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Abstract

In digital signal processing, radixes other than two are
often used for high-speed computation. In the computa-
tion for finance, decimal numbers are used instead of bi-
nary numbers. In such cases, radix converters are neces-
sary. This paper considers design methods for binary to q-
nary converters. It introduces a new design technique based
on weighted-sum (WS) functions. The method computes a
WS function for each digit by an LUT cascade and a bi-
nary adder, then adds adjacent digits with q-nary adders. A
16-bit binary to decimal converter is designed to show the
method.

1. Introduction

Arithmetic operations of digital systems are usually done
by binary numbers [8]. However, for high-speed digital
signal processing, p-nary (p > 2) numbers are often used
[1, 5]. Computation for finance usually uses decimal num-
bers instead of binary numbers. In such cases, conversions
between binary numbers and p-nary numbers are necessary.
Such operation is radix conversion [2, 7].

Various methods exist to convert p-nary numbers into q-
nary numbers, where p ≥ 2 and q ≥ 2. Many of them
require large amount of computations. Radix converters
can be implemented by table lookup. That is, to store the
conversion table in the memory. This method is fast, but
requires a large amount of memory. When the number of
inputs is large, the memory is too large to implement. Thus,
more efficient methods have been developed.

In [6], ROMs and adders are used to implement binary
to decimal converters.

In [10], LUT cascades [9] are used to implement binary
to ternary converters, ternary to binary converters, binary to
decimal converters, and decimal to binary converters.

In [13], weighted-sum functions (WS functions) is intro-
duced to design radix converters by LUT cascades.

In [3], LUT cascade and arithmetic decomposition [12]
are used to implement p-nary to binary converters that re-
quire smaller memory.

In this paper, we consider a design method of p-nary to
q-nary (q > 2) converters by using LUT cascades and arith-
metic decompositions. To explain the concepts, we use ex-
amples of binary to decimal converters, but the method can
be easily modified to any numbers of p and q. A 16-bit bi-
nary to decimal converter is designed to show the method.

2. Radix Converter

2.1. Radix Conversion

Definition 2.1 Let �x = (xn−1, xn−2, . . . , x0)p be a p-nary
number of n-digit, and let �y = (ym−1, ym−2, . . . , y0)q be
a q-nary number of m-digit. Given the vector �x, the radix
conversion is the operation that obtains �y satisfying the re-
lation:

n−1∑

i=0

xip
i =

m−1∑

j=0

yjq
j , (2.1)

where xi ∈ P , yj ∈ Q, P = {0, 1, . . . , p − 1}, and Q =
{0, 1, . . . , q − 1}.

When p (q) is not 2, they are represented by binary coded
p (q)-nary numbers.

Definition 2.2 Let i be an integer. BIT (i, j) denotes the
j-th bit of the binary representation of i, where the LSB is
the 0-th bit.

Example 2.1 Note that an integer 6 is represented
by the binary number (1, 1, 0)=(BIT (6, 2), BIT (6, 1),
BIT (6, 0)). Thus, BIT (6, 2) = 1, BIT (6, 1) = 1, and
BIT (6, 0) = 0. (End of Example)

Example 2.2 In the case of a binary to decimal converter, a
decimal number is represented by the binary-coded-decimal
(BCD) code. That is, 0 is represented by (0000), 1 is repre-
sented by (0001), . . ., 8 is represented (1000), and 9 is rep-
resented by (1001). Note that (1010), (1011),. . ., (1111)



Table 2.1. Truth table of a binary to decimal
converter.

Binary Decimal Binary Coded Decimal
x3 x2 x1 x0 y1 y0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 2 0 0 0 0 0 0 1 0
0 0 1 1 0 3 0 0 0 0 0 0 1 1
0 1 0 0 0 4 0 0 0 0 0 1 0 0
0 1 0 1 0 5 0 0 0 0 0 1 0 1
0 1 1 0 0 6 0 0 0 0 0 1 1 0
0 1 1 1 0 7 0 0 0 0 0 1 1 1
1 0 0 0 0 8 0 0 0 0 1 0 0 0
1 0 0 1 0 9 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0 1 0 0 0 0
1 0 1 1 1 1 0 0 0 1 0 0 0 1
1 1 0 0 1 2 0 0 0 1 0 0 1 0
1 1 0 1 1 3 0 0 0 1 0 0 1 1
1 1 1 0 1 4 0 0 0 1 0 1 0 0
1 1 1 1 1 5 0 0 0 1 0 1 0 1

are unused codes. Table 2.1 is the truth table of the 4-digit
binary to decimal converter.

