Optimal Codes)=28535-24528=4007. This shows the
total number of instructions reduced by using four
types of branch instructions, instead of using only
one type of branching instructions. However, to spec-
ify four types of instructions, we need two additional

Table 5.1. Number of Nodes and Code Sizes for BDD Machine and QDD Machine.

BDD QDD

Func. | # # |BDD |Opt. |Term. | Aver. | QDD | X=00 | Opt. | X=00 | Opt. Aver. | Ratio
Name | Inp. | Out. | Nodes | Codes | Nodes | Inst. | Nodes | Codes | Codes | GOTO | GOTO | Inst.

C432 36 71 1779 | 1779 128 [19.10 | 1027 | 1408 | 1027 381 0]12.73 | 1.50
amd 14| 24 206 206 84| 5.63 164 171 164 7 0| 347| 1.62
apex2 39 3 335 363 8] 6.66 231 332 265 101 341 499 1.33
apex4 91 19 749 750 319 | 8.24 600 639 601 39 1] 461] 1.79
chkn 29 7 220 241 28| 7.01 157 215 172 58 15] 5.16| 1.36
duke2 221 29 636 637 255 | 6.36 546 594 547 48 1] 4.09] 1.55
gary 15| 11 228 232 70| 5.51 173 191 174 18 1] 342 1.61
in0 15| 11 195 200 52| 5.02 145 170 148 25 31292 1.72
inl 16| 17 284 299 55| 6.85 217 288 229 71 12| 4.70] 146
in2 19] 10 291 296 73] 3.98 219 262 225 43 6] 2.60| 1.53
in3 351 29 259 259 72| 6.63 214 234 214 20 0| 477] 1.39
in4 321 20 607 611 178 | 4.69 491 569 495 78 41 344 1.36
in5 24| 14 461 466 134 8.54 369 452 371 83 2] 657 130
in6 33| 23| 4325| 4338 | 1638 | 7.51| 3546 | 3815| 3555 269 9| 5.88] 1.28
in7 26| 10 300 301 112 | 7.58 256 275 256 19 0] 5.84] 1.30
ml81 15 9 222 222 84| 6.80 196 217 196 21 0] 471 144
misex2 | 25| 18 113 113 35| 497 91 96 91 5 0] 3.60] 1.38
misex3 | 14| 14| 2910 | 2975| 1041 | 7.55| 1773 | 2159 | 1773 386 0] 4.05] 1.86
misj 35| 14| 4656 | 4656 | 1408 |14.12 | 3275 | 3828 | 3275 553 0] 9.57] 147
mlp6 12| 12| 5270 | 6062 | 1238]12.10 | 2582 | 2966 | 2694 384 112 5.98| 2.02
risc 8| 31 56 56 28 | 4.42 44 44 44 0 0] 255| 1.74
signet 39 8| 7347 | 8652 128 | 18.23 | 5671 | 8374| 6907 | 2703 | 1236 |13.31| 1.37
tial 14 8 697 790 49 | 12.05 388 552 466 164 78| 6.37] 1.89
vg2 25 8 131 135 24| 7.65 89 110 91 21 2| 5.62| 1.36
x1ldn 27 6 200 218 18| 9.55 126 171 141 45 15| 5.74| 1.66
x6dn 39 5 214 231 28 | 4.14 159 215 177 56 18| 2.74| 1.52
x9dn 27 7 204 222 22| 9.30 140 188 157 48 17| 5.80| 1.60

bits in the instruction field. Let w be the number of
bits in a word in the 3-address QDD machine, where
only one type of branching instruction is used. Then,
the merit of using four types of instructions is accu-
rately expressed as: (Sum of X=00 Codes)xw-(Sum
of Opt. Codes)x (w + 2)= 28535w — 24528(w + 2) =
4007w — 49056. Note that, in most cases, w > 20, so
we can conclude that the use of four types of Q_Branch
instructions reduces the total number of bits.

e The last column of the table shows that the 3-address
QDD machine is 1.28 — 2.02 times faster than the 1-
address BDD machine. Note that for MLP6, the ratio
is greater than 2.

6 Conclusions and Comments

In this paper, we considered a branching program ma-
chine to evaluate multiple-output logic functions. To in-
crease the speed of evaluation, we used QDDs instead of
BDDs. To reduce the memory size, we used 3-address QDD
machines instead of 4-address QDD machines. We pro-

posed the use of four types of branch instructions. Also,
we considered a method to optimize codes for 3-address
QDDs. This is different from existing methods to optimize
the decision diagrams. For various benchmark functions,
we optimized the codes, and showed the effectiveness of
the approach.

To show the usefulness of QDD machines, we have de-
veloped a parallel branching program machine (PBM128)
consists of 128 QDD machines and a programmable in-
terconnection on the Altera’s Stratix II FPGA. We real-
ized many benchmark functions on PBM128, and com-
pared its memory size and computation time with the In-
tel’s Core2Duo microprocessor. PBM128 requires approx-
imately a quarter of the memory for the Core2Duo, and
is 21.4-96.1 times faster than the Core2Duo. Details are
shown in [18].

Acknowledgments

This research is partly supported by The Japan Society
for the Promotion of Science (JSPS) Grant in Aid for Sci-

368

entific Research, and the Knowledge Cluster Initiative (the
second stage) of MEXT (Ministry of Education, Culture,
Sports, Science and Technology), and by the U.S. Air Force
/ CVAQ (D. Nussbaum). Discussions with Prof. Shigeki
Iwata and Mr. Hisashi Kajiwara were quite helpful.

