Representations of Elementary Functions Using Binary Moment Diagrams

Tsutomu Sasao

Department of Computer Science and Electronics,

Kyushu Institute of Technology
lizuka 820-8502, Japan

Abstract

This paper considers representations for elementary
functions such as polynomial, trigonometric, logarithmic,
square root, and reciprocal functions. These real val-
ued functions are converted into integer functions by us-
ing fixed-point representation, and they are represented by
using binary moment diagrams (BMDs). Elementary func-
tions are represented compactly by applying the arithmetic
transform to the functions. For polynomial functions, up-
per bounds on the numbers of nodes in BMDs and multi-
terminal binary decision diagrams (MTBDDs) are derived.
These results show that for polynomial functions, BMDs re-
quire fewer nodes than MTBDDs. Experimental result for
16-bit precision sin(x) function shows that the BMD re-
quires only 20% of the nodes for the MTBDD.

1. Introduction

Binary decision diagram (BDD) [1, 11] is the most pop-
ular decision diagram, and is extensively used in logic syn-
thesis, verification, logic simulation, etc. BDDs can rep-
resent many practical logic functions compactly, but can-
not represent the multiplier function with reasonable size.
To represent such functions compactly, the arithmetic trans-
form decision diagram (ACDD) [16], the binary moment
diagram (BMD) [2], the multiplicative BMD (*BMD) [2],
the Kronecker * BMD (K*BMD) [7], and the Taylor expan-
sion diagram (TED) [3] have been proposed. ACDD and
BMD represent a given integer function using the arith-
metic transform expansion, while the multi-terminal BDD
(MTBDD) [4] represents the function using the Shannon
expansion. Decision diagrams based on the arithmetic
transform represent integer functions, such as adder and
multiplier, with polynomial sizes of the number of input
variables [2, 16]. In this paper, elementary functions [13]
are converted into integer functions, and they are repre-
sented by BMDs. Theoretical and experimental results
show that BMDs represent elementary functions compactly.

Shinobu Nagayama

Department of Computer Engineering,
Hiroshima City University
Hiroshima 731-3194, Japan

2. Preliminaries

Definition 1 Let B = {0,1}, P = {0,1,...,p — 1} where
p > 2, and R be the set of real numbers. An n-input m-
output logic function (or multiple-output logic function) is
a mapping: B" — B™, an integer function is B" — P, and
a real function is R — R.

Definition 2 The binary fixed-point representation of a

value r has the form
dn_int—l dn_int—Z d0~ d—l d—n_fram (1)

where d; € {0, 1}, n_int is the number of bits for the integer

part, and n_frac is the number of bits for the fractional part
of r. The representation in (1) is two’s complement, and so

) n-int—=2
r= _2n_lm_ldn_int—l + Z 2'd;.

i=—n_frac

In this paper, when we consider only non-negative number
r, its fixed-point representation excludes sign-bit.

Definition 3 Precision is the total number of bits for a bi-
nary fixed-point representation. Specially, n-bit precision
specifies that n bits are used to represent the number; that is,
n = n_int +n_frac. In this paper, an n-bit precision func-
tion f(X) means that the input variable X is n-bit precision.

By fixed-point representation, we can convert n-bit pre-
cision real valued functions into n-input m-output logic
functions. The multiple-output functions can be converted
into integer functions by considering m-bit binary vectors
as integers. That is, we can convert n-bit precision real
valued functions into integer functions: B" — P, where
P=1{0,1,...,2" — 1}. In this paper, we convert elementary
functions into integer functions by using n-bit fixed-point
representation. Real valued functions in this paper are con-
verted into integer functions, unless stated otherwise.

Definition 4 Ler A and B be (n x n) square matrices, where

aj] a2 ... dip

aj) ayp ... dAyp
A=| 7 .

anl ap2 ... app

The Kronecker product of A and B is defined as the follow-
ing (n2 X nz) matrix:
anB apB ... a,B
a B anpB ... ay,B
ADB— 2.1 2'2 2'n

anB apB ... a,,B

3. Arithmetic Transform

This section describes the arithmetic transform and the
arithmetic spectrum. For details, see [16].

