
An Application of 16-Valued Logic to Design of Reconfigurable Logic Arrays

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract

This paper presents a method to implement a reconfig-
urable logic array by using FPGA. 16-valued logic is intro-
duced to design circuits with 2-valued 4-input LUTs. Sym-
metric functions and adders can be efficiently represented,
as well as benchmark functions. Comparisons with 2-
valued expressions and 4-valued expressions are done. Both
sum-of-products expressions and EXOR sum-of-products
expressions of 16-valued logic significantly reduces needed
FPGA resources.

1. Introduction

With the increase of complexity of the digital systems,
the time and cost to develop LSIs have increase tremen-
dously. On the other hand, the life of the products tends to
be short because of constantly evolving product lines, espe-
cially for consumer appliances such as mobile phones and
audiovisual equipments.

Architecture that is dynamically reconfigurable is one
way to solve this problem. With FPGAs, we can reconfig-
ure the entire device. However, it may not be necessary to
reconfigure the entire device. In most cases, a minor modi-
fication is sufficient.

In this paper, we consider dynamic reconfigurable cir-
cuits, where only the logic part is reconfigured, but the in-
terconnection part is fixed. Dynamic reconfigurable PLAs
and CAMs are examples of such circuits.

In this paper, we present a reconfigurable logic array that
is suitable for FPGA implementation. It uses 16-valued
logic to design the circuit, and is logically more capable
than PLAs or CAMs.

2. Realization of 16-Valued Expression on an
FPGA

In this paper, we assume Xilinx Virtex FPGAs. Fig. 2.1
shows the architecture of an FPGA: It consists of many con-

CLB

(Configurable Logic Block)

I/O Block

Interconnection

Figure 2.1. Architecture of FPGA.

CIN
CLK

CE

CIN
CLK

CE

D Q

CK

S

R
EC

D Q

CK

S

R
EC

D Q

CK

S

R
EC

D Q

CK

S

R
EC

O

Carry
&

Control
Logic

Carry
&

Control
Logic

Carry
&

Control
Logic

Carry
&

Control
Logic

O

F5 IN

COUT COUT

F4
F3
F2
F1

F4
F3
F2
F1

G4

YB YB

XB XB

Y Y

X X

G3
G2
G1

G4
G3
G2
G1

BY
SR

F5 IN
BY
SR

SLICE SLICE

Look-Up
 TableLook-Up

 Table

Look-Up
 Table

Look-Up
 Table

Figure 2.2. CLB Structure.

figurable logic blocks (CLBs). Fig. 2.2 shows the structure
of a CLB: It consists of a pair of Slices, and each Slice con-
sists of a pair of 4-input look-up tables (LUTs) together with
carry circuits, control logic, and flip-flops.

As shown in Fig. 2.3, a 4-input LUT cell has two modes:

4-LUT Mode4- SRL16 Mode
(a) (b)

Figure 2.3. Two operation modes of an LUT
cell.

m0

m1

m3

m2

m4

m5

m7

m6

m8

m9

m11

m10

m12

m13

m15

m14

x

x

3

1

x
(a) (b)2

x4
1

1

1
1

}{X 12,9,6,1

Figure 2.4. Map for 4-variable Function.

1

0

0 1

0 1

X1=(x1, x2, x3, x4)

X2=(x5, x6, x7, x8)

X3=(x9, x10, x11, x12)

g2

g3

g1

g1(X1) g2(X2) g3(X3)

0

0

0 1

Figure 2.5. Realization of AND with MUX.

4-LUT mode and SRL16 mode. To reconfigure the logic of
an LUT, at least 16 clocks are required. This is much faster
than reconfiguring the entire FPGA, including interconnec-
tions.

Next, we will introduce 16-valued logic to design 4-input
LUT circuits. A 4-input LUT realizes an arbitrary func-
tion of four variables. Fig. 2.4 (a) shows a map of a 4-
variable function. An arbitrary 4-variable logic function can
be viewed as a subset of 16 minterms {m0, m1, . . . , m15}.
For example, the function in Fig. 2.4 (b) can be represented
by a set of four minterms {m1, m6, m9, m12}. Instead of
using a set of minterms, we can use a 16-valued literal.
Let X = (x1, x2, x3, x4). Then, the function in Fig. 2.4
(b) can be represented by the literal X{1,6,9,12}. This lit-
eral specifies that the function is 1 if and only if the input
combination X = (x1, x2, x3, x4) represents either 1, 6, 9,
or 12. In this case, four variables are treated together as
X = (x1, x2, x3, x4), and X is considered as a 16-valued
variable.

