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Abstract

This paper proposes a method to represent elementary
functions such as trigonometric, logarithmic, square root,
and reciprocal functions using edge-valued multi-valued
decision diagrams (EVMDDs). We introduce a new class
of integer functions, Mp-monotone increasing functions,
and derive an upper bound on the number of nodes in
an edge-valued binary decision diagram (EVBDD) for the
Mp-monotone increasing function. The upper bound shows
that EVBDDs represent Mp-monotone increasing functions
more compactly than other decision diagrams when p is
small. Experimental results using 16-bit precision elemen-
tary functions show that: 1) standard elementary func-
tions can be converted into Mp-monotone increasing func-
tions with p = 1 or p = 2, or their linear transforma-
tions. And, they can be compactly represented by EVBDDs.
2) EVMDDs represent elementary functions with, on aver-
age, only 11% of the memory size needed for binary moment
diagrams (BMDs), and only 69% of the memory size needed
for EVBDDs.

1. Introduction

Decision diagrams are widely used to represent func-
tions compactly. For different types of functions, various
decision diagrams have been proposed. For example, for
logic functions, binary decision diagram (BDD) [1] and
functional decision diagram (FDD) [7] are useful. For inte-
ger functions such as adder and multiplier, arithmetic trans-
form decision diagram (ACDD) [16], binary moment dia-
gram (BMD) [2], multiplicative BMD (*BMD) [2], Kro-
necker multiplicative BMD (K*BMD) [5], and Taylor ex-
pansion diagram (TED) [3] are compact. And, for com-
plex matrices, quantum multiple-valued decision diagram
(QMDD) [9] has been proposed recently.

This paper proposes a method to represent elementary
functions [10] such as trigonometric, logarithmic, square
root, and reciprocal functions using decision diagrams. In

[15], we used the property that elementary functions can
be expanded into polynomial functions, and we represented
elementary functions using BMDs for polynomials. In this
paper, however, we use the property that elementary func-
tions are monotone functions on the standard domain, and
we represent elementary functions using decision diagrams
for monotone functions. Theoretical analysis and experi-
mental results show that edge-valued multi-valued decision
diagrams (EVMDDs) represent elementary functions more
compactly than BMDs.

2. Number Representation and Precision

Definition 1 Let B = {0,1}, Z be the set of the integers,
and R be the set of the real numbers. An n-input m-output
logic function is a mapping: Bn → Bm, an integer function
is Z → Z, and a real function is R → R.

Definition 2 A value X represented by the bi-
nary fixed-point representation is denoted by
X = (xn int−1 xn int−2 . . . x1 x0. x−1 x−2 . . . x−n f rac)2,
where xi ∈ {0,1}, n int is the number of bits for the integer
part, and n f rac is the number of bits for the fractional
part of X. This is the two’s complement representation.

Definition 3 Precision is the total number of bits for a bi-
nary fixed-point representation. Specially, n-bit precision
specifies that n bits are used to represent the number; that
is, n = n int + n f rac. In this paper, an n-bit precision
function f (X) means that the input variable X has n-bit
precision.

By fixed-point representation, we can convert an n-bit
precision real valued function into an n-input m-output
logic function. The logic function can be converted into
an integer function by considering binary vectors as inte-
gers. That is, we can convert an n-bit precision real val-
ued function into an integer function: Pn → Pm, where
Pn = {0,1, . . . ,2n − 1} and Pm = {0,1, . . . ,2m − 1}. In this
paper, elementary functions are converted into integer func-
tions by using n-bit fixed-point representation, unless stated



Table 1. Function table for the 3bit-precision
sin(X).

(a) Function table for

sin(X).
X sin(X)

0.000 0.000
0.125 0.125
0.250 0.247
0.375 0.366
0.500 0.479
0.625 0.585
0.750 0.682
0.875 0.768

(b) Truth table for

logic function fb(X).
X fb(X)

0.000 0.000
0.001 0.001
0.010 0.010
0.011 0.011
0.100 0.100
0.101 0.101
0.110 0.101
0.111 0.110

(c) Function table for integer

function f (X).
X = (x2x1x0)2 f (X)

0 = (000)2 0
1 = (001)2 1
2 = (010)2 2
3 = (011)2 3
4 = (100)2 4
5 = (101)2 5
6 = (110)2 5
7 = (111)2 6

otherwise. And, for simplicity, x0 denotes the least signifi-
cant bit in the fixed-point representation of X .