In Table 2.1, the inputs in the binary representation
are denoted by �x = (x3, x2, x1, x0). The outputs in the
decimal representation are denoted by �y= (y1, y0), and
in the binary-coded-decimal representation are denoted
by (BIT (y1, 3), BIT (y1, 2), BIT (y1, 1), BIT (y1, 0),
BIT (y0, 3), BIT (y0, 2), BIT (y0, 1), BIT (y0, 0)).

(End of Example)

2.2. Conventional Realization

2.2.1 Random Logic Realization

Radix converters can be implemented by using compara-
tors, subtracters, and multiplexers.

Example 2.3 Consider the 8-digit binary to decimal con-
verter (8bin2dec) shown in Figure 2.1. It converts 8-digit
binary numbers x[7 : 0] into 3-digit BCD. The output range
is 0 to 255.

First, the subtracter S1 calculates x − 200. The com-
parator C1 compares the input x with 200. When x ≥ 200
(x < 200), o2[1] = 1(0), and the multiplexer M1 passes
t1 = x−200 (t1 = x) to the next stage. Next, the subtracter
S2 calculates t1 − 100. The comparator C2 compares the
value t1 with 100. When t1 ≥ 100 (t1 < 100), o2[0] =
1(0), and the multiplexer M2 passes t2 = t1−100 (t2 = t1)
to the next stage. In this way, the circuit converts the binary
number into the decimal number. (End of Example)

2.2.2 Single Memory Realization

Figure 2.2 shows a single memory realization that stores
the truth table of the radix converter. It converts n-digit
binary-coded p-nary numbers into m-digit binary-coded q-
nary numbers.

xn-1,..., x0

ym-1,..., y0LUT

n-digit p-nary number

m-digit binary coded q-nary 
number, where m =  n.logq p  . 

n.din = n  log2 p

log2 q  n.logq p

Figure 2.2. n-digit p-nary to q-nary converter:
Single memory realization.

Let din be the number of bits to represent an input digit.
Then, din = �log2 p�. Since the number of input digits is
n, the total number of bits in the input is ndin. A p-nary
number with n digits takes values from 0 to pn − 1.

Let dout be the number of bits in an output digit. Then,
dout = �log2 q�. The number of output digits is m= n ·
�logq p�. Note that the most significant digit requires only
doutm−1 = �log2([pn−1/qm−1])� bits. Thus, the size of the
memory is 2ndin((m− 1) · dout + doutm−1) bits.

This method is simple and fast, but, when the number of
digits for the radix converter is large, the memory will be
huge.

Example 2.4 The 16-digit binary to decimal converter
(16bin2dec) takes the range [0, 216 − 1] = [0, 65535]. The
output is represented by m = �log10 65535�= 5 digits.
dout = 4, and doutm−1 = 3. When the converter is real-
ized by a single memory, its size is 216 · ((5 − 1)4 + 3) =
1, 245, 184 bits. (End of Example)

2.2.3 LUT Cascade Realization

In a single memory realization of a p-nary to q-nary con-
verter, the size of memory tends to be too large.

To reduce the amount of hardware, LUT cascades re-
alizations are used in [10], where outputs are partitioned
into groups. By using the functional decomposition the-
ory [8], we can predict such a realization is feasible or not.
To perform functional decompositions, a Binary Decision
Diagram for Characteristic Function (BDD for CF) [10] is
used as the data structure.

Figure 2.3 shows the 16-digit binary to decimal converter
[10], where the LUT cascade with three cells realizes all
the outputs. LUTs are implemented by memories. The
total memory size is 73, 728 bits. This method uses only
memory, and the interconnections are limited only to ad-
jacent memories. However, since the logic synthesis uses
BDD for CFs, when the number of digits is large, the com-
putation time tends to be excessive.