By using multiplexers in the carry and control cir-
cuit of an FPGA, the logical AND of 4-variable func-
tions can be implemented. For example, as shown in
Fig. 2.5, three LUTs are connected by the MUX chain to
realize the logical product g1(X1)g2(X2)g3(X3), where
X1 = (x1, x2, x3, x4), X2 = (x5, x6, x7, x8), and X3 =
(x9, x10, x11, x12). This realization of the AND requires no
LUT and is much faster than one using an LUT [13].

Thus, Fig. 2.5 implements a product of 16-valued liter-

X2

X1

X3

X4

Figure 2.6. Realization of SOP.

X2

X1

X3

X4

++

+

Figure 2.7. Realization of ESOP.

als of the form XS1
1 XS2

2 XS3
3 , where Si ⊆ P and P =

{0, 1, 2, . . . , 15}. Fig. 2.6 shows a circuit for a sum-of-
products expression (SOP), where the OR gates are imple-
mented by LUTs. Alternatively, Fig. 2.7 shows a circuit for
an EXOR sum-of-products expression (ESOP), where the
EXOR gates are implemented by LUTs. In these figures,
the top horizontal line denotes the constant 1 line. Thick
horizontal lines denote bundles of four binary lines. Each
horizontal bundle can be viewed as carrying a 16-valued
variable, and each column realizes a product of up to four
16-valued literals.

To realize a multiple-output function, a programmable
OR (EXOR) gate can be used for each output. For exam-
ple, a two-output function can be implemented by the cir-
cuit shown in Fig. 2.8. In this figure, multiple-output LUTs
implemented by embedded RAMs are used 1. In this way,
16-valued SOPs or ESOPs for multiple-output function can
be easily realized. In this paper, the architectures shown in
Figs. 2.6, 2.7 and 2.8 are called 16-valued reconfigurable
logic arrays.

Interesting questions are

1. How many products are necessary to represent func-
tions by using 16-valued expressions?

1When embedded RAMs are used as logic elements, a clock pulse is
necessary.

OR OR

X1

X2

X3

X4

AND AND AND AND

Figure 2.8. Realization of Multiple-output
Function.

2. Are the reconfigurable logic array implementations of
benchmark functions realistic?

3. Definition and Basic Properties

In preparation for a discussion of a design method, we
need some definitions. They are extensions of 2-valued
SOPs to multi-valued ones [6, 9, 5].

Definition 3.1 A mapping f : Pn → B is a p-valued in-
put 2-valued output function, where P = {0, 1, . . . , p−1}
and B = {0, 1}. Let X be a variable that takes its value
from P = {0, 1, . . . , p − 1}. Let S be a subset (S ⊆ P)
of P . Then, XS is a literal of X . When X ∈ S,
XS = 1, and when X /∈ S, XS = 0. Let Si ⊆ P (i =
1, 2, . . . , n), then X1

S1X2
S2 · · ·Xn

Sn is a logical product.∨
(S1,S2,...,Sn) X1

S1X2
S2 · · ·Xn

Sn is a sum-of-products
expression (SOP). When Si = P , Xi

Si = 1 and the logi-
cal product is independent of Xi. In this case, literal Xi

P

is redundant and can be deleted. A logical product is also
called a term, or a product term. When |Si| = 1 for
(i = 1, 2, . . . , n), a logical product corresponds to an el-
ement of the domain. This product is a minterm. When
Si = P (i = 1, 2, . . . , n), the logical product corresponds
to the constant 1. When p = 2, a function is a 2-valued logic
function. When we consider 2-valued logic functions only,
we often represent the literal X{0} by X , and X{1} by X .
In an SOP, replacing the OR operators with the EXOR oper-
ators will produce an EXOR sum-of products expression
(ESOP).

An arbitrary multi-valued input 2-valued output function is
represented by an SOP (ESOP). Many SOPs (ESOPs) exist
that represent the same function. Among them, the one with
the minimum number of products is the minimum SOP
(minimum ESOP). MINI [2] and ESPRESSO-MV [5] are

SOP minimizers, while EXMIN2 [7] and EXORCISM-MV
[11] are ESOP minimizers.

4. Multiple-Output Function

For multiple-output functions, independent minimiza-
tion of each output does not always produce exact minimum
solutions. To minimize (or simplify) expressions for multi-
output functions, we have to consider all the outputs at the
same time. We can minimize the total number of products
by minimizing the expressions of the characteristic function
of the multiple output function.

