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Abstract

A multiple-valued input address generator produces a
unique address given a multiple-valued input data vector.
This paper presents methods to realize multiple-valued in-
put address generators by multi-level networks of p-input
q-output memories. It shows a method to simplify the ad-
dress generators using an auxiliary memory.

1 Introduction

A multiple-valued input address generator produces an ad-
dress given a multiple-valued input vector. Multiple-valued
input address generators are used in databases, dictionaries,
and password lists. Two-valued input address generators
are used in address lists of the Internet, and memory patch
circuits. In most cases, the number of registered vectors
(stored addresses) is much smaller than the total number of
possible input vectors.
Address generators can be directly implemented by Pro-
grammable Logic Arrays (PLAs)[1] or Content Address-
able Memories (CAMs)[8]. However, these methods re-
quire special logic elements.
Address generators can also be implemented using ordi-
nary logic elements. Fig. 5.1 shows an address generator
implemented by registers, gates and a priority encoder. The
demerit of this circuit is that the interconnections becomes
complex as the number of registered vectors increases.
This paper present a new design method to implement
multiple-valued input address generators by multi-level net-
works of p-input q-output memories.

2 Applications of Address Generators

In this part, we present various applications of address gen-
erators.
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Figure 2.1. Database for multiple-valued logic
researchers.

2.1 Database for Multiple-Valued Logic
Researchers

Consider Table 2.1, which shows a part of a database for
multiple-valued logic researchers [5], and Fig. 2.1, which
shows an implementation. This stores, Researcher num-
ber (integer), Researcher ID (English alphabet), Last name,
First name, Research area 1, Research area 2 and Location.
We assume that the number of researchers in the database is
at most 8000. The database consists of two circuits:

1. A circuit to produce the Researcher number from the
Researcher ID.

2. A circuit to produce Last name, First name, Research
areas, and Location from Researcher number.

The first circuit is implemented by an address generator,
and the second circuit is implemented by an ordinary mem-
ory. Researcher ID consists of 6 letters from the 26-letter
English alphabet or special symbols (the underscore and the
blank). To represent 6 characters, we need 5×6 = 30 bits,
since each character requires 5 bits. On the other hand, to
represent a Researcher number, we need only 13 bits, since
the total number of researchers is at most 8000. Note that, in
this case, the number of possible input combinations is 230,
while the registered input combinations is at most 8000.



Table 2.1. Database for multiple-valued logic researchers.
Number ID Last Name First Name Area 1 Area 2 Location

1 vranes Vranesic Zvonko circuit logic design Toronto
2 moraga Moraga Claudio spectral method fuzzy logic Dortmund
3 smith Smith Kenneth circuit Toronto
4 muzio Muzio Jon spectral method test Victoria
5 miller Miller Michael spectral method logic design Victoria
6 rosenb Rosenberg Ivo clone theory Montreal
7 higuch Higuchi Tatsuo circuit signal processing Sendai
8 kameya Kameyama Michitaka circuit logic design Sendai
9 ishizu Ishizuka Okihiko circuit logic design Miyazaki

10 sasao Sasao Tsutomu logic design decision diagram Iizuka
11 butler Butler Jon logic design decision diagram Monterey
12 mukaid Mukaidono Masao fuzzy logic logic design Tokyo
13 simovi Simovic Dan algebra database Boston
14 perkow Perkowski Marek logic design decision diagram Portland
15 hanyu Hanyu Takahiro circuit logic design Sendai
16 falkow Falkowski Bogdan spectral method logic design Singapore
17 aoki Aoki Takafumi circuit arithmetic Sendai
18 hata Hata Yutaka fuzzy logic image processing Himeji
19 dubrov Dubrova Elena logic design test Stockholm
20 dueck Dueck Gerhard logic design reversible Fredericton
21 thornt Thornton Mitch spectral method decision diagram Dallas
22 drechs Drechsler Rolf decision diagram verification Bremen

2.2 Address Table in the Internet

IP addresses of the internet are often represented by 32 bits.
An address table for a router stores IP addresses and corre-
sponding indeces for the memory that stores the details of
the addresses. We assume that the number of addresses in
the table is at most 40,000. Thus, the number of inputs is
32 and the number of outputs is 16. Note that the address
table must be updated frequently.