Example 1 Table 1(a) is the function table for sin(X). By
representing this function using the 3-bit precision fixed-
point representation, we have the logic function fb(X) in
Table 1(b). By converting binary vectors into integers,
the logic function fb(X) is converted into the integer func-
tion f (X) in Table 1(c). In this paper, the 3-bit preci-
sion sin(X) denotes the integer function f (X) in Table 1(c).

(End of Example)

3. Edge-Valued Binary Decision Diagram

This section defines an Mp-monotone increasing func-
tion, and derives an upper bound on the number of nodes in
an EVBDD for an Mp-monotone increasing function. Ex-
perimental results in this section show that EVBDDs for el-
ementary functions are more compact than BMDs for them.

Definition 4 A binary decision diagram (BDD) [1] is a
rooted directed acyclic graph (DAG) representing a logic
function. The BDD is obtained by repeatedly applying the
Shannon expansion to the logic function. Each function,
including the original function and all sub-functions result-
ing from applying the Shannon expansion, is represented by
a non-terminal node, unless that function is a trivial func-
tion, 0 or 1, in which case, it is represented by a terminal
node. Each non-terminal node has two outgoing edges, 0-
edge and 1-edge, that correspond to the values of the input
variables. Both terminal nodes have no outgoing edges.

Definition 5 A multi-terminal BDD (MTBDD) [4] is an
extension of the BDD, and represents an integer function.
In the MTBDD, the terminal nodes are labeled by integers.

Definition 6 An edge-valued BDD (EVBDD) [8] is an ex-
tension of the BDD, and represents an integer function.
An EVBDD consists of only one terminal node represent-
ing 0 and non-terminal nodes with 1-edges having inte-
ger weights. In a reduced EVBDD, each node represents
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Figure 1. Conversion of an MTBDD node into
an EVBDD node.
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Figure 2. Three types of decision diagrams
for the 3-bit precision sin(X).

a different sub-function. An EVBDD is obtained by recur-
sively applying the conversion shown in Fig. 1 to each non-
terminal node in an MTBDD, where in Fig. 1, dashed lines
and solid lines denote 0-edges and 1-edges, respectively.
In the EVBDD, 0-edges (dashed lines) always have zero
weights, and the incoming edge into the root node can have
a non-zero weight.

Definition 7 A binary moment diagram (BMD) [2] is a
rooted DAG representing an integer function. The BMD is
obtained by repeatedly applying the arithmetic transform
expansion f = f0 + xi( f1 − f0) to the integer function. The
BMD consists of terminal nodes representing the arithmetic
coefficients, and non-terminal nodes representing the arith-
metic transform expansions. Each non-terminal node has
two edges corresponding to two terms: f0 and xi( f1− f0) in
the arithmetic transform expansion.

For more detail on these decision diagrams, refer to [13].

Example 2 Fig. 2(a), (b) and (c) show the MTBDD, the
BMD, and the EVBDD for the 3-bit precision sin(X) in Ta-
ble 1(c). In Fig. 2(a) and (c), dashed lines and solid lines
denote 0-edges and 1-edges, respectively. Note that the
EVBDD has weighted 1-edges. And, in Fig. 2(b), ‘A’ de-
notes the arithmetic transform expansion. In the MTBDD,
to evaluate the function, we traverse the MTBDD from the
root node to a terminal node according to the input values,



Table 2. Upper bounds on the number of
nodes in MTBDDs and EVBDDs for n-bit pre-
cision Mp-monotone increasing functions.

