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Abstract

This paper proposes a method to represent two-variable
elementary functions using edge-valued multi-valued deci-
sion diagrams (EVMDDs), and presents a design method
and an architecture for function generators using EVMDDs.
To show the compactness of EVMDDs, this paper intro-
duces a new class of integer-valued functions, [-restricted
Mp-monotone increasing functions, and derives an upper
bound on the number of nodes in an edge-valued binary de-
cision diagram (EVBDD) for the [-restricted M p-monotone
increasing function. EVBDDs represent l-restricted Mp-
monotone increasing functions more compactly than MTB-
DDs and BMDs when p is small. Experimental results
show that all the two-variable elementary functions consid-
ered in this paper can be converted into [-restricted Mp-
monotone increasing functions with p =1 or p = 3, and
can be compactly represented by EVBDDs. Since EVMDDs
have shorter paths and smaller memory size than EVBDDs,
EVMDDs can produce fast and compact elementary func-
tion generators.

1. Introduction

Elementary functions have wide applications including
computer graphics and digital signal processing, and vari-
ous circuits (function generators) for them have been devel-
oped [16]. However, most existing methods are intended
for one-variable elementary functions [5, 14, 19,20, 24-26],
and only a few methods exist for multi-variable elemen-
tary functions [7, 8,29]. As far as we know, no study on
graph-based representations for multi-variable elementary
functions has been presented.

This paper proposes a method to represent two-variable
elementary functions using EVMDDs, and presents an ar-
chitecture and a design method for function generators. To
analyze complexities for two-variable elementary functions,
this paper introduces a new class of integer-valued func-
tions, [-restricted Mp-monotone increasing functions, and
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derives an upper bound on the number of nodes in an edge-
valued binary decision diagram (EVBDD) for the func-
tion. Theoretical analysis and experimental results show
that EVMDDs can compactly represent both one- and two-
variable elementary functions, and our function generators
using EVMDDs can compactly realize such functions with
the same architecture.

This paper is organized as follows: Section 2 introduces
a fixed-point representation to convert a real-valued elemen-
tary function into an integer-valued function, and decision
diagrams used in this paper. Section 3 considers representa-
tions of two-variable elementary functions using decision
diagrams. It introduces an [/-restricted Mp-monotone in-
creasing function, and derives an upper bound on the num-
ber of nodes in an EVBDD for the function. Section 4
presents an architecture and a design method for function
generators based on EVMDDs. And, Section 5 concludes
the paper. Proofs of theorems are omitted because of the
page limitation.

2. Preliminaries

2.1. Number Representation and Precision

Definition 1 Let B = {0,1}, Z be the set of the integers,
and R be the set of the real numbers. An n-input m-output
logic function is a mapping: B" — B™, an integer-valued
function is B" — Z, and a two-variable real function is
RXR—R.

Definition 2 The binary fixed-point representation of a
number is denoted by X = (Xy_int—1 Xn_int—2 --- X1 X0- X—1
X9 ... xfn_frac)z, where x; € {0,1}, n_int is the number of
bits for the integer part, and n_frac is the number of bits
for the fractional part of X. This is the two’s complement
representation. In this paper, {X} denotes the set of binary
variables in X.

Definition 3 Precision is the total number of bits for a bi-
nary fixed-point representation. Specially, n-bit precision



Table 1. Tables for 2-bit precision 2-D norm
function.