Definition 5 Let A(n) be the arithmetic transform matrix
defined by

— @4, am=[_19].
i=1

where the addition and the multiplication are done in inte-
ger. For an integer function f given by the function-vector
F, the arithmetic spectrum Ay = [ag,ai, ... ,ay 1] is

Ap= A(n)F.
Each a; in the spectrum is called the arithmetic coefficient.

Example 1 Consider the integer function f(x1,x2) = x1 +

x2. The function-vector is F = [0,1,1,2]". The arithmetic
spectrum is
1 0 00 0 0
_ _|-1 1 00 1] _ |1
Ar=ARQF=1"1 o To||1|™ |
1 -1 —-11 2 0
(End of Example)

Definition 6 Let A=!(n) be the inverse arithmetic trans-
Jorm matrix defined by

~1(n) = Qa~I(1), A*‘(l):“ ﬂ
i=1

The matrix A~ (n) has the same form as the Reed-Muller
transform matrix R(n). Thus, it is also called the integer
Reed-Muller matrix

Definition 7 In a symbolic representation,
AT =11 x].

Thus, the inverse arithmetic transform is defined as

:@[1 xi]

f = XaA‘ fo X

(a) MTBDD for f.

(b) BMD for f.
Figure 1. MTBDD and BMD for f = x| + x».

Example 2 From the inverse arithmetic transform and the
arithmetic spectrum obtained in Example 1, the integer
function f is represented as follows:

f=XAr=1[1 x x1 xix2] =x1 +x2.

S==O

(End of Example)

Definition 8 Using A~'(1) and A(1), an integer function f
is represented as follows:

f =AY DAF =1 xl'][{] “‘C?]

=11 x"][flf—ofo} fo+xi(fi — fo), 2

where fo = f(xi =0), fi = f(xi = 1). (2) is the arithmetic
transform expansion (also called A-expansion or moment
decomposition). The arithmetic expression for f is ob-
tained by the arithmetic transform expansion. The arith-
metic coefficients correspond to coefficients of the arith-
metic expression for f.

4. BMD (Binary Moment Diagram)

Definition 9 A binary moment tree (BMT) is obtained
by applying the arithmetic transform expansion f = fo +
xi(fi — fo) to a given integer function f recursively. A bi-
nary moment diagram (BMD) is derived from the BMT by
using the following reduction rules:

1. Share equivalent sub-graphs.

2. If the outgoing edge of a node v labeled with x; points
to the constant zero, then delete the node v and connect
the edges pointing v to the other outgoing edge of v
directly.

Example 3 Fig. I(a) shows the MTBDD for the integer
function f in Example 1. Fig. 1(b) shows the BMD for f.
In the figures, the nodes labeled with S denote the Shannon
expansion, while the nodes labeled with A denote the arith-
metic transform expansion. (End of Example)

Terminal nodes in a BMD represent the arithmetic spec-
trum Ay for a function f, while terminal nodes in an
MTBDD represent the function-vector ' of f. Thus, the
number of terminal nodes in a BMD is equal to the num-
ber of distinct arithmetic coefficients. On the other hand, in
an MTBDD, it is equal to the number of distinct function
values.

For X* and kth-order polynomial functions, we can com-
pute the numbers of non-zero arithmetic coefficients and
nodes in BMDs from the values of precision n and poly-
nomial order k. The following lemma and theorem give
the number of non-terminal nodes in the BMD for the n-bit
precision function f(X) = X, and the upper bound on the
number of nodes in a BMD for an n-bit precision kth-order
polynomial function.