2.3 Memory Patch Circuit

The firmware of an embedded systems is usually imple-
mented by Read-only memories (ROMs). After shipping
the product, it is often necessary to modify a part of the
ROM to upgrade to a later version. To convert the address
of the ROM to the address of the auxiliary memory, we use
the address generator shown in Fig. 2.2 [9, 3, 4].

2.4 Properties of Address Generators

The previous three examples of address generators have
common properties:

1. The values of the non-zero outputs are distinct.
2. The typical number of non-zero output values is much

smaller than the maximum possible.
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Figure 2.2. Memory patch circuit.

3. High-speed circuits are required.
4. Data must be updated.

The last condition requires address generators to be pro-
grammable.

3 Definition and Basic Properties

Definition 3.1 A mapping F(�X) : MN → {0,1, . . . ,k},
where M = {0,1, . . . ,m− 1} is an m-valued input integer
function. If F(�ai) �= 0 (i = 1,2, . . . ,k) for k different input
vectors, and F = 0 for other (mn−k) input vectors, then the
the weight of the function is k.



x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x5 = 0 1 3 4 5
x5 = 1 2 6 7

Figure 3.1. Decomposition chart for F.

Definition 3.2 A mapping F(�X) : MN → {0,1, . . . ,k},
where M = {0,1, . . . ,m−1} is an m-valued input address
generation function if F(�ai) = i (i = 1,2, . . . ,k) for k dif-
ferent m-valued registered vectors�ai ∈MN (i = 1,2, . . . ,k),
and F = 0 for other (mn − k) input vectors. In other words,
an m-valued input address generation function produces
addresses ranging from 1 to k for k distinct m-valued vec-
tors and produces 0 (special address) for other vectors.
The multiple-output logic function that represents the out-
put values in binary numbers is the m-valued input address
generation logic function: it is denoted by �F.

Definition 3.3 Consider a function F(�X) :
MN → {0,1, . . .k}, where M = {0,1, . . . ,m− 1} and �X =
(x1,x2, . . . ,xN). Let (�X1,�X2) be a partition of �X. A decom-
position chart of F is the two-dimensional matrix, where
each column label has a distinct assignment of elements in
M to �X1, and each row label has distinct assignment of el-
ements in M to �X2, and the corresponding matrix value is
F(�X1,�X2). The number of different column patterns in the
decomposition chart is the column multiplicity. �X1 denotes
bound variables, and �X2 denotes free variable.

Example 3.1 Consider the decomposition chart in Fig.3.1,
which shows a two-valued input address generation func-
tion F(�X) with weight 7. �X1 = (x1,x2,x3,x4) denotes bound
variables, and �X2 = (x5) denotes the free variable. Note
that the column multiplicity of this decomposition chart is
7. (End of Example)

Lemma 3.1 The column multiplicity of the decomposition
chart for an address generation function with weight k is at
most k + 1.

(Proof) Since the number of non-zero outputs is k, the col-
umn multiplicity never exceeds k + 1. (Q.E.D.)

Lemma 3.2 Let F be an address generation function with
weight k. Then, there exists a functional decomposition

F(�X1,�X2) = G(H(�X1),�X2),

where G and H are address generation functions, and the
weight of G is k, and the weight of H is at most k, and H
takes at most (k + 1)-values.

Table 3.1. Truth table for �H.
x1 x2 x3 x4 y1 y2 y3
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 0 0
0 1 0 0 0 1 1
0 1 0 1 0 0 0
0 1 1 0 1 0 0
0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0

(Proof) Consider a decomposition chart, in which �X1 de-
notes the bound variables, and �X2 denotes the free variables.
Let �X1 = (x1,x2, . . . ,xp), where p > �log2(k+1)�. Let H be
a function where the input variables are X1, and the output
values are defined as follows: Consider the decomposition
chart, where assignments of values to X1 label columns (i.e.,
bound variables). For the assignments to X1 corresponding
to columns with only zero elements, H = 0. For other in-
puts, the outputs are distinct integers from 1 to wh, where
wh denotes the number of columns that have non-zero ele-
ment(s). Since wh ≤ k, the weight of H is at most k, and
the number of output values of H is at most k + 1. On the
other hand, the function G is obtained from F by reducing
some columns that have all zero outputs in the decompo-
sition chart. Thus, the number of non-zero outputs in G
is equal to the number of non-zero outputs in F . Thus, G
is also an address generation function with the weight k.