Definition 4.1 When a multiple-output function has
m binary functions, each can be represented as
fj(X1, X2, . . . , Xn) (j = 0, 1, . . . , m − 1). Then,
the 2-valued output function F (X1, X2, . . . , Xn, Xn+1),
where F (X1, X2, . . . , Xn, j) = fj(X1, X2, . . . , Xn), is
the characteristic function for multi-output function.
Here, Xn+1 is the m valued variable representing outputs.
In other words, F (a1, a2, . . . , an, j) = 1 ⇔ (x1 =
a1, x2 = a2, . . . , xn = an, fj = 1).

Example 4.1 Let us obtain 16-valued representations of
the 4-bit adder (ADR4) shown below:

x3 x2 x1 x0

+) y3 y2 y1 y0

z4 z3 z2 z1 z0

z0, z1, z2, z3 and z4 are represented by logical expressions:

z0 = (x0 ⊕ y0),
z1 = (x1 ⊕ y1) ⊕ (x0y0),
c1 = x1y1 ∨ (x1 ∨ y1)(x0y0),
z2 = (x2 ⊕ y2) ⊕ c1

z3 = (x3 ⊕ y3) ⊕ (x2y2 ∨ (x2 ∨ y2)c1), and
z4 = (x3y3) ∨ (x3 ∨ y3)(x2y2 ∨ (x2 ∨ y2)c1).

Let X1 = (x1, y1, x0, y0) and X2 = (x3, y3, x2, y2). Then,
we have the 16-valued expression of the 4-bit adder:
SOP

z0 = X
{1,2,5,6,9,10,13,14}
1 ,

z1 = X
{3,4,5,6,8,9,10,15}
1 ,

c1 = X
{7,11,12,13,14,15}
1 ,

z2 = X
{1,2,5,6,9,10,13,14}
2 ⊕ X

{7,11,12,13,14,15}
1

= X
{7,11,12,13,14,15}
1 X

{0,3,4,7,8,11,12,15}
2 ∨

X
{0,1,2,3,4,5,6,8,9,10}
1 X

{1,2,5,6,9,10,13,14}
2 ,

z3 = X
{7,11,12,13,14,15}
1 X

{1,2,3,4,8,13,14,15}
2 ∨

X
{0,1,2,3,4,5,6,8,9,10}
1 X

{3,4,5,6,8,9,10,15}
2 , and

z4 = X
{7,11,12,13,14,15}
2 ∨

X
{7,11,12,13,14,15}
1 X

{5,6,7,9,10,11,12,13,14,15}
2 .

Let X3 be a five-valued variable that represents the out-
put part, then the positional cubes[9] of the characteristic
function for the multiple-output function are:

X1 X2 X3
0000000000111111 0000000000011111 zzzzz
0123456789012345 0123456789012345 43210
0110011001100110 − 1111111111111111 − 00001
0001111011100001 − 1111111111111111 − 00010
0000000100011111 − 1001100110011001 − 00100
1111111011100000 − 0110011001100110 − 00100
0000000100011111 − 0111100010000111 − 01000
1111111011100000 − 0001111011100001 − 01000
1111111111111111 − 0000000100011111 − 10000
0000000100011111 − 0000011101111111 − 10000

Note that this is a minimum SOP. It has 8 products.

ESOP When products are mutually disjoint, the OR op-
erator in an SOP can be replaced by the EXOR operator.
Also, by using the relation [7]:

XA
1 XB

2 ⊕ XC
1 XD

2 = X
(A⊕C)
1 XB

2 ⊕ XC
1 X

(B⊕D)
2 ,

we have the following ESOPs:

z0 = X
{1,2,5,6,9,10,13,14}
1 ,

z1 = X
{3,4,5,6,8,9,10,15}
1 ,

c1 = X
{7,11,12,13,14,15}
1 ,

z2 = X
{1,2,5,6,9,10,13,14}
2 ⊕ X

{7,11,12,13,14,15}
1

= X
{7,11,12,13,14,15}
1 X

{0,3,4,7,8,11,12,15}
2 ⊕

X
{0,1,2,3,4,5,6,8,9,10}
1 X

{1,2,5,6,9,10,13,14}
2 ,

z3 = X
{7,11,12,13,14,15}
1 X

{1,2,3,4,8,13,14,15}
2 ⊕

X
{0,1,2,3,4,5,6,8,9,10}
1 X

{3,4,5,6,8,9,10,15}
2 ,

= X
{1,3,4,8,13,14,15}
2 ⊕

X
{0,1,2,3,4,5,6,8,9,10}
1 X

{1,2,5,6,8,9,10,13,14}
2 , and

z4 = X
{0,1,2,3,4,5,6,8,9,10}
1 X

{7,11,12,13,14,15}
2 ⊕

X
{7,11,12,13,14,15}
1 X

{5,6,7,9,10,11,12,13,14,15}
2

= X
{7,11,12,13,14,15}
2 ⊕ X

{7,11,12,13,14,15}
1 X

{5,6,9,10}
2 .