(a) Table for 2-D norm.
X Y || Norm X Y f XY |\f

0.00 | 0.00 {| 0.00 0.00 | 0.00 {| 0.00 00 | 00
0.00 [ 0.25 || 0.25 0.00 | 0.01 {| 0.01 00011
0.00 { 0.50 || 0.50 0.00 | 0.10 {| 0.10 00| 10
0.00 [ 0.75 || 0.75 0.00 | 0.11 || 0.11 00|11
0.2510.00 || 0.25 0.01 | 0.00 || 0.01 01|00
0.2510.25 || 0.35 0.01 | 0.01 {| 0.01 0101
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(b) Table for f;(X,Y). (c) Table for f(

0.2510.75 || 0.79 0.01 [ 0.11 || 0.11 0111
0.50 { 0.00 || 0.50 0.10 | 0.00 {| 0.10 10 | 00
0.50 [ 0.25 || 0.56 0.10 | 0.01 {| 0.10 10 | 01
0.50 [ 0.50 || 0.71 0.10 | 0.10 || 0.11 10 | 10
0.50 [ 0.75 || 0.90 0.10 | 0.11 {| 1.00 1011 4
0.7510.00 || 0.75 0.11 ] 0.00 (| 0.11 11 {00

0.7510.25 || 0.79 0.11 ] 0.01 (| 0.11 11|01

0.7510.50 || 0.90 0.11 | 0.10 {| 1.00 1110 4
0.7510.75 || 1.06 0.11 | 0.11 {| 1.00 11114

specifies that n bits are used to represent the number, that is,
n = n_int +n_frac. In this paper, an n-bit precision func-
tion f(X,Y) means that both of the input variables X and Y

have n-bit precisions’.

By fixed-point representation, we can convert an n-
bit precision two-variable real function into a 2n-input m-
output logic function. The logic function can be converted
into an integer-valued function by considering binary vec-
tors as integers. That is, we can convert an n-bit precision
two-variable real function into an integer-valued function:
B*" — P,,, where P,, = {0,1,...,2" — 1}. In this paper, two-
variable elementary functions are converted into integer-
valued functions by using fixed-point representation, unless
stated otherwise. And, for simplicity, xo and yo denote the
least significant bits in the fixed-point representations of X
and Y, respectively.

Example 1 Table 1 (a) is the function table for the
Euclidean norm function for a two-dimensional vector:
VX2 4+ Y2, The 2-bit precision fixed-point representation of
this function is the logic function f,(X,Y) in Table 1 (b).
By converting output vectors into integers, we have the
integer-valued function f(X,Y) of f»(X,Y) in Table I (c).
In this paper, the 2-bit precision 2-D norm function de-
notes the integer-valued function f(X,Y) in Table 1 (c).

(End of Example)

2.2. Decision Diagrams

This subsection defines decision diagrams used in this
paper. For more detail on definition and reduction rules of
each decision diagram, see [6,22,31,32].

! Although the precision for function values can be different from the
precision of the inputs, in this paper, we assume that the number of frac-
tional bits for function values is n. Thus, function values have (n_int + n)-
bit precision, where n_int is the number of integer bits for function values.
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Figure 1. Conversion of an MTBDD node into
an EVBDD node.

Definition 4 A binary decision diagram (BDD) [2, 15] is
a rooted directed acyclic graph (DAG) representing a logic
function. The BDD is obtained by repeatedly applying the
Shannon expansion f = X;fo + xif1 to the logic function. It
consists of two terminal nodes representing function val-
ues 0 and 1 respectively, and non-terminal nodes repre-
senting input variables. Each non-terminal node has two
unweighted outgoing edges, 0-edge and 1-edge, that corre-
spond to the values of the input variables. Both terminal
nodes have no outgoing edges.

Definition 5 A multi-terminal BDD (MTBDD) [4] is an
extension of a BDD, and represents an integer-valued func-
tion. In the MTBDD, the terminal nodes are labeled by in-
tegers.

Definition 6 A binary moment diagram (BMD) [3] is a
rooted DAG representing an integer-valued function. The
BMD is obtained by repeatedly applying the arithmetic
transform expansion f = fo +xi(fi — fo) to the integer-
valued function. The BMD consists of terminal nodes repre-
senting the arithmetic coefficients, and non-terminal nodes
representing the arithmetic transform expansions. Each
non-terminal node has two edges corresponding to two
terms: fo and x;(fi — fo) in the arithmetic transform ex-
pansion.