Precision MTBDD EVBDD
n M1 (p = 1) M2 (p = 2) M3 (p = 3)

16 131,071 8,327 10,406 16,450
17 262,143 16,519 18,598 32,833
18 524,287 32,903 34,982 49,217
19 1,048,575 65,670 67,750 81,985
20 2,097,151 98,438 133,286 147,521
21 4,194,303 163,974 264,358 278,593
22 8,388,607 295,046 526,502 540,737
23 16,777,215 557,190 1,050,790 1,065,025
24 33,554,431 1,081,478 2,099,366 2,113,601

and obtain the function value (an integer) from the terminal
node. In the BMD, we obtain the function value by comput-
ing the arithmetic transform expansion f = f0 +xi( f1 − f0)
recursively at each non-terminal node. And, in the EVBDD,
we obtain the function value as the sum of the weights for
the edges traversed from the root node to the terminal node.

(End of Example)

Definition 8 Let I be a set of integers including 0. An inte-
ger function f (X) : I → Z such that 0≤ f (X +1)− f (X)≤ p
and f (0) = 0 is an Mp-monotone increasing function on
I. That is, for an Mp-monotone increasing function f (X),
f (0) = 0, and the increment of X by one increases the value
of f (X) by at most p.

Theorem 1 For an n-bit precision Mp-monotone increas-
ing function f (X), the number of nodes in the EVBDD is at
most

2n−k +
k

∑
i=1

(p+1)2i−1 − k,

where k is the largest integer satisfying 2n−k ≥ (p+1)2k−1,
and the variable order of the EVBDD is xn−1,xn−2, . . . ,x0
(from the root node to the terminal node).

(Proof) See Appendix.

Example 3 Table 2 compares the upper bounds on the
number of nodes in MTBDDs and EVBDDs for n-bit preci-
sion Mp-monotone increasing functions. The upper bound
for MTBDDs is 2n+1 − 1 independently of p. On the other
hand, the upper bound for EVBDDs decreases with p.

(End of Example)

Lemma 1 Let f (X) be an Mp-monotone increasing func-
tion, and let g(X) be a linear transformation of f (X):
g(X) = a f (X) + b, where a and b are integers. Then,
the EVBDDs for f (X) and g(X) have the same number of
nodes.

(Proof) See Appendix.

Table 3. Numbers of nodes in MTBDDs,
BMDs, and EVBDDs for 16-bit precision ele-
mentary functions.

Elementary Type of Number of nodes R1 R2
functions functions MTBDD BMD EVBDD

2X −1 M2 122,659 29,634 3,469 2.8 12
1√

X+1
− 1√

2
M1+ 58,412 28,446 2,857 4.9 10

ln(X +1) M1 100,880 28,442 3,187 3.2 11
log2(X +1) M2 122,542 29,553 3,465 2.8 12√

X +1−1 M1 73,406 26,149 2,383 3.2 9
2

X+1 −1 M2+ 114,093 28,348 4,079 3.6 14
sin(X) M1 115,450 22,638 2,853 2.5 13

Average 101,063 27,601 3,185 3.3 12
Number of fractional bits for function values is 16.
Domain of the functions is 0 ≤ X < 1.
R1 = (EVBDD) / (MTBDD) × 100 [%].
R2 = (EVBDD) / (BMD) × 100 [%].
Mp+: the function is a linear transform of an Mp-monotone
increasing function.

Example 4 The 3-bit precision sin(X) = [0,1,2,3,4,
5,5,6]t is an M1-monotone increasing function. The 3-
bit precision 1

X+1 = [8,7,6,6,5,5,5,4]t is a linear trans-
formation of the M1-monotone increasing function f (X) =
[0,1,2,2,3,3,3,4]t : −1× f (X)+8. (End of Example)

Table 3 compares the numbers of nodes in MTBDDs,
BMDs, and EVBDDs for 16-bit precision elementary func-
tions. In the column labeled with “Type of functions” of
Table 3, Mp denotes an Mp-monotone increasing func-
tion, while Mp+ denotes a linear transformation of an Mp-
monotone increasing function.