Note that z2 and z3 share a product. Thus, we need 7 dif-
ferent products. The positional cubes of minimum ESOP
are:

X1 X2 X3
0000000000111111 0000000000011111 zzzzz
0123456789012345 0123456789012345 43210
0110011001100110 − 1111111111111111 − 00001
0001111011100001 − 1111111111111111 − 00010
0000000100011111 − 1001100110011001 − 00100
1111111011100000 − 0110011001100110 − 01100
1111111111111111 − 0111100010000111 − 01000
1111111111111111 − 0000000100011111 − 10000
0000000100011111 − 0000011001100000 − 10000

(End of Example)

5. Complexity of 16-Valued Expressions

Theorem 5.1 An arbitrary function of n = 4r variables
can be represented by a 16-valued SOP (ESOP) with at most
2n−4 products.

(Proof) An arbitrary function can be represented by

f(X1, X2, . . . , Xr) =
∨

(a2,...,ar)

XS1
1 · Xa2

2 · · ·Xar
r . (5.1)

The sum is taken for all possible �a = (a2, a3, . . . , ar),
where ai ∈ {0, 1, . . . , 15}. Thus, the total number of prod-
ucts in (5.1) is 16r−1 = 2n−4. Since the products in (5.1)
are mutually disjoint, the inclusive OR operation can be re-
placed with the exclusive OR operation without changing
the function. So, the theorem holds for both an SOP and an
ESOP. (Q.E.D.)

Theorem 5.2 Consider a function f(X1, X2, . . . , Xr),
where Xi consists of 4 binary variables. Let
f(X1, X2, . . . , Xr) be partially symmetric with re-
spect to Xi for i = 1, 2, . . . , r. That is, f is invariant
under the permutation of variables in Xi. Then, f can be
represented by a 16-valued SOP (ESOP) with at most 5r−1

products.

(Proof) Since f is symmetric with respect to Xi for i =
2, . . . , r, f can be represented by

f(X1, X2, . . . , Xr) =∨
�b

g(X1,�b) · gb2(X2) · gb3(X3) · · · gbr(Xr). (5.2)

The sum is taken for all possible�b = (b2, b3, . . . , br), where
bi ∈ {0, 1, 2, 3, 4}. Note that

gj(Xi) =
{

1 (when the number of 1’s in Xi is j)
0 (otherwise).

Thus, the number of products in (5.2) is 5r−1. Since the
products in (5.2) are mutually disjoint, the inclusive OR
operation can be replaced with the exclusive OR opera-
tion. So, the theorem holds for both an SOP and an ESOP.

(Q.E.D.)

Theorem 5.3 The number of products to implement an n-
bit adder where n = 2r is as follows:

• 2-valued SOP : 6 · 2n − 4n − 5

• 2-valued ESOP : 2n+1 − 1

• 4-valued SOP: n2 + 1

• 4-valued ESOP : (n2 + n + 2)/2

• 16-valued SOP : 2r2 − r + 2

• 16-valued ESOP : r2 + r + 1

The proof is omitted due to the page limitation.

6. Generation of 16-Valued Expressions

The number of products in the multi-valued expressions
greatly depends on the method of grouping the variables
[6, 9]. An optimum grouping of the input variables is one
that minimizes the number of products in the expression. To
obtain the exact optimum grouping of the input variables,
we have to consider all possible groupings. For a function
of n = 4r variables, the number of different groupings to
consider is

η(n) =
n!

(4!)r · r! .

η(n) is 35 when n = 8, and is 5775 when n = 12, which
are the practical upper bounds on the number of variables
that we can obtain the optimum solutions by an exhaustive
method.

For functions with more variables, the exhaustive
method requires too much computation time. The heuristic
method shown below obtains good solutions in a short time.
The method first pairs 2-valued variables to make 4-valued
variables, and then pairs 4-valued variables to make 16-
valued variables. Here, we show how to pair the 2-valued
variables. The method to pair 4-valued variables is similar.