On the other hand, the design method in [3] finds LUT
cascades without using BDDs for CF. It produces circuits
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Figure 2.1. 8-digit binary to decimal converter: Random Logic Realization.
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Figure 2.3. 16-digit binary to decimal con-
verter: LUT Cascade Realization.

with a smaller amount of memory than [10] by using arith-
metic decompositions. Unfortunately, this method can de-
sign only p-nary (p > 2) to binary converters, and is not
applicable to binary to q-nary (q > 2) converters.

2.2.4 Realization by Memories and q-nary Adders

Design methods of binary to decimal converters using mem-
ories and adders are shown in [6]. Figure 2.4 shows a 16-
digit binary to decimal converter [6]. The features of this
circuit are as follows:

1. In the binary to decimal converter, the input 20 is di-
rectly connected to the least significant bit of the output
(1).

2. Other 15 inputs are divided into two: The upper 9 bits
and the lower 6 bits. For all possible inputs, each LUT
stores corresponding BCD numbers.

3. The most significant digit (40K, 20K, and 10K) is ob-
tained by a 3-input LUT (originally, which was imple-
mented by gates) and a binary adder.

4. The total amount of memory is 8, 216 bits.
5. The middle LUT stores BCD values in excess-6-code.
6. BCD additions are implemented by binary adders and

special subtracters. When the carry is added to the next
higher order digit, 6 is subtracted from the BCD digit.
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++++

++ + +

7680-bit LUT 512-bit LUT

200
100

800
400

2K
1K

8K
4K

20
10

80
40

2
1

8
4

-6/0

+

20K
10K40K

-6/0 -6/0 -6/0

Binary number

BCD number

24-bit
LUT

Total Memory Size = 8216 bits

Figure 2.4. 16-digit binary to decimal con-
verter: Realization by memories and BCD
adders

The original circuit in [6] used a 1-of-16 decoder which
generates memory selection signals for 16 small-scale
memories. Since larger memories are available today, we
replaced them by a single LUT.

With this method, a binary to decimal converter is im-
plemented by using LUTs and q-nary (q = 10) adders. This
method reduces the total amount of memory by partitioning
the inputs into two.

3. WS Function

The weighted sum function (WS function) is a mathe-
matical model of radix converters, bit-counting circuits, and
convolution operations [12, 13]. In this section, we show
some properties of WS functions, and give a design method
of radix converters by using them.

Definition 3.1 An n-input WS function [13] is defined as

WS(�x) =
n−1∑

i=0

wi · xi, (3.1)

where �x = (xn−1, xn−2, . . . , x1, x0) is the input vector,



�w = (wn−1, wn−2, . . . , w1, w0) is the weight vector con-
sisting of integers.

In this paper, we represent p-nary to q-nary conversions
with WS functions. From here, unless otherwise noted, wi

and xi denote non-negative integers.

Definition 3.2 Let MINn (MAXn) be the minimum (max-
imum) number represented by a WS function WS(�x) =∑n−1

i=0 wixi, where wi ≥ 0, xi ∈ {0, 1, . . . , p − 1}, and
p ≥ 2.

When all the input xi are 0’s, a WS function takes its
minimum value, MINn= WS(0, 0, . . . , 0) = 0. When all
the input xi are p− 1, the WS function takes its maximum
value, MAXn= WS(p−1, p−1, . . . , p−1) =

∑n−1
i=0 {wi ·

(p− 1)} = (p− 1)
∑n−1

i=0 wi.

Definition 3.3 For i < j, [i, j] denotes the set of integers,
{i, i + 1, . . . , j}.

Next, we will consider the range of WS functions.

Definition 3.4 Range(f(x)) denotes the range of a func-
tion f(x).