Standard elementary functions such as trigonometric
and logarithmic functions on 0 ≤ X < 1 are M1 or M2-
monotone increasing functions. Thus, as shown in Table 2,
the upper bounds on the number of nodes in their EVBDDs
are small. From Table 3, we can see that the upper bounds
are smaller than the numbers of nodes in their MTBDDs
and BMDs. When EVBDDs are partitioned into two parts
as shown in Fig. A.1, for many elementary functions, 1) the
upper part does not form a complete binary tree, and 2) the
lower part represents only a subset of the Mp-monotone
increasing functions. Therefore, the numbers of nodes in
EVBDDs for elementary functions are smaller than the up-
per bounds, and they are much smaller than the numbers of
nodes in the MTBDDs and BMDs.

4. Edge-Valued MDD

This section expands EVBDDs shown in the previous
section into multi-valued decision diagrams to represent el-
ementary functions more compactly.
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Figure 3. Conversion of EVBDD nodes into an
EVMDD node.

Definition 9 For an n-bit precision integer X, let {X} be
the set of binary variables in X. If {X} = {X1}∪ {X2}∪
. . .∪ {Xu}, {Xi} 6= φ, and {Xi} ∩ {X j} = φ (i 6= j), then
(X1,X2, . . . ,Xu) is a partition of X. Each Xi is called a su-
per variable. Let |Xi| = ki and k1 + k2 + . . .+ ku = n. Then,
by considering each super variable as a multi-valued vari-
able, an integer function f (X) : Z → Z can be converted into
a multi-valued input integer function f (X1,X2, . . . ,Xu) :
P1×P2× . . .×Pu → Z, where Pi = {0,1,2, . . . ,2ki −1}.

Definition 10 A multi-valued decision diagram (MDD) is a
rooted DAG representing a multi-valued input integer func-
tion. The MDD is obtained by repeatedly applying the
Shannon expansion to the multi-valued input integer func-
tion [6]. It consists of terminal nodes representing function
values and non-terminal nodes representing multi-valued
variables. Each non-terminal node has multiple outgoing
edges that correspond to the values of multi-valued vari-
able. When an MDD represents a function for which multi-
valued variables have different domains, it is a heteroge-
neous MDD [11, 12]. In the following, the heterogeneous
MDD is simply denoted by the MDD.

Definition 11 An edge-valued MDD (EVMDD) is an ex-
tension of the MDD, and represents a multi-valued input
integer function. It consists of one terminal node repre-
senting 0 and non-terminal nodes with edges having integer
weights, and 0-edges always have zero weights.

As shown in Fig. 3, an EVMDD is obtained by grouping
non-terminal nodes in an EVBDD according to the partition
of X .

Example 5 Fig. 4 shows EVMDDs for the 3-bit precision
sin(X). In Fig. 4(a), X = (x2 x1 x0)2 is partitioned into X1 =
(x0)2 and X2 = (x2 x1)2. On the other hand, in Fig. 4(b), it
is partitioned into X1 = (x1 x0)2 and X2 = (x2)2. To ob-
tain the function value f = 5 for X = (101)2, in Fig. 4(a),
we traverse the EVMDD using X1 = 1 and X2 = 2, and ob-
tain the function value by summing the weights of the tra-
versed edges. In Fig. 4(b), we traverse the EVMDD using
X1 = 1 and X2 = 1, and obtain the function value f = 5.

(End of Example)
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Figure 4. EVMDDs for the 3-bit precision
sin(X).

Table 3 used the number of nodes to compare the sizes of
three types of decision diagrams. However, comparing just
the number of nodes in an EVMDD with them is nonsense
because non-terminal nodes in an EVMDD are obtained by
grouping non-terminal nodes in an EVBDD. Thus, this sec-
tion introduces another measure, memory size, for mean-
ingful comparison of different types of decision diagrams.

Definition 12 The memory size of a decision diagram is
the number of words needed to represent all non-terminal
nodes in the decision diagram in a memory, where each at-
tribute requires one word.

Since each non-terminal node in a BMD has three at-
tributes: an index of binary variable used for the arithmetic
transform expansion, and two pointers for edges, it requires
three words. Thus, the memory size of a BMD is

3× (Number of non-terminal nodes in the BMD).