References

[1] P. Ashar and S. Malik, “Fast functional simulation using
branching programs,” Proc. International Conference on
Computer Aided Design, pp. 408-412, Nov. 1995.

[2] R. T. Boute, “The binary-decision machine as pro-
grammable controller,” Euromicro Newsletter, Vol. 1,
No. 2, 1976, pp. 16-22.

[3] P. C. Baracos, R. D. Hudson, L. J. Vroomen, and
P. J. A. Zsombor-Murray, “Advances in binary decision
based programmable controllers,” IEEE Transactions on
Industrial Electronics, Aug 1988, Vol. 35, No.3, pp. 417-
425.

[4] J. T. Butler, T. Sasao, and M. Matsuura, “Average path
length of binary decision diagrams” IEEE Transactions on
Computers, Vol. 54, No. 9, Sept. 2005, pp. 1041-1053.

[5] C. H. Clare, Designing Logic Systems Using State Ma-
chines, McGraw-Hill, New York, 1973.

[6] M. Davio, J.-P Deschamps, and A. Thayse, Digital Systems
with Algorithm Implementation, John Wiley & Sons, New
York , 1983, p. 368.

[7]1 D. Green,Modern Logic Design, Addison-Wesley Publish-
ing Company, 1986.

[8] Y. Iguchi, T. Sasao, and M. Matsuura, “Implementation of
multiple-output functions using PROMDDs,” 30th Inter-
national Symposium on Multiple-Valued Logic, Portland,
Oregon, U.S.A., May 23 - 25, 2000, pp. 199-205.

[9] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno,“A hard-
ware simulation engine based on decision diagrams” ASP-
DAC 2000, (Asia and South Pacific Design Automation
Conference 2000), Jan. 26-28, 2000, Yokohama, Japan.

[10] Y. Iguchi, T. Sasao, and M. Matsuura, “Evaluation of
multiple-output logic functions using decision diagrams,”
ASP-DAC 2003, (Asia and South Pacific Design Automa-
tion Conference 2003), Kitakyusu, Jan. 21 - 24, 2003,
pp- 312-315.

[11] S. Iwata,“Programs with minimal goto statements,” Infor-
mation and Control, Vol. 37, No. 1, pp. 105-114, 1978.

[12] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni, “ Multi-
valued decision diagrams: theory and applications,” Jour-
nal of Multiple-Valued Logic, Vol. 4, No.1-2, 1998, pp. 9-
62.

[13] D. Mange, “A high-level-language programmable con-
troller,” IEEE Micro, Vol. 6, No. 1, pp. 25-41 (Part I),
Feb/Mar, 1986, Vol. 6, No. 2, pp. 47-63 (Part II), Mar/Apr,
1986.

[14] S. Minato, N. Ishiura, and S. Yajima, “Shared binary de-
cision diagram with attributed edges for efficient Boolean

369

[15]

[16]

(171

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

function manipulation,” Proc. 27th ACM/IEEE Design Au-
tomation Conf., pp. 52-57, June 1990.

P. C. McGeer, K. L. McMillan, A. Saldanha, A. L.
Sangiovanni- Vincentelli, and P. Scaglia, “Fast discrete
function evaluations using decision diagrams,” Interna-
tional Conf. on Computer Aided Design, Nov. 1995,
pp- 402-407.

R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a
single large look-up table,” Proc. International Conference
on Computer Design, pp. 415-424, Oct. 1995.

H. Nakahara and T. Sasao, “A PC-based logic simulator
using a look-up table cascade emulator,” IEICE Trans-
actions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E89-A, No.12, Dec. 2006,
pp. 3471-3481.

H. Nakahara, T. Sasao, K. Matsuura, and Y. Kawamura,
“Emulation of sequential circuits by a parallel branching
program machine,” 5th International Workshop on Applied
Reconfigurable Computing (ARC2009), Karlsruhe, Ger-
many, March 16-18, 2009, Lecture Notes in Computer Sci-
ence, LNCS5443, pp. 261-267, March 2009.

S. Nagayama, T. Sasao, Y. Iguchi, and M. Matsuura,
“Area-time complexities of multi-valued decision dia-
grams,” IEICE Transactions on Fundamentals of Electron-
ics, Vol. E87-A, No.5, pp. 1020-1028, May, 2004

S. Nagayama, and T. Sasao, “On the optimization of het-
erogeneous MDDs,” IEEE Transactions on CAD, Vol. 24,
No.11, Nov. 2005, pp. 1645-1659.

R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,” ICCAD-93, pp. 42-47, 1993.

T. Sasao and J. T. Butler, “A method to represent multiple-
output switching functions by using multi-valued decision
diagrams.” IEEE International Symposium on Multiple-
Valued Logic, Santiago de Compostela, Spain, May 29-31,
1996, pp. 248-254.

T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

C. Scholl, R. Drechsler, and B. Becker, “Functional simu-
lation using binary decision diagrams,” ICCAD’97, pp. 8-
12, Nov. 1997.

P. J. A. Zsombor-Murray, L. J. Vroomen, R. D. Hudson,
Le-Ngoc Tho, and P. H. Holck, “Binary-decision-based
programmable controllers, Part I-1II” IEEE Micro, Vol. 3.
No. 4, pp. 67-83 (Part I), July-Aug. 1983, Vol. 3. No. 5,
pp. 16-26 (Part II), Oct. 1983, Vol. 3. No. 6, pp. 24-39 (Part
III), Nov.-Dec. 1983.