(Q.E.D.)

Example 3.2 Consider the decomposition chart in Fig.3.1,
Let the function F(�X) be decomposed as F(�X1,�X2) =
G(�H(�X1),�X2), where �X1 = (x1,x2,x3,x4), and �X2 = (x5).
Table 3.1 shows the function �H. It is a 4-input 3-output
address generation logic function with weight 6. The de-
composition chart for the function G is shown in Fig. 3.2.
As shown in this example, the functions obtained by decom-
posing address generation function F are also address gen-
eration functions, and the weights of F and G are both 7.

(End of Example)

In general, a multiple-valued variable can be represented
by using two-valued variables. Thus, an arbitrary multiple-
valued input multiple-valued output function can be repre-
sented as a two-valued input two-valued output network. To



x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

x5 = 0 1 3 4 5
x5 = 1 2 6 7

Figure 3.2. Decomposition chart for G.

implement the network by using two-valued logic elements,
in this paper, we assume that all the multiple-valued vari-
ables are represented by two-valued variables.
Let N be the number of m-valued variables, and let n be the
number of two-valued variables. Then, we have the follow-
ing relation: n = �log2 m�N.

4 Synthesis of Address Generators

Definition 4.1 A pq-element implements an arbitrary p-
input q-output logic function. Its memory size is q2p.

Theorem 4.1 An arbitrary two-valued input n-variable ad-
dress generator with weight k can be realized as a multi-
level network of pq-elements. The number of such elements
is at most � n−q

p−q�, where p > q and q = �log2(k + 1)�.

(Proof) An address generation logic function �F with weight
k can be decomposed as

�F(�X1,�X2) = �G(�H(�X1),�X2),

where X1 = (x1,x2, . . . ,xp). In this case, by Lemma 3.2,
�G(�X ′

1,
�X2) is also an address generation logic function with

weight k. Note that the number of input variables for �G
is reduced to n− (p−q), since the number of output vari-
ables of �H is q = �log2(k +1)�. By iterating this operations
� n−p

p−q� times, we can reduce the number of variables at most
to p. Thus, the address generator can be implemented by
using only pq-elements. The number of elements is at most
� n−p

p−q�+ 1 = � n−q
p−q�. (Q.E.D.)

Example 4.1 The number of non-zero outputs in the 5-
variable address generation function F(�X) shown in Fig.3.1
is k = 7. Since q = �log2(k + 1)� = �log2(7 + 1)� = 3, the
address generator can be realized by 4-input 3-output ele-
ments as shown in Fig. 4.1. (End of Example)

When realizing an address generator by pq-elements, in-
creasing p decreases the number of pq-elements, but in-
creases the total amount of memory. On the other hand,
decreasing p increases the number of pq-element, but de-
creases the total amount of memory. The next theorem
shows a strategy to design address generators using pq-
elements. It finds a value of p that minimizes the least upper
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Figure 4.1. Realization of address generation
function F .
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Figure 4.2. Cascade realization of address
generator.

bound on the total amount of memory without increasing
the number of elements.

Theorem 4.2 When an address generator is implemented
as a multi-level network of pq-elements, the least upper
bound on the total amount of memory is minimized when
p−q = 1 or p−q = 2.