Example 3.1 For WS1(�x) = x0 + 3x1, and xi ∈
{0, 1, 2}, we have Range(x0) = {0, 1, 2}, and
Range(3x1) = {0, 3, 6}. Thus, Range(WS1(�x)) =
{0, 1, 2, 3, 4, 5, 6, 7, 8} = [0, 8]. On the other hand, for
WS2(�x) = x0 + 4x1, and xi ∈ {0, 1, 2}, we have
Range(x0) = {0, 1, 2}, and Range(4x1) = {0, 4, 8}.
Thus, Range(WS2(�x)) = {0, 1, 2, 4, 5, 6, 8, 9, 10} �=
[0, 10]. For WS3(�x) = x0 + 2x1, and xi ∈ {0, 1, 2},
we have Range(x0) = {0, 1, 2}, and Range(2x1) =
{0, 2, 4}. Thus, Range(WS3(�x)) = {0, 1, 2, 3, 4, 5, 6} =
[0, 6]. (End of Example)

Example 3.1 shows that Range(WS(�x)) = [0, MAXn]
holds in some cases and does not in other cases. It de-
pends on the combinations of values of wi. In the case
of WS2(�x) = x0 + 4x1, MIN = 0, and MAX =
2(1 + 4) = 10. Because the number of values for xi is 3,
WS2(�x) takes at most 32 = 9 different values. Therefore,
Range(WS2(�x)) �= [0, 10].

Lemma 3.1 The number of values produced by a WS func-
tion WS(�x), is at most pn, where WS(�x)=

∑n−1
i=0 wixi,

wi ≥ 0, xi ∈ {0, 1, . . . , p− 1}, and p ≥ 2.
(Proof: Omitted)

The next theorem shows the necessary and sufficient
condition for Range(WS(�x)) =[0, MAXn].
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Figure 4.1. Realization Using Memories and
q-nary Adders.

Theorem 3.1 Consider a WS function WS(�x) =∑n−1
i=0 wixi, wi ≥ 0, xi ∈ {0, 1, . . . , p − 1}, and

p ≥ 2. Range(WS(�x)) = [0, MAXn] iff w0 = 1 and
wi ≤MAXi−1 + 1.
(Proof: Omitted)

Corollary 3.1 WS(�x) =
∑n−1

i=0 pixi takes all the value in
[0, pn − 1].
(Proof: Omitted)

4. Realization Using LUT Cascades and Arith-
metic Decompositions

In this part, we consider design methods of radix con-
verters by using LUT cascades and arithmetic decomposi-
tions.

Figure 4.1(a) shows the conventional circuit which is
redrawn from Fig. 2.4 with fewer blocks. This circuit is
implemented by using only three LUTs and five decimal
adders. In Fig. 4.1(a), outputs of the middle LUT are con-
nected to q-nary adders.

On the other hand, Fig. 4.1(b) shows the proposed
method in this paper. In this method, each LUT stores BCD
values, and feeds to a digit and a carry out. Consequently,
outputs from each LUT blocks are connected only to the
corresponding q-nary adder and the adjacent q-nary adder.
However, this method requires m LUTs. Furthermore, the
numbers of inputs of LUTs for lower digits are large. From
here, we are going to reduce the total amount of memory
for LUT cascades using the concept of WS functions.



Table 4.1. Decimal Number Representations
for Power of Two

x 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

104 3 1
103 2 6 8 4 2 1
102 7 3 1 0 0 0 5 2 1
101 6 8 9 9 4 2 1 5 2 6 3 1
100 8 4 2 6 8 4 2 6 8 4 2 6 8 4 2 1

4.1. LUT Cascade Realizations of WS Func-
tions

Here, we consider the logic function realized by each
LUT in Fig. 4.1(b). Table 4.1 shows decimal numbers for
2i (i = 15, 14, . . . , 0). The rows show digits for 104, 103,
102, 101 and 100. We can obtain functions of LUTs in
Fig. 4.1(b) from Table 4.1. For example, the value of the
digit for 10000 = 104 can be computed with x14, x15, and
the carry propagation signal from the lower digit. We obtain
the following equations:

z4 = x14 + 3x15, (4.1)
z3 = x10 + 2(x11 + x15) + 4x12 + 6x14 + 8x13, (4.2)
z2 = (x7 + x13) + 2x8 + 3x14 + 5x9 + 7x15, (4.3)
z1 = (x4 + x9) + 2(x7 + x10) + 3x5 + 4x11 + 5x8 +

6(x6 + x15) + 8x14 + 9(x12 + x13), (4.4)
z0 = x0 + 2(x1 + x5 + x9 + x13) +

4(x2 + x6 + x10 + x14) + 6(x4 + x8 + x12) +
8(x3 + x7 + x11 + x15), (4.5)

y = 104z4 + 103z3 + 102z2 + 10z1 + z0, (4.6)

where zi(i = 0, 1, 2, 3, 4) represents the logic function for
LUTi.