Similarly, since each non-terminal node in an EVBDD has
four attributes: an index of binary variable used for the
Shannon expansion, two pointers for 0 and 1-edges, and a
weight of 1-edge, the memory size of an EVBDD is

4× (Number of non-terminal nodes in the EVBDD).

Each non-terminal node in an EVMDD may have different
number of edges, depending on the domain of multi-valued
variable represented by the node. Each non-terminal node
representing pi-valued variable has 2pi attributes: an index
of pi-valued variable Xi, pi pointers for edges, and pi − 1
weights of edges except for 0-edge. When the number of
multi-valued variables is u, and each variable Xi is pi-valued
variable, the memory size of an EVMDD is

u

∑
i=1

2pi ×wi,

where wi denotes the number of non-terminal nodes for Xi

in the EVMDD.



Table 4. Numbers of non-terminal nodes and memory sizes of BMDs, EVBDDs, and EVMDDs for
16-bit precision elementary functions.

Elementary No. of non-terminal nodes Memory size Ratio [%]
functions BMD EVBDD EVMDD BMD EVBDD EVMDD MDD MDD

/ BMD / BDD
2X −1 29,486 3,468 353 88,458 13,872 9,600 11 69
1√

X+1
− 1√

2
28,272 2,856 950 84,816 11,424 7,892 9 69

ln(X +1) 28,277 3,186 1,240 84,831 12,744 9,052 11 71
log2(X +1) 29,393 3,464 362 88,179 13,856 9,636 11 70√

X +1−1 26,011 2,382 552 78,033 9,528 6,300 8 66
2

X+1 −1 28,168 4,078 675 84,504 16,312 10,888 13 67
sin(X) 22,497 2,852 1,091 67,491 11,408 8,456 13 74

Average 27,443 3,184 746 82,330 12,735 8,832 11 69
Number of fractional bits for function values is 16. Domain of the functions is 0 ≤ X < 1.
MDD / BMD = (memory size of EVMDD) / (memory size of BMD) × 100 [%].
MDD / BDD = (memory size of EVMDD) / (memory size of EVBDD) × 100 [%].

Example 6 The memory size of the BMD in Fig. 2(b) is 3×
4 = 12. The memory size of the EVBDD in Fig. 2(c) is 4×
4 = 16. And, the memory sizes of the EVMDDs in Fig. 4(a)
and (b) are 8 + 4 = 12, and 4 + 2× 8 = 20, respectively.

(End of Example)

When we represent an integer function f (X) using an
EVMDD by a partition of X , the memory size of the
EVMDD depends on the partition of X as shown in Exam-
ple 6. In this paper, to find the partition of X that minimizes
the memory size, we used the algorithm for heterogeneous
MDDs proposed in [11, 12].

Table 4 compares the numbers of non-terminal nodes
and memory sizes of BMDs, EVBDDs, and EVMDDs for
16-bit precision elementary functions. Since non-terminal
nodes in EVBDDs have weighted 1-edges, the memory size
of each non-terminal node in an EVBDD is larger than
that of a non-terminal node in the BMD. However, by us-
ing weighted edges, to represent an elementary function,
an EVBDD requires many fewer nodes than the BMD,
and thus an EVBDD requires smaller memory size than
the BMD. In an EVMDD, the memory size of each non-
terminal node becomes larger than that of a non-terminal
node in the EVBDD, but the number of nodes becomes
much smaller than that in the EVBDD. Thus, an EVMDD
requires smaller memory size than the EVBDD. Table 4
shows that, on average, EVMDDs require only 11% of
memory size needed for BMDs, and only 69% of memory
size needed for EVBDDs.

5. Conclusion and Comments

This paper has presented a new class of integer functions,
called an Mp-monotone increasing function, and derived an
upper bound on the number of nodes in an EVBDD for the

Mp-monotone increasing function. The upper bound shows
that EVBDDs represent Mp-monotone increasing functions
or their linear transformations more compactly than MTB-
DDs and BMDs when p is small. By converting integer
functions into multi-valued input integer functions, and rep-
resenting them by EVMDDs, memory sizes needed for de-
cision diagrams can be reduced further. Experimental re-
sults show that EVMDDs represent elementary functions
more compactly than BMDs and EVBDDs.