(Proof) When an address generation function is decom-
posed into pq-elements, for each decomposition, we can
reduce the number of input variables by r = p − q. To
reduce n inputs into q, we need s = � n−q

r � functional de-
compositions. To realize the address generator, we need
s pq-elements. Thus, the total amount of memory neces-
sary to implement the address generator is MEM = s ·2pq.
When n is sufficiently large, MEM can be approximated by
( 2r

r ) · (n−q) ·2qq. Since n and q are fixed for a given prob-
lem, only r can be changed. Note that 2r

r takes its minimum
when r = 1 or r = 2. Hence we have the theorem. (Q.E.D.)
Since networks with fewer levels are desirable, we often
select r = p−q = 2 to design the address generator.
Theorem 4.1 shows that we can design an address genera-
tor as a multi-level network of pq-elements by iterations of
functional decompositions.
The next Example 4.2 shows that we can generate various
multi-level logic networks, including cascades.

Example 4.2 Let us design address generators, where the
number of inputs is n = 48 and the weight is k = 255. Since
q = �log2(255 + 1)� = 8, when p = 10, the total amount
of memory is minimized, and also the number of levels is
minimized. For each pq-element, we can reduce the number
of input lines by two. So, by using 20 pq-elements, we can
reduce the number of inputs into 8. For example, we have
the LUT cascade as shown in Fig.4.2. Or, we have the multi-
level logic network shown in Fig. 4.3, where the number
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of levels is 10. In this case, the variables are permutated
during functional decompositions. Note that both structures
require the same amount of memory: 160k bits. We can
further reduce the number of levels by using elements with
more inputs. Fig.4.4 shows an example with p = 11 and
q = 8. In this case, the number of elements is (48−8)/(11−
8) = 14, the number of levels is 8, and the total amount
of memory is 212 k bits. Fig. 4.5 show an example with
p = 12 and q = 8. In this case, the number of elements is
(48− 8)/(12− 8) = 10, the number of levels is 5, and the

Table 4.1. Decomposi-
tion chart for address
generation function F .

x1x2
x3x4x5 00 01 10 11

000 0 0 0 0
001 1 0 0 0
010 2 0 0 0
011 3 0 0 0
100 4 0 0 0
101 5 0 0 0
110 6 0 0 0
111 7 0 0 0

Table 4.2. Truth
table for H.

x1x2 y1

00 1
01 0
10 0
11 0

x1

x2

x5

y1
f1

f2

f3

H

Gx3
x4

Figure 4.6. Address generator for Table 4.1.

total amount of memory is 320 k bits. (End of Example)

Theorem 4.2 shows the strategy for general address genera-
tors. It minimize the least upper bound on the total amount
of memory. For a particular address generator, the total
amount of memory can be minimum for the cases other than
p−q = 2. The next example illustrates this.

Example 4.3 Consider the 5-variable address generation
function F(�X) shown in Table 4.1. Let the function F(�X)
be decomposed as F(�X1,�X2) = G(�H(�X1),�X2), where �X1 =
(x1,x2), and �X2 = (x3,x4,x5). The column multiplicity of the
decomposition chart in Table 4.1 is 2.
Table 4.2 is the truth table of H, and Table 4.3 is the
truth table of G. This address generator can be imple-
mented as Fig.4.6. In this case, the weight of the function
is k = 7, but H is realized by a 2-input 1-output element.

(End of Example)

5 Comparison with Other Realizations

Another method to realize an address generator is shown in
Fig. 5.1. It consist of registers, gates and an encoder. This
method requires one register for each registered vector.
Let n be the number of input variables, and k be the number
of registered vectors. To detect each address, we need a n-
bit register, n copies of coincidence circuits (EXNORs), and
an n-input AND gate. To generate the output address, we



Table 4.3. Truth table for G.
y1 x3 x4 x5 f1 f2 f3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 1 0 0
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

+ + + + + +

++ ++ +

+

+ + + + + + + + +

++++

++

Priority
Encoder

Figure 5.1. Address generator implemented
by registers, gates and a priority encoder.

need a k-input �log2(k + 1)�-output priority encoder. Thus,
in total we need, nk flip-flops, nk coincidence circuits, k
n-input AND gates, and a k-input �log2(k + 1)�-output pri-
ority encoder.
Note that this network can realize only the address gen-
eration logic functions. On the other hand, the multi-level
network of pq-elements can realize wider class of functions.