Definition 7 An edge-valued BDD (EVBDD) [12,13] is a
variant of a BDD, and represents an integer-valued func-
tion. The EVBDD is obtained by repeatedly applying the
expansion f = Xifo +x;(f] + Q) to the integer-valued func-
tion, where fi = f{ + o, and o. is the constant term of fi.
The EVBDD consists of only one terminal node represent-
ing 0 and non-terminal nodes with 1-edges having inte-
ger weights o. In the EVBDD, 0-edges always have zero
weights, and the incoming edge into the root node can have
a non-zero weight. In a reduced EVBDD, each node repre-
sents a distinct sub-function. An EVBDD is obtained from
an MTBDD by recursively applying the conversion shown
in Fig. 1 to each non-terminal node in an MTBDD, where
in Fig. 1, dashed lines and solid lines denote 0-edges and
1-edges, respectively.

Definition 8 For an n-bit precision number X, if {X

} =
(X JU{X, YU ULX ) {X) #0, and {X} 0 {X;} =



Figure 2. Conversion of EVBDD nodes into an
EVMDD node.

o (i # j), then (X,,X,—1,...,X1) is a partition of X. Each
X; forms a super variable. Let |X;| = k; and ky,+k,—1+ ...+
k1 = n. Then, by considering each super variable as a multi-
valued variable, an integer-valued function f(X) : B* = Z
can be converted into a multi-valued input integer func-
tion f(Xu,Xufl,... ,X]) P, X P, X...xX Py — Z, where
P,=1{0,1,2,...,2k —1}.

Definition 9 A multi-valued decision diagram (MDD) is
a rooted DAG representing a multi-valued input integer
function. The MDD is obtained by repeatedly applying
the Shannon expansion to the multi-valued input integer
function [11]. It consists of terminal nodes representing
function values and non-terminal nodes representing multi-
valued variables. Each non-terminal node has multiple un-
weighted outgoing edges that correspond to the values of
multi-valued variable. When an MDD represents a function
for which multi-valued variables have different domains, it
is a heterogeneous MDD [17, 18]. In the following, the
heterogeneous MDD is simply denoted by the MDD.

Definition 10 An edge-valued MDD (EVMDD) is an ex-
tension of an MDD, and represents a multi-valued input
integer function. It consists of one terminal node repre-
senting 0 and non-terminal nodes with edges having integer
weights, and 0-edges always have zero weights. As shown
in Fig. 2, an EVMDD is obtained by merging non-terminal
nodes in an EVBDD according to the partition of X.

Example 2 Fig. 3 (a), (b), (c), and (d) show the MTBDD,
the BMD, the EVBDD, and the EVMDD for the 2-bit pre-
cision 2-D norm function in Table 1 (c), respectively. Note
that for readability of the figures, several terminal nodes
are not shared. In Fig. 3 (a) and (c), dashed lines and solid
lines denote 0-edges and 1-edges, respectively. Note that
the EVBDD has weighted 1-edges. In Fig. 3 (b), ‘A’ in a
circle denotes the arithmetic transform expansion. And, in
Fig. 3 (d), the set of binary variables {X}U{Y} is parti-
tioned into {Xp} = {x1,x0,1} and {X;} = {yo}. To ob-
tain the function value 3 for X = (10)2 and Y = (10),, in
the MTBDD, we traverse the MTBDD from the root node
to a terminal node according to the input values, and ob-
tain the function value from the terminal node. In the BMD,

(c) EVBDD

(d) EVMDD

Figure 3. Four types of decision diagrams for
the 2-bit precision 2-D norm function.

we obtain the function value by computing the arithmetic
transform expansion f = fo+x;(fi — fo) recursively at each
non-terminal node. And, in the EVBDD and the EVMDD,
we obtain the function value as the sum of the weights for
the edges traversed from the root node to the terminal node.
Note that we traverse the EVMDD using X, =5 and X1 = 0.