Lemma 1 For the n-bit precision function f(X) = X, the
number of non-zero arithmetic coefficients is

% (1)

Lemma 2 For an n-bit precision kth-order polynomial
Sunction f(X) =co+c1X + X2+ ...+ Xk, the number
of non-zero arithmetic coefficients is at most

%(0)

Lemma 3 For an n-bit precision kth-order polynomial
function f(X) = co+c1X +caX? + ...+ X, when ¢; > 0
and X > 0, the number of non-zero arithmetic coefficients is

%(0)

Lemma 4 For the n-bit precision function f(X) = X, the
number of non-terminal nodes in the BMD is

on,k) = i (")

i=1 \!

(Proof) See Appendix.

(Proof) See Appendix.

(Proof) See Appendix.

(Proof) See Appendix.

In [7], similar problem has been considered. But it shows
only an upper bound, and is not tight. On the other hand,
Lemma 4 gives the exact number.

Lemma 5 For an n-bit precision kth-order polynomial
function f(X) = co+c1X +caX? + ...+ i XX, the number
of non-terminal nodes in the BMD is at most

% (1)

1e+06

BMD —<—
MTBDD —x—
100000 ¥
3 10000
©
o
c
o 1000
(9]
Q
5
3 100
10
1

0 2 4 6 8 10 12 14 16
Polynomial order k
Figure 2. Number of nodes in BMDs and MTB-

DDs for 16-bit precision kth-order polynomial
functions.

(Proof) See Appendix.

Theorem 1 For an n-bit precision kth-order polynomial
function f(X) = co+c1X +c2X? + ... + XK, the total
number of non-terminal nodes and terminal nodes in the

BMD is at most
Kk /n
22(,)—1.
i=0 \!

(Proof) See Appendix.

Lemma 6 For an n-bit precision function f(X), if f(X) is
an injection, i.e., the relation o. # 3 — f(o) # f(B) holds
on any o. and B, then the number of nodes in the MTBDD
for f(X) is 2" — 1.

(Proof) See Appendix.

Corollary 1 For an n-bit precision kth-order polynomial
function f(X) = co+c1X +caX?+ ...+ i XX, the number
of nodes in the MTBDD for f(X) is at most 2"*! — 1. When
¢i > 0and X > 0, the number of nodes in the MTBDD for
f(X)is2m ! —1.

Example 4 Fig. 2 compares the upper bounds on the num-
ber of nodes in BMDs and MTBDD:s for 16-bit precision
kth-order polynomial functions. Fig. 3 compares the up-
per bounds on the number of nodes in BMDs and MTB-
DDs for n-bit precision 3rd-order polynomial functions.

(End of Example)

When the precision » is fixed, the upper bound on the
number of nodes in BMD for kth-order polynomial function
increases with k. On the other hand, in an MTBDD, the
upper bound on the nodes is 2""! — 1 independently of k.
Thus, when k is small, the upper bound on nodes in a BMD
is smaller than that in an MTBDD.

1e+06

BMD ——
MTBDD -
100000 F A
,rX/
% 10000 F e 4
g
o *
:
S 1000 | s 1
(9] K
o -
3 100 | e 1
10 4
1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
Precision n

Figure 3. Number of nodes in BMDs and MTB-
DDs for n-bit precision 3rd-order polynomial
functions.

Table 1. Numbers of non-zero arithmetic co-
efficients for randomly generated »-bit preci-
sion 4th-order polynomial functions.

Precision Number of arithmetic coefficients
n || Upper bound | Non-zero | Distinct
7 99 99 78
8 163 163 111
9 256 256 152

10 386 386 202
11 562 562 262
12 794 794 333
13 1093 1093 416
14 1471 1471 512
15 1941 1941 622
16 2517 2517 747

Function values are not rounded (i.e error-free),
and have more bits than n.

When the polynomial order % is fixed, the upper bound
on the number of nodes in BMD for n-bit precision polyno-
mial function increases more slowly than that in MTBDD
with n. Furthermore, Corollary 1 shows that the upper
bound for the MTBDD is tight when all the coefficients c;
are positive. Thus, when 7 is large, BMDs require many
fewer nodes than MTBDDs.