EVBDDs form a subset of K*BMDs [5] and factored
EVBDDs (FEVBDDs) [19] that allow additive and multi-
plicative edge weights. Thus, K*BMDs and FEVBDDs also
represent elementary functions compactly. However, func-
tion evaluations using them are more complex than those
using EVBDDs. In EVBDDs, we can evaluate functions
only by summing the weights of the edges traversed from
the root node to the terminal node. This evaluation method
can be realized with a simple hardware using a memory and
an adder. Since EVMDDs have shorter paths and smaller
memory size than EVBDDs, EVMDDs are promising for
fast and compact elementary function generators.
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Appendix

Definition A.1 A two-valued input multi-valued output
function h : Bn → {0,1, . . . , p} such that h(0,0, . . . ,0) = 0
is a (p+1)-valued 0-preserving function. This is an exten-
sion of the 0-preserving function for logic function [14].

Lemma A.1 The number of different n-bit precision Mp-
monotone increasing functions is

(p+1)2n−1
.

(Proof) Let h(Y ) be an n-bit input (p + 1)-valued 0-
preserving function, where Y = (yn−1 yn−2 . . .y0)2. For each
h(Y ), there exists an n-bit precision Mp-monotone increas-
ing function f (X). And, any f (X) can be derived from the
corresponding h(Y ) as

f (X) =
X

∑
Y=0

h(Y ).

The number of different h’s is

(p+1)2n−1
.

Therefore, we have the lemma.

Example A.1 Let H be the function-vector of a 2-bit in-
put two-valued 0-preserving function h. And, let F be the
function-vector of a 2-bit precision M1-monotone increas-
ing function f . The following shows all possible F’s and the
corresponding H’s.

H F H F
[0,0,0,0]t [0,0,0,0]t [0,0,0,1]t [0,0,0,1]t

[0,0,1,0]t [0,0,1,1]t [0,0,1,1]t [0,0,1,2]t

[0,1,0,0]t [0,1,1,1]t [0,1,0,1]t [0,1,1,2]t

[0,1,1,0]t [0,1,2,2]t [0,1,1,1]t [0,1,2,3]t

As shown above, the number of the different 2-bit pre-
cision M1-monotone increasing functions is 222−1 = 8.

(End of Example)

Example A.2 Let H be the function-vector of a 2-bit in-
put three-valued 0-preserving function h. And, let F be the
function-vector of a 2-bit precision M2-monotone increas-
ing function f . The following shows all possible F’s and the
corresponding H’s.

H F H F H F
[0,0,0,0]t [0,0,0,0]t [0,0,0,1]t [0,0,0,1]t [0,0,0,2]t [0,0,0,2]t

[0,0,1,0]t [0,0,1,1]t [0,0,1,1]t [0,0,1,2]t [0,0,1,2]t [0,0,1,3]t

[0,0,2,0]t [0,0,2,2]t [0,0,2,1]t [0,0,2,3]t [0,0,2,2]t [0,0,2,4]t

[0,1,0,0]t [0,1,1,1]t [0,1,0,1]t [0,1,1,2]t [0,1,0,2]t [0,1,1,3]t

[0,1,1,0]t [0,1,2,2]t [0,1,1,1]t [0,1,2,3]t [0,1,1,2]t [0,1,2,4]t

[0,1,2,0]t [0,1,3,3]t [0,1,2,1]t [0,1,3,4]t [0,1,2,2]t [0,1,3,5]t

[0,2,0,0]t [0,2,2,2]t [0,2,0,1]t [0,2,2,3]t [0,2,0,2]t [0,2,2,4]t

[0,2,1,0]t [0,2,3,3]t [0,2,1,1]t [0,2,3,4]t [0,2,1,2]t [0,2,3,5]t

[0,2,2,0]t [0,2,4,4]t [0,2,2,1]t [0,2,4,5]t [0,2,2,2]t [0,2,4,6]t



As shown above, the number of the different 2-bit pre-
cision M2-monotone increasing functions is 322−1 = 27.