Since equations (4.1) – (4.5) represent WS functions, we
can use the properties in Section 3 to construct an LUT cas-
cade having small amount of memory. Also, we can reduce
the number of levels for the LUT cascade.

The LUT cascade shown in Fig. 4.2(a) realizes equa-
tion (4.5). Each LUT has only one external input xi. As
shown in Table 4.1, weight coefficients are non-negative in-
teger. Equation (4.5) has only non-zero weight coefficients.
Note that equation (4.3) representing the digit 102, has zero
weight coefficients w12, w11, w10,w6, . . ., w0 which are
multiplied by x12, x11, x10, x6, . . ., x0.

In the circuit realization, terms with zero coefficients are
omitted, and the input variables are reordered so that the
weights are arranged in increasing order.

To find the minimum cascades, we consider the cases
where adjacent LUTs are merged and not. Let s be the num-
ber of LUTs in the LUT cascade. The number of different
combinations is 2s−1. In this case, the input variable xi

incidents to LUTi, and each LUT has d = �log2 p� two-

x0 x1 x2 xn-1

Figure 4.3. LUT Cascade.

(a)

(b) (d)

(c)A B C A B, C

A, B, CCA, B

Figure 4.4. All Possible LUT Cascade Real-
izations for the LUT cascades with 3 cells.

valued inputs. With these constraints, we have 2s−1 differ-
ent combinations for all LUT cascades realizations.

Theorem 4.1 Consider the LUT cascade in Fig. 4.3, where
the variable ordering and assignment to the cells are fixed.
In this case, the LUT cascade with the minimum memory
size can be found among 2s−1 different combinations.
(Proof: Omitted)

Example 4.1 Figure 4.4(a)–(d) show the all possible LUT
cascade realizations for the LUT cascades with 3 cells
shown in (a). (End of Example)

The next lemmas show methods to detect mergeable
LUTs in an LUT cascade.

Lemma 4.1 Consider the LUT cascade in Fig. 4.5, where
LUT H has k inputs and k outputs. In this case, without
increasing the amount of memory, two LUTs can be merged
into one.
(Proof: Omitted)

By using Lemma 4.1, we can find mergeable LUTs. In
Fig. 4.5, we can reduce the LUT H and one level.

Lemma 4.2 Consider the LUT cascade shown in Fig. 4.6,
where LUT H has k-input and (k − 1)-output, and LUT G
has k-input (k− 1)-output. In this case, without increasing
the amount of memory, two LUTs can be merged into one.
(Proof: Omitted)

Lemma 4.2 shows a method to reduce one levels without
increasing total amount of memory. For other cases, the
merge of adjacent LUTs will increase the total amount of
memory.
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Algorithm 4.1 (Merge of LUTs)

1. Obtain the LUT cascade for the WS function where
each LUTi has only one external input xi, (i =
0, 1, . . . , s− 1).

2. Apply Lemma 4.1 to the LUT cascade repeatedly.
3. Apply Lemma 4.2 to the LUT cascade repeatedly.

Theorem 4.2 Algorithm 4.1 produces the LUT cascade
with the minimum memory size.
(Proof: Omitted)

Offen, we need the LUT cascade with fewer levels by
increasing the amount of memory. This can be done as fol-
lows: Let s be the number of LUTs in the LUT cascade
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obtained by Algorithm 4.1. The number of combinations
to merge adjacent LUTs or not is 2s−1. Among these cas-
cades, select the LUT cascade that satisfies required speci-
fication.

Example 4.2 Figure 4.2 shows the design process of the
LUT cascade for the equation (4.5) by using Algorithm 4.1.
The integer in each LUT in (e) and (f) denotes the size of the
memory.