Definition 6.1 Let I = {1, 2, . . . , n} be a set of subscripts
for the input variables X . Let Π be a partition of I (corre-
sponding to the partition of X). Let t(f : Π) be the number
of products in a minimum SOP for f , under the partition
Π. Let F be an SOP for the function f . Let q(i, j) be the
number of different products in the SOP that are obtained
from F by deleting everywhere literals of xi and xj . Let
t(f : Πij) be the number of products in a minimum SOP for
f , when xi and xj are paired.

Example 6.1 Let F be

F = x̄1x̄2x3x4 ∨ x̄1x2x3x4 ∨ x1x̄2x̄3x4 ∨
x1x̄2x3x̄4 ∨ x1x2x̄3x̄4.

The products that are obtained by deleting the literals of x3

and x4 from F are: x̄1x̄2, x̄1x2, x1x̄2, x1x̄2 and x1x2. The
number of distinct product terms is 4, so we have q(3, 4) =
4. Similarly, we have q(2, 3) = q(2, 4) = 3, q(1, 2) =
q(1, 4) = q(1, 3) = 4. (End of Example)

Lemma 6.1 Let Πij = {[1], [2], . . . , [i, j], . . . , [n]}. Then,
t(f : Πij) ≤ q(i, j).

The smaller the value of t(f : Πij), the simpler the SOP
when the variables xi and xj are paired. Thus, t(f : Πij)
is used as a figure of merit when the variables xi and xj

are paired. However, to compute the value of t(f : Πij)
is time consuming. Note that q(i, j) is an upper bound of
t(f : Πij).

Definition 6.2 A grouping graph G of an n-variable func-
tion f(x1, x2, . . . , xn) is the complete graph with weights
satisfying the following conditions:

1. G has n nodes.
2. The weight of the edge (i, j) is q(i, j).

The following algorithm first obtains a 4-valued SOP by
pairing 2-valued variables, and then it obtains a 16-valued
SOP by pairing 4-valued variables.

Algorithm 6.1 (Grouping 2-valued variables to obtain a
16-valued expression)

1. Simplify the 2-valued SOP to obtain
f(x1, x2, . . . , xn).

2. Construct a grouping graph G1 for f .
3. Cover all the nodes of G1 by a set of edges that have no

common elements. In this case, find a set such that the
sum of the weights is minimum. This is the optimum
matching of the graph G1.

4. Partition the 2-valued variables corresponding to the
edges, and generate the 4-valued SOP by pairing 2-
valued variables.

5. Simplify the 4-valued SOP to obtain
F (Y1, Y2, . . . , Yn

2
).

6. Construct a grouping graph G2 for F .
7. Obtain the optimum matching of the graph G2.
8. Partition the 4-valued variables corresponding to the

edges, and generate the 16-valued SOP by pairing 4-
valued variables.

9. Simplify the 16-valued SOP to obtain
F̂ (Z1, Z2, . . . , Zn

4
).

Algorithm 6.1 is a heuristic, and it does not always produce
the optimal solution.

7. Experimental Results

We minimized standard PLA benchmarks [12] as well as
adders, symmetric functions, and address generation func-
tions. Table 7.1 shows the results. IN denotes the number
of inputs; OU denotes the number of outputs; SOP denotes
the number of products in a sum-of-products expression;
ESOP denotes the number of products in an EXOR sum-of-
products expression. 2-valued denotes the number of prod-
ucts in a 2-valued expression; 4-valued denotes the number
of products in a 4-valued expression; 16-valued denotes the
number of products in a 16-valued expression. Algorithm
6.1 was used to obtain both 4-valued and 16-valued expres-
sions.

Table 7.1 shows that 4-valued expressions require fewer
products than 2-valued ones, and 16-valued expressions re-
quire fewer products than 4-valued ones. For adders (adr8

Table 7.1. Number of products to represent
functions

IN OU 2-Valued 4-Valued 16-Valued
SOP ESOP SOP ESOP SOP ESOP

adr8 16 17 1499 511 65 37 30 21
adr10 20 21 6099 2047 101 56 47 31
adr12 24 25 24523 8191 145 79 68 43
alu4 14 8 577 288 253 124 156 107
alupla 25 5 2144 1429 1008 806 429 372
apex2 39 3 39 60 14 27 14 27
chkn 29 7 140 145 106 124 63 78
cordic 23 2 914 776 67 104 15 10
cps 24 109 162 140 146 134 140 151
intb 15 7 629 261 294 172 200 129
misex3 14 14 690 507 462 401 192 177
mlp6 12 12 1877 706 1206 571 570 391
rd84 8 4 255 56 54 23 12 9
rdm16 16 16 404 176 281 140 140 93
seq 41 35 336 248 216 179 135 121
spla 16 46 261 264 211 183 105 105
sqr12 12 24 2602 1219 2016 1300 1111 937
sym12 12 1 496 245 90 65 15 12
sym16 16 1 8009 2795 784 439 67 62
t481 16 1 481 13 32 8 5 3
tial 14 6 575 428 280 172 195 137
wgt12 12 4 4095 519 425 146 51 28