6 Realization of Logic Functions with Weight
k

Up to now, we have considered the realization of address
generation functions. Next, we consider the realization of
general logic functions.

Theorem 6.1 An arbitrary two-valued n-input u-output
function with weight k is realized as a multi-level network
of pq-elements. The number of elements needed is at most
� n−q

p−q�+ � u
q�, where p > q and q = �log2(k + 1)�.

(Proof) An arbitrary logic function with weight k can be re-
alized as a cascade of an address generator and a decoder,
where the address generator produces unique indices for k
input combinations, and the decoder converts each index
into corresponding outputs. The number of inputs of the
decoder is at most �log2(k + 1)�. By Theorem 4.1, the ad-
dress generator can be realized with s1 = � n−q

p−q� elements.
Also, note that the decoder can be realized by s2 copies of
q-input q-output elements, where s2 is given by s2 = � u

q�.
Thus, total number of elements is s1 + s2 = � n−q

p−q�+ � u
q�.

(Q.E.D.)

Corollary 6.1 An arbitrary two-valued n-variable single-
output logic function with weight k is realized as a multi-
level network of pq-elements. The number of elements
needed is at most � n−q

p−q�, where p > q and q = �log2(k+1)�.

7 Address Generators using Auxiliary Mem-
ory

7.1 Don’t Cares Generated by Multiple-
Valued Input Variables

When an m-valued variable is represented by β = �log2 m�
two-valued variables, if m is not a power of two, then don’t
cares will occur. In other words, for each m-valued vari-
able, we use only m valid combinations out of 2β possible
combinations of two-valued variables. Let N be the num-
ber of m-valued variables. The number of possible combi-
nations of two-valued input variables is 2βN . On the other
hand, the number of valid combinations for multiple-valued
variables is only mN . Thus, the fraction of don’t cares is
2βN−mN

2βN = 1−( m
2β )N . For example, when N = 6,m = 28, we

have β = 5. The fraction of don’t cares is 1− ( 28
32)6 ≈ 0.55.

We can use these don’t cares to simplify the address gener-
ators.

7.2 Design of Address Generators

In a typical m-valued input address generator, the number
of non-zero outputs is much smaller than mn, the total num-
ber of input combinations. Thus, we have the following:

Assumption 7.1 Let N be the number of input variables,
and k be the number of registered m-valued vectors. Then,
we have the relation, k << mN.



For example, consider the the case of N = 32, m = 2 and
k = 1000 vectors. The fraction of non-zero outputs over all
input combinations is 1000

232 = 2.3×10−7. From Lemma 3.2,
we can see that the column multiplicity of the decomposi-
tion chart is at most k+1. In fact, in many cases the column
multiplicity is exactly k + 1. Thus, to realize the address
generator by a multi-level network of memories, we need
many cells with �log2(k + 1)�+ 1 inputs and �log2(k + 1)�
outputs.
We now show a method to reduce the amount of hardware
by using an auxiliary memory. Fig. 7.1 illustrates the idea
of the method.

Algorithm 7.1 (Simplification of Address Generators).

1. Let F be an address generation function. Let Network
1 be a circuit that realizes F. Let G be the function
where the output values for the non-registered inputs
in F are replaced by don’t cares.

2. Construct the binary decision diagram for character-
istic function (BDD for CF)[15] that represents the
characteristic function for G. Simplify the BDD by us-
ing don’t cares.

3. From the simplified BDD, produce the memory net-
work (call it Network 2). In general, Network 2 is
simpler than Network 1 that realizes F.

4. When the query data is equal to the registered data,
Network 2 produces correct outputs. When the query
data does not match to any registered data, Network 2
may produce wrong output values.

5. To detect the correct outputs, we use an auxiliary
memory with α = �log2(k + 1)� inputs and n outputs.
This auxiliary memory stores corresponding registered
data for each address.

6. Apply the output address of Network 2 to the auxil-
iary memory, and read out the registered data in the
auxiliary memory. If the output data of the auxiliary
memory is equal to the input data, Network 2 produces
the correct output value. If the output data of the aux-
iliary memory is different from the input data, then the
input data is not registered. Thus, the circuit produces
a special address (0).