(End of Example)

3. Graph-Based Representations of Two-
Variable Elementary Functions

This section introduces an [-restricted Mp-monotone
increasing function, and derives an upper bound on the
number of nodes in an EVBDD for the [-restricted Mp-
monotone increasing function. Experimental results in this
section show that EVBDDs for two-variable elementary
functions are more compact than MTBDDs and BMDs for
them.

3.1. I-restricted Mp-monotone Increasing
Functions

Definition 11 An n-bit precision integer-valued function
f(X) such that 0 < f(X +1) — f(X) < p and f(0) =0
is a totally M p-monotone increasing function (or simply,
M p-monotone increasing function). That is, for an Mp-
monotone increasing function f(X), f(0) = 0, and the in-
crement of X by one increases the value of f(X) by at most

p-



Definition 12 An n-bit precision integer-valued function
f(X) is an l-restricted Mp-monotone increasing func-
tion when for 1 <1 < n, all the I-bit precision sub-
Sunctions g(X;) of f are Mp-monotone increasing func-
tions, where g(X;) = £(3,X;), {X} = {xn—1,%0-2,...,%0},
{X;} = {xi—1,%-2,...,%0}, and @ is an assignment to
(xn_l Xp—2 ... xl)z.

Theorem 1 For an n-bit precision I-restricted Mp-
monotone increasing function f(X), the number of nodes
in the EVBDD is at most

1 .
2 Y (p+1)F - (1)

i=1

where | is the largest integer satisfying 2" ' > (p + 1)2/’1,
and the variable order of the EVBDD is x;,_1,Xp—2,...,X0
(from the root node to the terminal node).

Note that the upper bound for /-restricted Mp-monotone
increasing functions shown in Theorem 1 is equal to the
upper bound for totally Mp-monotone increasing functions
shown in [19].

Example 3 Consider a 16-bit precision l-restricted Mp-
monotone increasing function. When p = 1, | = 3, and the
upper bound given by (1) is 8,327. When p =3, [ =2, and
the upper bound is 16,450. (End of Example)

Definition 13 An n-bit precision integer-valued function
f(X) is an extended I-restricted Mp-monotone increas-
ing function when for 1 <[ < n, all the [-bit precision
sub-functions of f are Mp-monotone increasing functions
g(X)) or represented by g(X;) + b, where a sub-function
is f(d,X;), b is an integer, {X} = {xy—1,Xn—2,...,%0},
{X;} = {x-1,x1-2,...,%0}, and d is an assignment to
(xn_l Xp—2 ... xl)z.

Lemmal Let f(X) be an extended I-restricted Mp-
monotone increasing function. For any integer I satisfying
1 <U' <1, f(X) is an extended I'-restricted Mp-monotone
increasing function.

Lemma 2 Let f(X) be an I-restricted Mp-monotone in-
creasing function, and let g(X) be an extended I-restricted
Mp-monotone increasing function which is obtained by
adding constant values to [-bit precision sub-functions of
f- Then, the EVBDDs for f(X) and g(X) have the same
number of nodes.

Corollary 1 Let f(X) be an extended I-restricted Mp-
monotone increasing function, and let g(X) be a linear
transformation of f: g(X) = af(X) + b, where a and b are
integers. Then, the EVBDDs for f(X) and g(X) have the
same number of nodes.

Table 2. Function tables for 2-bit precision
two-variable functions.

(a) Table for 2-D norm. (b) Table for YLH (c) Table for g(Z).

X X X1X0
Y|o]1({2]3 Y|o|1]2(3 yiyo | 00|01 ] 10| 11
0|0|1]2]3 0O(0[1]2(3 00 |0 |-1|-2]|-3
111(1]2]3 110(1(2]2 or |0 |-1[-2]-2
212(2(3|4 210(1(1]2 10 [ O (-1]-1]-2
313(3(4|4 310(1(1]2 11 {0 (-1]-1]-2

3.2. Two-Variable Elementary Functions

As shown in Section 2, n-bit precision two-variable
elementary functions can be converted into 2n-bit preci-
sion integer-valued functions. That is, n-bit precision two-
variable functions f(X,Y) can be converted into 2n-bit pre-
cision one-variable functions f(Z), where

Z=2"X+Y = (Xp—1 Xn—2 ... X0 Yn—1 Yn—2 ... Y0)2.