• Figure 4.2(a) shows the LUT cascade for the equation
(4.5), where each LUT has only one external input xi.
The total memory size is 6, 778, and the number of lev-
els is 16.
• In the binary to decimal conversion, the input x0 di-

rectly represents the output BIT (y0, 0) [6]. Thus, we
can remove the term x0 from the equation (4.5). Next,
factor it by two, and we have the formula shown in (b).
• (d) shows the LUT cascade that corresponds to the

equation (c). The total memory size is 2, 818, and the
number of levels is 15.
• (e) shows the LUT cascade that is obtained by applying

Lemma 4.1 to (d) repeatedly. The total memory size is
2, 176, and the number of levels is 9.
• (f) shows the LUT cascade that is obtained by ap-

plying Lemma 4.2 to (e) repeatedly. The total mem-
ory size is 2, 176, and the number of levels is 7.

(End of Example)

Note that the outputs of the final LUT are represented by
the BCD code, since they are inputs of BCD adders.

Example 4.3 By applying Algorithm 4.1 to equations (4.1)
– (4.5), we have LUT cascades. Then, we add the out-
puts by BCD adders. Figure 4.7 is the resulting 16-digit
binary to decimal converter, where the total memory size is
5, 324 and uses four decimal adders. Note that the circuit

in Fig. 2.4 requires 8, 216 bits, and uses five BCD adders.
(End of Example)

4.2. Realization Using Arithmetic Decom-
positions of WS Functions

To further reduce the size of memory, we can use arith-
metic decompositions.

Theorem 4.3 A WS function can be represented as a sum
of two WS functions as follows:

WS(�x) =
n−1∑

i=0

wixi = αWSA(�x) + WSB(�x), (4.7)

where WSA(�x) =
∑n−1

i=0 aixi, WSB(�x) =
∑n−1

i=0 bixi,
and α is an integer. This is the arithmetic decomposition,
where α is the decomposition coefficient.

α can be an arbitrary integer, where 1 ≤ α <∑n−1
i=0 wixi. In this part, we consider only the case, where

α = 1, XA ∩XB = Φ, and XA ∪XB = X .
From here, we will consider to reduce the total amount

of memory of LUT cascades by arithmetic decompositions.
When we realize a binary to decimal converter by LUT cas-
cades and BCD adders, the last LUTs have to represent
BCD codes. That is, the last LUT need to have the decoding
function. Thus, we will decompose the LUT cascade except
for the last LUT by a binary adder.

When the numbers of bits in two inputs of a binary adder
are balanced, we can use a smaller adder. So, we try to par-
tition the input variables so that the sum of weight coeffi-
cients will balance.

Algorithm 4.2 (Partition of the inputs into two for arith-
metic decomposition)

1. XA ← φ; XB ← φ; IN ← {w0, w1, w2, . . . , wn−1};
2. If IN = φ then goto step (7);
3. Let wi be the minimum element in IN ;
4. IN ← IN − {wi};
5. If (|XA| ≤ |XB|), then XA ← XA+{xi}, else XB ←

XB + {xi};
6. Go to step (2);
7. Sets XA and XB represent a partition of the inputs.

Example 4.4 Figure 4.2(g) is obtained by the arithmetic
decomposition of (f). The total memory size is 1, 344 bits,
and it uses a 4-bit binary adder. (End of Example)

Example 4.5 Figure 4.8 shows the realization of
16bin2dec by applying Algorithm 4.2 to Fig. 4.7. It
uses 3, 788 bits, three binary adders, and four decimal
adders. (End of Example)

Note that Algorithm 4.2 produced a balanced decomposi-
tion.
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Figure 4.8. 16-digit binary to decimal con-
verter using LUT cascades, binary adders,
and BCD adders.

5. Conclusion

In this paper, we presented design methods of p-nary to
q-nary converters. For readability, we showed the concept
by using the examples for p = 2 and q = 10. However, in
Table 4.1, by replacing 2i by pi in the top row and 10j by
qj in the leftmost column, the method can be easily modi-
fied to any radix converters. In this case, a p-nary to q-nary
converters are implemented by using LUT cascades, binary
adders, and q-nary adders.
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