7. Since the size of the auxiliary memory is n2α, the cost
of memory is smaller compared with the cost of Net-
work 2.

An ordinary logic circuit can be simplified by don’t cares
[11, 14]. The present method has the following features:

• The number of non-zero outputs (k) of the address gen-
erator function is much smaller than the total number
of input combinations mn. In F , the outputs for the
non-registered inputs are set to don’t cares to produce
G. By simplifying the network for G, we can greatly
reduce the network.

Query data

  Correct
  Address

CoincidenceQuery data

Registered data

 Auxiliary 
  memory

Circuit for G

Temporary 
   Address 

fYes

Figure 7.1. Address generator using auxiliary
memory.

• To verify the correctness of the output of Network 2,
we use an auxiliary memory.

• The size of the auxiliary memory is smaller than that
of Network 2.

The total amount of hardware in the system is smaller than
that of Network 1. In the logic synthesis using memories,
reduction of support variables is important. In the address
generation functions, the fraction of don’t cares is very
large, and we can often reduce the number of support vari-
ables.

Example 7.1 Table 7.1 shows the registered vector table of
an 11-input address generation function. Since the number
of the registered vectors is 15, the address generator has 11
inputs and 4 outputs.

Table 7.1. Registered vector table.

Address Registerd Vector
x1,x2 · · ·x11

1 00100101100
2 00111110101
3 00111110110
4 01001100101
5 01001101111
6 10000100100
7 10001100101
8 10001101001
9 10001101111

10 10100001001
11 10100100100
12 11000110101
13 11001001111
14 11010000000
15 11010001001

Let the output values for the non-registered input vectors
be don’t care. Realize an LUT cascade.



Table 7.2. Truth table for auxiliary memory.

z3 z2 z1 z0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0 1 0 1
0 0 1 1 0 0 1 1 1 1 1 0 1 1 0
0 1 1 0 0 1 0 0 1 1 0 0 1 0 1
0 1 0 1 0 1 0 0 1 1 0 1 1 1 1
0 1 1 0 1 0 0 0 0 1 0 0 1 0 0
0 1 1 1 1 0 0 0 1 1 0 0 1 0 1
1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 0 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 0 0 1 1 0 1 0 1
1 1 0 1 1 1 0 0 1 0 0 1 1 1 1
1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 0 0 0 1 0 0 1

x2

x6 x7 x8
u1 u3

u4

y1
y2

y10
u2

z0

x9 x10 x11

x3

x4

f3
f2
f1
f0

x1
x2

x11
Auxiliary 
 memory

Coincidence 
     circuitz1

z2
z3

Figure 7.2. Address generator using auxiliary
memory.

Fig. 7.2 shows the address generator using an auxiliary
memory. Note that in Fig. 7.2, variables x1 and x5 are not
used as inputs. Table 7.2 shows the content of the auxiliary
memory. The third cell generates the temporary address
(z3,z2,z1,z0).

For this address, we read the auxiliary memory, and
compare the content (y1,y2, . . . ,y11) with the input value
(x1,x2, . . . ,x11). If they agree, the temporary address is cor-
rect, and we produce ( f3, f2, f1, f0) = (z3,z2,z1,z0) as the
output. Otherwise, the input query data is not in the auxil-
iary memory, and we produce ( f3, f2, f1, f0) = (0,0,0,0) as
the output.

We designed an LUT cascade with the following condi-
tions: Each cell has at most five inputs and at most four
outputs, and the number of levels is three. Fig. 7.2 shows the
cascade. Total amount of memory is 208 bits. Tables 7.3,
7.5, and 7.4 are truth tables for the cells. (End of Example)

Table 7.3. Truth
table of the 1st
cell.

x2x3x4x6x7 u1u2
00000 00
00001 01
00010 10
00011 11
00100 01
00101 00
00110 00
00111 01
01000 01
01001 00
01010 00
01011 01
01100 00
01101 01
01110 10
01111 11
10000 01
10001 00
10010 00
10011 01
10100 00
10101 01
10110 10
10111 11
11000 00
11001 01
11010 10
11011 11
11100 01
11101 00
11110 00
11111 01