When f(Z) is an [-restricted Mp-monotone increasing func-
tion for the largest integer / satisfying 22"~/ > (p + 1)2]*‘,
Theorem 1 gives the upper bound on the number of nodes
in an EVBDD for f(X,Y).

Example 4 As shown in Table 2 (a), the 2-bit precision 2-D
norm function \/X* + Y2 can be converted into the extended
2-restricted M1-monotone increasing function f(Z). Note
that in the table, values increase by at most one for each
column. Similarly, the 2-bit precision two-variable function
YL—H shown in Table 2 (b) can be converted into a linear
transformation of the extended 2-restricted M1-monotone
increasing function g(Z) shown in Table 2 (c): —1 x g(Z).

(End of Example)

From here, we are going to show some classes of two-
variable elementary functions whose EVBDDs are small.

Lemma 3 Let h(Y) be an n-bit precision Mp-monotone in-
creasing function. Then, for arbitrary one-variable function
g(X), two-variable functions f(X,Y) = g(X)+h(Y) are the
extended n-restricted Mp-monotone increasing functions.

Lemma 4 Let h(Y) be an n-bit precision Mp-monotone in-
creasing function. Then, for arbitrary one-variable function
g(X), two-variable functions f(X,Y) = g(X) —h(Y) can be
converted into a linear transformation of the extended n-
restricted M p-monotone increasing functions.

Lemma 5 Let h(Y) be an n-bit precision Mp-monotone in-
creasing function, and let g(X) be a real function satisfying
0 < g(X) < 1. Then, an n-bit precision two-variable func-
tion f(X,Y) =g(X)-h(Y) is an n-restricted Mp-monotone
increasing function.

In Lemma 5, if the dynamic range of g(X) is large, then
the EVBDD can be large. For example, the n-bit multiplier
requires O(2") nodes [31].



Table 3. Numbers of nodes in MTBDDs,
BMDs, and EVBDDs for 8-bit precision two-
variable elementary functions.

Elementary Type of Number of nodes R | Ry
functions functions || MTBDD | BMD | EVBDD
VX2 Y2 Ml 12,969 | 25,084 2,566 || 20 | 10
arctan(YLH) M1+ 8,997 | 26,158 3,134 (| 35| 12
In(X + 1)sin(Y) Ml 9,776 | 25,994 3,444 1135 | 13
VX sin(Y) Ml 11,543 | 26,542 | 3,483 (|30 13
sin(vVX2 +Y?2) Ml 11,521 | 27,858 4,013 1| 35| 14
sin(XY) M1 11,282 | 21,746 3,789 || 34 | 17
X/(Y+1) M1+ 9,664 | 25,878 3,162 ([ 33| 12
XY/VX2+Y? Ml 9,325 | 23,634 2,269 ([ 24| 10
WaveRings M3+t 17,423 | 27,691 5,047 1129 | 18
| Average || 11,389 | 25,621 | 3,434 || 30 | 13 |

Domain of the functionsis0 < X < land0 <Y < 1.

Number of fractional bits for function values is 8.

Mp™: the function is a linear transformation of an extended 8-
restricted Mp-monotone increasing function.

R, =(EVBDD)/(MTBDD) x 100. R, =(EVBDD)/(BMD) x 100.
Variable orders of decision diagrams are produced by the sifting
algorithm [21].

Lemma 6 Let h(Y) be a linear transformation of an n-bit
precision Mp-monotone increasing function, and let g(X)
be a real function satisfying 0 < g(X) < 1. Then, an n-bit
precision two-variable function f(X,Y) = g(X)-h(Y) can
be converted into a linear transformation of an extended n-
restricted M p-monotone increasing function.