From the above observations, we can see that for n-bit
precision kth-order polynomial functions, BMDs require
fewer nodes than MTBDDs when k is smaller than n. Usu-
ally, the polynomial order k is smaller than precision n.
Thus, for practical polynomial functions, BMDs are more
compact than MTBDDs.

5. Experimental Results

5.1. Number of Arithmetic Coefficients

Polynomial Functions: To verify the tightness of the up-
per bound in Lemma 2, we randomly generated n-bit preci-
sion 4th-order polynomial functions f(X) = c4X*+ c3X3 +

Table 2. Numbers of distinct arithmetic coef-
ficients for 16-bit precision elementary func-
tions.

Elementary Number of distinct values | Ratio
functions Function Coefficients [%]
2*—1 59895 148 | 0.25
1/v/x+1-0.707 19196 174 | 0.90
In(x+1) 45427 165 | 0.36
logy (x+1) 59895 160 | 0.27
x+1-1 27147 138 | 0.50
2/(x+1)—1 54292 180 | 0.33
sin(x) 55147 141 | 0.25

Function values are rounded to 16-bit precision.
Domain of the functions is 0 < x < 1.
Ratio = Coefficients / Function values x 100.

X241 X+ co where X > 0 (i.e., we generated 5 uniform
random numbers for coefficients, where each coefficient has
16-bit precision: |¢;| < 2!%). Table 1 compares the num-
ber of non-zero arithmetic coefficients for f with the upper
bound. In Table 1, the columns labeled with “Non-zero”
and “Upper bound” show the numbers of non-zero arith-
metic coefficients for f(X) and their upper bounds given
by Lemma 2, respectively. The column “Distinct” shows
the number of distinct arithmetic coefficients for f(X). For
each precision n, we randomly generated 10 polynomial
functions. For all of the generated functions, the numbers
of non-zero arithmetic coefficients are equal to the upper
bounds. This fact verifies the theoretical result (Lemma 2).
Table 1 shows that for polynomial functions, many arith-
metic coefficients are 0, and many non-zero coefficients
have identical values as well.

Non-polynomial Functions: In addition to the polyno-
mial functions, we represented the non-polynomial elemen-
tary functions shown in Table 2. Table 2 compares the num-
bers of distinct function values and distinct arithmetic coef-
ficients for 16-bit precision elementary functions. For each
elementary function, its domain is 0 < x < 1 and the func-
tion values are rounded to 16-bit precision. Table 2 shows
that the elementary functions are transformed into the com-
pact arithmetic spectrum. For ﬁ —0.707and vx+1—1,
the numbers of distinct function values are smaller than
other functions, since their range is smaller than the others.
On the other hand, the numbers of distinct arithmetic coef-
ficients are much smaller than that of function values inde-
pendently of the range of functions. The numbers of distinct
function values and distinct arithmetic coefficients corre-
spond to the numbers of terminal nodes in the MTBDD and
the BMD, respectively. Thus, BMDs require many fewer
terminal nodes than MTBDDs to represent the elementary
functions.

5.2. Number of Nodes in BMD

Polynomial Functions: Table 3 compares the numbers
of nodes in BMDs and in MTBDDs for randomly gener-

Table 3. Numbers of nodes in BMDs and MTB-
DDs for randomly generated n-bit precision
4th-order polynomial functions.

n MTBDD BMD Ratio

Bound | #Nodes | Bound | #Nodes [%]

7 255 255 197 175 69

8 511 511 325 272 53

9 1023 1023 511 406 40
10 2047 2047 771 586

29
11 4095 4095 1123 822 20
12 8191 8191 1587 1125 14
13 16383 16383 2185 1507 9
14 32767 32767 2941 1981 6
15 65535 65535 3881 2561 4
16 || 131071 | 131071 5033 3262 2

Function values are not rounded (i.e error-free).
Ratio = (BMD nodes / MTBDD nodes) x 100.

Table 4. Numbers of nodes in BMDs and
MTBDDs for 16-bit precision elementary func-
tions.