(End of Example)

Definition A.2 A shared EVBDD (SEVBDD) is an exten-
sion of the EVBDD, and it has multiple root nodes to rep-
resent multiple integer functions. The SEVBDD is obtained
by sharing equivalent sub-graphs in EVBDDs for the inte-
ger functions.

Lemma A.2 Let η(k, p) be the number of non-terminal
nodes in the SEVBDD representing all the k-bit precision
Mp-monotone increasing functions, where the variable or-
der of the SEVBDD is xk−1,xk−2, . . . ,x0 (from the root nodes
to the terminal node). Then,

η(k, p) =
k

∑
i=1

(p+1)2i−1 − k.

(Proof) We prove the lemma by the mathematical induction.
When k = 1, the function-vectors of all the Mp-monotone
increasing functions are F = [0,0]t ,F = [0,1]t , . . ., and F =
[0, p]t . Since F = [0,0]t is the constant function 0, there
is no non-terminal node representing it. As for the other p
function-vectors, there exists a non-terminal node for each
function-vector. Thus, when k = 1, the lemma holds. Next,
we assume that the lemma holds when k = n. And, we prove
that the lemma holds when k = n+1.

Each non-terminal node in an EVBDD represents the
following expansion [8]: f = xi f0 + xi( f1 + α). When
f0 = f1 +α, however, the non-terminal node for xi is elim-
inated because of the reduction rules for EVBDD. Con-
versely, the non-terminal node for xi is not eliminated when
f0 6= f1 + α. When f is an (n + 1)-bit precision Mp-
monotone increasing function except for the constant func-
tion 0, f0 6= f1 + α holds in the expansion with respect to
xn. From Lemma A.1, the number of different (n + 1)-
bit precision Mp-monotone increasing functions except for
the constant function 0 is (p + 1)2n+1−1 − 1. Thus, in an
SEVBDD, there exist (p+1)2n+1−1 −1 non-terminal nodes
representing the expansions with respect to xn. Since f0’s
and f1’s produced by these expansions are the n-bit preci-
sion Mp-monotone increasing functions, from the assump-
tion for k = n, we have

η(n, p) =
n

∑
i=1

(p+1)2i−1 −n.

Therefore, when k = n + 1, the number of non-terminal
nodes is as follows:

η(n, p)+(p+1)2n+1−1 −1

=
n

∑
i=1

(p+1)2i−1 −n+(p+1)2n+1−1 −1

=
n+1

∑
i=1

(p+1)2i−1 − (n+1) = η(n+1, p)

0

n - k

k
...

Figure A.1. Partition of EVBDD.

Therefore, the lemma holds.

Proof for Theorem 1 Suppose that an EVBDD for f (X)
is partitioned into two parts: the upper and the lower parts
as shown in Fig. A.1. In this case, the lower part represents
k-bit precision Mp-monotone increasing functions, and the
upper part represents the function which chooses one from
them. The upper part has the maximum number of nodes
when it forms a complete binary tree. That is, the maximum
number of nodes in the upper part is

2n−k −1. (A.1)

The lower part has the maximum number of nodes when
it represents all the k-bit precision Mp-monotone increas-
ing functions. From Lemma A.2, the maximum number of
nodes in the lower part is

η(k, p) =
k

∑
i=1

(p+1)2i−1 − k. (A.2)

From (A.1) and (A.2), the number of non-terminal nodes in
the EVBDD for f (X) is at most

2n−k +
k

∑
i=1

(p+1)2i−1 − k−1.

By adding one terminal node to this, we have the theorem.
The number of Mp-monotone increasing functions which
can be represented in the lower part is (p + 1)2k−1. It does
not exceed the number of functions which can be chosen by
the upper part: 2n−k. Therefore, we have the relation:

2n−k ≥ (p+1)2k−1
.

Proof for Lemma 1 In EVBDDs, the sum of weights of
the traversed edges shows the function value. Thus, in the
EVBDD for f (X), multiplying each weight by a and adding
b to the weight of edge to the root node can produce the
EVBDD for g(X). This conversion of EVBDDs does not
change the number of nodes.