Example 5§ 2-bit precision function YLH is a linear trans-
formation of an M1-monotone increasing function [19]. As
shown in Example 4, f(X,Y) = YL+1 can be converted into
a linear transformation of an extended 2-restricted M1-

monotone increasing function. (End of Example)

In the following, we will show that various two-variable
elementary functions can be converted into extended [-
restricted M p-monotone increasing functions. Table 3 com-
pares the numbers of nodes in MTBDDs, BMDs, and EVB-
DDs for 8-bit precision two-variable elementary functions.
These functions are arbitrarily selected from books on mul-
tivariable calculus such as [1]. WaveRings in the table is
defined by

cos (\/X2 + Yz)
VX2+Y2+025

In the column labeled with “Type of functions” of Ta-
ble 3, Mp denotes an extended 8-restricted Mp-monotone
increasing function, while Mp™ denotes a linear transfor-
mation of an extended 8-restricted Mp-monotone increas-
ing function.

Two-variable elementary functions whose function val-
ues smoothly change on a given domain can be converted
into extended [-restricted Mp-monotone increasing func-
tions with small p. As shown in Theorem 1, such func-

WaveRings =

Input Input Next variable

y ( shift, mask )
ST Left
ge address shifter
Memory for EVMDD MSBSl

Next variable Next Edge

( shift, mask ) node weight AND Next node
Vb geles

y
Address Adder
computation circuit
I |
Output Edge address

(a) Architecture for function generators. (b) Address computation circuit.

Figure 4. Architecture for function generators
based on EVMDDs.

tions have small EVBDDs. In fact, the two-variable ele-
mentary functions in Table 3 are converted into 8-restricted
M1 or M3-monotone increasing functions, and EVBDDs
have many fewer nodes than MTBDDs and BMDs. Since
non-terminal nodes of EVBDD have weighted 1-edges, a
non-terminal node of EVBDD requires larger memory size
than a non-terminal node of MTBDD and BMD. However,
the increase due to the weighted edges is negligible, because
EVBDDs have many fewer non-terminal nodes than MTB-
DDs and BMDs [19].

As shown in [19], by converting EVBDDs into
EVMDDs, we can often reduce memory size and path
length of decision diagrams. In the next section, we present
the function generator taking advantage of EVMDDs.

4. Function Generators for Two-Variable Ele-
mentary Functions

This section presents an architecture and a design
method for function generators based on EVMDDs and
EVBDDs.

4.1. Architecture for Function Generators

In decision diagrams based on the Shannon expansion,
function values can be obtained by traversing the decision
diagrams from the root node to a terminal node [9, 10]. In
EVBDDs and EVMDDs, function values can be obtained as
the sum of the weights for traversed edges. Fig. 4 shows the
function generator based on EVMDD. It consists of a mem-
ory to store an EVMDD, an address computation circuit to
traverse an EVMDD, and an adder to compute sum of edge
weights. Note that for readability of the figures, registers,
circuits for initialization, and some signals are omitted from
Fig. 4.

In Fig. 4 (a), the memory for EVMDD stores data for
edges in an EVMDD. Data for an edge consist of a pointer
to the next node, data for next variable of the next node,



Table 4. Memory data for the function gener-
ator for 2-bit precision 2-D norm function.

Edge | Shift | Mask data | Address of | Edge
address | data (binary) next node | weight
0 1 001 8 0
1 1 001 8 2
2 0 000 0 1
3 1 001 8 2
4 0 000 0 2
5 1 001 8 3
6 0 000 0 3
7 0 000 0 4
8 0 000 0 0
9 0 000 0 1

Initial values
Shift data: 0 Mask data: 111
Address of node: 0 Edge weight: 0

and an edge weight. From the memory, a pointer to the
next node and data for next variable are read and fed to the
address computation circuit. And, an edge weight is fed
to the adder. The address computation circuit produces an
address of the next edge, from an address of node and a
value of the input variable.