Elementary Number of nodes | Ratio
functions MTBDD | BMD [%]
2*—1 122659 | 29634 24

1/vVx+1-0.707 58412 | 28446 49

In(x+1) 100880 | 28442 | 28
log, (x+1) 122542 | 29553 | 24
11 73406 | 26149 | 36
2/(x+1)—1 114093 | 28348 | 25
sin(x) 115450 | 22638 | 20

Function values are 16-bit precision.
Domain of the functions is 0 < x < 1.
Ratio = (BMD / MTBDD) x 100.

ated n-bit precision 4th-order polynomial functions f(X).
In Table 3, the columns labeled with “MTBDD” and
“BMD” show the numbers of nodes in MTBDDs and BMDs
for f(X), respectively. The sub-columns “#Nodes” and
“Bound” show the number of nodes for f(X) and its up-
per bound, respectively. The upper bounds for BMD and
MTBDD are derived by Theorem 1 and Corollary 1, respec-
tively. As shown in Table 1, for the polynomial functions,
many arithmetic coefficients are 0, and many non-zero coef-
ficients have identical values. Thus, the numbers of nodes in
BMDs for the polynomial functions are smaller than the up-
per bounds in Theorem 1 by the reduction rule for BMDs.
On the other hand, in MTBDDs for the polynomial func-
tions, the numbers of nodes are 2! — 1, since for all the
generated polynomial functions, Lemma 6 holds.

Non-polynomial Functions: Table 4 compares the num-
bers of nodes in BMDs with that in MTBDDs for 16-bit
precision elementary functions. As shown in Table 2, for
the elementary functions, BMDs require many fewer termi-
nal nodes than MTBDDs. Thus, the total numbers of nodes
in BMDs are smaller than that of MTBDDs. Especially, for
an important elementary function sin(x), the BMD requires
only 20% of the nodes for the MTBDD.

6. Conclusion and Comments

This paper considered BMD and MTBDD representa-
tions for elementary functions such as polynomial, trigono-
metric, logarithmic, square root, and reciprocal functions.
We derived the number of nodes in BMDs for kth-order
polynomial functions, and confirmed that the BMDs require
fewer nodes than the MTBDDs. Especially, when the preci-
sion n is larger than the polynomial order k, BMDs require
many fewer nodes than MTBDDs. Experimental result us-
ing 16-bit precision sin(x) function shows that the BMD
requires only 20% of the nodes for the MTBDD.

This paper showed that the arithmetic transforms repre-
sent elementary functions compactly. We conjecture that
other decision diagrams based on the arithmetic transform
(e.g., ACDD, *BMD, K¥BMD) also represent elementary
functions efficiently. In the past, many people consider the
arithmetic transforms [5, 6, 8, 9, 10, 12, 14, 17, 18, 19].
However, to the best of the authors’ knowledge, this paper
first considered representations of elementary functions by
arithmetic transform.

Since BMDs represent elementary functions compactly,
BMDs are promising for verification of hardware for ele-
mentary functions, and for the alternative implementation
of embedded RAM on FPGA for the function tables.

Acknowledgments

This research is partly supported by the Grant in Aid
for Scientific Research of the Japan Society for the Promo-
tion of Science (JSPS), funds from Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) via Ki-
takyushu innovative cluster project.

References

[1] R.E. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Trans. on Comput., Vol. C-35, No. 8, pp. 677-691,
Aug. 1986.

[2] R. E. Bryant and Y-A. Chen, “Verification of arithmetic circuits
with binary moment diagrams,” Design Automation Conference,
pp. 535-541, 1995.

[3] M. J. Ciesielski, P. Kalla, Z. Zheng, and B. Rouzeyre, “Taylor ex-
pansion diagrams: A compact canonical representation with appli-
cations to symbolic verification,” Design, Automation and Test in
Europe (DATE2002), pp. 285-289, 2002.

[4] E. M. Clarke, K. L. McMillan, X. Zhao, and M. Fujita, “Spectral
transforms for extremely large Boolean functions,” IFIP WG 10.5
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design, pp. 86-90, Sept. 1993.