Table 7.4. Truth
table of the 3rd
cell.

u3u4x9x10x11 z3z2z1z0
00000 0111
00001 0101
00010 0111
00011 0101
00100 1101
00101 0010
00110 1100
00111 1011
01000 0111
01001 1111
01010 0111
01011 0101
01100 1000
01101 0011
01110 0111
01111 1010
10000 0111
10001 0001
10010 0111
10011 0101
10100 0110
10101 1110
10110 0111
10111 1001
11000 0111
11001 0101
11010 0111
11011 0101
11100 0111
11101 0100
11110 1100
11111 1011

Table 7.5. Truth table of the 2nd cell.

u1u2x8 u3u4
000 00
001 01
010 01
011 00
100 10
101 10
110 11
111 00

8 An Address Generator for an English-
Japanese Dictionary

For simple English communication, we prepare a dictio-
nary consisting of 1500 English words. To make a list of
1500 English words using a single memory or a single cir-
cuit is unrealistic. Therefore, we partition the list into three
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Figure 8.1. Implementation of
English-Japanese dictionary.

groups, so that each list contains at most 500 words. Let the
names of three lists be Word list A, Word list B, and Word list
C. The maximum number of letters in the word lists is 13,
but we only consider the first 8 letters. For English words
consisting of fewer than 8 letters, we append blanks to make
the length of words 8. We represent each alphabetic char-
acter by 5 bits. So, all the English words are represented by
40 bits. We assume that each group has at most 500 English
words, and each word has unique address from 1 to 500.
The address is represented by 9 bit.
Fig. 8.1 shows the English-Japanese dictionary consisting
of the address generator and a ROM. In this dictionary, the
address generator finds the address of the English word, and
the ROM produces the Japanese translation. Note that in
Japanese, 80 outputs are needed to represent the Chinese
characters and KANA characters.
The size of the auxiliary memory is n2α, where α =
�log2(k + 1)�, k + 1 = 501 (number of words +1), and
n = 40 (number of bits to represent an English word). Thus,
we need 40×29 = 20 k bits.
Tables 8.1∼ 8.3 compare the size of memories, where ad-
dress generators are implemented either by a simple LUT
cascade, or by a cascade and an auxiliary memory. As
shown in these tables, address generators using auxiliary
memories are about one fourth the size of simple cascade
realizations. In this case, only 500 combinations out of 240

input combinations of address generators are specified, and
other combinations are all don’t cares.

9 Conclusion

In this paper, we presented design methods for multiple-
valued input address generators using memories. An ad-
dress generator with k registered vectors can be imple-
mented by memories with �log2(k + 1)� + 1 inputs and
�log2(k + 1)� outputs.

Table 8.1. Amount of memory (Word list A).
Simple Simplified
cascade

realization with DCs
Maximum number of rails 9 8
Number of cells 9 5
Total number of cell outputs 77 28
Size of auxiliary memory 0 20480
Total amount of memory 315392 91136

Table 8.2. Amount of memory (Word list B).
Simple Simplified
cascade

realization with DCs
Maximum number of rails 9 8
Number of cells 10 5
Total number of cell outputs 87 30
Size of auxiliary memory 0 20480
Total amount of memory 325384 89088

Table 8.3. Amount of memory (Word list C).
Simple Simplified
cascade

realization with DCs
Maximum number of rails 9 6
Number of cells 10 4
Total number of cell outputs 87 23
Size of auxiliary memory 0 20480
Total amount of memory 325384 83968

We also presented a method to simplify the address gener-
ator using an auxiliary memory. The outline of this method
is

1. The output values for non-registered inputs are set to
don’t cares. Realize the incompletely specified logic
function.

2. Verify the output of the address generator by an auxil-
iary memory. If the output is correct, produce it as it
is, otherwise the outputs is set to zero.

Address generators can be efficiently implemented by mem-
ories. For this application, we can also use CAMs. However
CAMs dissipate more powers than ordinary SRAMs[12].
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