Fig. 4 (b) shows the address computation circuit. Data
for next variable consist of shift data and mask data. A value
of the corresponding input variable is retrieved by the left
shifter and the AND gates. And, the value is added to the
address of next node to generate the edge address.

Example 6 Table 4 shows memory data and initial values
for the function generator produced from the EVMDD in
Fig. 3 (d). This example shows how to compute the function
value for X = (10), and Y = (10), using Table 4.

First, the address computation circuit produces an edge
address from the initial values. Since the initial shift data
is 0, the bitwise AND of the most significant 3 bits of in-
put variable (x1 xo y1)2 = (101)2 and the initial mask data
(111), is computed to produce (101),. Adding the initial
address of node 0 to the result of bitwise AND yields the
first edge address (101), = 5.

Next, data for the address 5 are read from the mem-
ory and fed to the address computation circuit and the
adder. The adder obtains the sum of the edge weight 3
given by the memory and the initial edge weight 0. In the
address computation circuit, the value of input variable is
(x0 ¥1 ¥0)2 = (010)2, which is shifted to the 1-bit left, and
the bitwise AND is performed with the mask data (001),.
Adding the result of bitwise AND O to the address of node 8
vields the second edge address 8.

Since in data for the address 8, the mask data 0 means
arrival at the terminal node, adding the edge weight 0 to the
previous sum of edge weights 3 yields the function value 3.

(End of Example)

Since the circuit shown in Fig. 4 just traverses an
EVMDD and computes sum of edge weights, it can eval-

uate both one- and two-variable functions with the same ar-
chitecture.

4.2. Design Method for Function Genera-
tors Using EVMDDs

For given elementary function, its domain, and precision,
we can systematically design the circuit in Fig. 4. First,
convert a given elementary function into an n-bit precision
integer-valued function, next represent the integer-valued
function using an EVMDD, and finally generate HDL code
for the circuit in Fig. 4 from the EVMDD. Since our func-
tion generator directly realizes the function table, it is more
accurate than the existing function generators using polyno-
mial approximation [5, 14,20, 25,26].

To generate memory data like Table 4, we first assign an
address to each edge in an EVMDD. For each non-terminal
node, we assign addresses to edges in ascending order from
0-edge. Thus, addresses assigned to 0-edges correspond to
addresses of non-terminal nodes. Next, we generate shift
data and mask data of each edge. For an EVMDD for
S(Xu,Xu-1,...,X1), shift data and mask data of an edge are
computed as follows:

u—1
shiftdata = > k;  mask data=2% —1
j=i
bit size formask = max (k;)
1<j<u

where the edge points to a node representing X;, variable
order of the EVMDD is X,,,X,,—1,...,X; from the root, and
kj = |Xj| (] = 1,2,...,”).

Memory size and delay time of our function generator
depend largely on memory size and path length of EVMDD.
Therefore, the memory minimization algorithm and the
APL minimization algorithm for MDDs [17, 18] are useful
to produce fast and compact function generators.

5. Conclusion and Comments

This paper has introduced a new class of integer-valued
functions, called an [-restricted Mp-monotone increasing
function. It has also derived an upper bound on the number
of nodes in an EVBDD to represent the function. EVBDDs
represent [-restricted M p-monotone increasing functions or
their linear transformations more compactly than MTBDDs
and BMDs when p is small.

This paper has also presented a design method for func-
tion generators based on EVMDDs. With EVMDDs, we
can realize accurate, fast, and compact function generators
for two-variable elementary functions. In FPGA implemen-
tations for two-variable elementary functions, we confirmed
that EVMDD-based function generators require, on the av-
erage, only 37% of the delay time and 62% of the memory
size needed for EVBDD-based function generators.



Our future works include deriving lower bounds on the
number of nodes in decision diagrams, and designing faster
and more compact function generators.
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