- adr12), symmetric functions (sym12, sym16, rd84, wgt12)
and some arithmetic circuits (e.g., alu4, alupla, cordic, tial,
wgt12), ESOPs require fewer products than SOPs, in many
cases. However, for some functions (e.g., apex2, chkn,),
ESOPs require more products than SOPs. For minimiza-
tion of ESOPs, we used EXMIN3, an improved version of
EXMIN2[7].

8. Conclusion and Comments

In this paper, we presented a method to design reconfig-
urable logic array on an FPGA. We showed that an FPGA
with 4-input LUTs directly implements 16-valued expres-
sions.

Experimental results show that 16-valued expressions re-
quire fewer products than corresponding 2-valued ones. For
some functions ESOPs require fewer products than SOPs,
and vice versa. Since we can implement both expressions,
we can select smaller ones. We also showed that a 16-
valued expression represent symmetric functions and adders
quite efficiently.

In this paper, we only presented the design method for
16-valued logic. An extension to 2k-valued logic by using
k-input LUTs is straightforward. Also, we can use LUTs
with different number of inputs. LUTs with k = 3 to 6
inputs are available in modern FPGAs.

The logic design method is similar to that of PLAs
with k-bit input decoders [6, 9]. The PLAs with k-bit in-
put decoders use 2k literal lines for each group, while the

2k-valued reconfigurable logic array use only k horizontal
lines. Also, in the PLAs, each input decoder implements all
the 2k literals, while in the 2k-valued reconfigurable logic
array, each LUT implements only one literal.

9. Acknowledgments

This research is supported in part by the Grants in Aid for
Scientific Research of JSPS, and the grant of Kitakyushu
Innovative Cluster Project. Discussion with Prof. Jon T.
Butler improved English presentation.

References

[1] S. A. Guccione, D. Levi, and D. Downs, “A reconfigurable
content addressable memory,” In Jose Rolim et al. editors,
Parallel and Distributed Processing, pp. 882-889, Springer-
Verlag, Berlin, May 2000. Proceedings of the 15th Inter-
national Parallel and Distributed Processing Workshops,
IPDPS 2000. Lecture Notes in Computer Science 1800.

[2] S. J. Hong, R. G. Cain and D. L. Ostapko, “MINI: A heuris-
tic approach for logic minimization,” IBM J. Res. & De-
velop. pp. 443-458, Sept. 1974.

[3] P. B. James-Roxby and D.J. Downs, “An efficient content-
addressable memory implementation using dynamic rout-
ing,” FCCM’01 2001, pp.81- 90, 2001.

[4] G. Nilsen, J. Torresen, O. Sorasen, “A variable word-
width content addressable memory for fast string matching,”
Norchip Conference, 2004

[5] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization”, IEEE Trans.
CAD, Vol. 6(5), pp. 727-750, Sep. 1987.

[6] T. Sasao, “Input variable assignment and output phase op-
timization of PLA’s,” IEEE Trans. Comput., Vol. C-33, No.
10, pp. 879-894, Oct. 1984.

[7] T. Sasao, “EXMIN2: A simplification algorithm for
exclusive-OR-sum-of-products expressions for multiple-
valued input two-valued output functions,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 12, No. 5, May 1993, pp. 621-632.

[8] T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer
Academic Publishers, 1993.

[9] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[10] T. Sasao, “Design methods for multiple-valued input address
generators,” ISMVL-2006 (invited paper), Singapore, May
17-20, 2006.

[11] N. Song and M. A. Perkowski, “Minimization of exclu-
sive sum-of-products expressions for multiple-valued input,
incompletely specified functions,” IEEE Trans.Computer-
Aided Design of Integrated Circuits and Systems, Vol. CAD-
15, No. 4, pp. 385-395, April 1996.

[12] S. Yang, “Logic synthesis and optimization benchmark user
guide, version 3.0,” MCNC, Jan. 1991.

[13] Xilinx,http://www.xilinx.com/