[5] B.J. Falkowski, “A note on the polynomial form of Boolean func-
tions and related topics,” IEEE Trans. on Comput., Vol. 48, No. 8,
pp. 860-864, Aug. 1999.

[6] K. D. Heidtmann, “Arithmetic spectrum applied to fault detection
for combinational networks,” IEEE Trans. on Comput., Vol. 40,
No. 3, pp. 320-324, Mar. 1991.

[7]1 S.Horeth and R. Drechsler, “Formal verification of word-level spec-
ifications,” Design, Automation and Test in Europe (DATE1999),
pp. 52-58, 1999.

[8] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic, Academic Press, Bristol, 1985.

[9] J. Jain, “Arithmetic transform of Boolean functions,” Chapter 6 in
[15].

[10] S. K. Kumar and M. A. Breuer, “Probabilistic aspects of Boolean
switching functions via a new transform,” Journal of the ACM,
28(3), pp. 502-520, 1981.

[11] C.Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD — Foundations and Applications, Springer, 1998.

[12] V.-D. Malyugin, Paralleled Calculations by Means of Arithmetic
Polynomials, Physical and Mathematical Publishing Company, Rus-
sian Academy of Sci., Moscow, Russia, 1997.

[13] J.-M. Muller, Elementary Function: Algorithms and Implementa-
tion, Birkhauser Boston, Inc., Secaucus, NJ, 1997.

[14] S. G. Papaioannou and W. A. Barrett, “The real transform of a
Boolean function and its application,” Computer and Electronic En-
gineering, Vol. 2, pp. 215-224, Pergamon Press, 1975.

[15] T. Sasao and M. Fujita (eds.), Representations of Discrete Func-
tions, Kluwer Academic Publishers, 1996.

[16] R. Stankovic, T. Sasao, and C. Moraga, “Spectral transform decision
diagrams,” Chapter 3 in [15].

[17] R. Stankovic and T. Sasao, “A discussion on the history of research
in arithmetic and Reed-Muller expressions,” IEEE Trans. on CAD,
Vol. 20, No. 9, pp. 1177-1179, Sept. 2001.

[18] R. Stankovic and J. Astola, Spectral Interpretation of Decision Di-
agrams, Springer Verlag, New York, 2003.

[19] M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral Tech-
niques in VLSI CAD, Springer, 2001.

Appendix

Proof for Lemma 1 From the property of the arithmetic
transform, the number of non-zero arithmetic coefficients
is equal to the number of terms in the expression that is
obtained by expanding and rearranging the following:

xk = (—2"71xn71 +2" 2 a4 42N+ 20x0)k,

where)cl-2 =x; (i=0,1,2,...,n—1) because x; is a Boolean
variable. In the expression expanded and rearranged, the
number of terms with a single literal (i.e, terms of x;) is (7).
And, the number of terms with two literals (i.e, terms of x;x;
(i < j))is (3). Similarly, the number of terms with k literals

is (7). Therefore, the total number of terms is ¥, (7). 1

Example A.1 Consider the 4-bit precision function f(X) =
X2 From X = —8x3+4xy + 2x| + xo, we have

x? (—8x3 —|—4x2—|—2x1—|—x0)2
= (64x3 + 1653 + 4% +x3) +2(—32x2x3 — 163113
—8x0x3 + 8x1x2 + 4xoxz + 2x0x1)
64x3 + 16x3 + 4x1 + x9 — 64x2x3 — 32x1x3
—16x0x3 + 16x1x2 + 8x0x2 + 4x0X7 .

Note that this expression has 10 terms. The number of
non-zero arithmetic coefficients obtained by Lemma 1 is
(‘D + (g) =44+ 6 =10, and it is identical to the number
of terms in the above expression. (End of Example)

Proof for Lemma 2 From the proof for Lemma 1, it is
clear that the sets of terms obtained by expanding and re-
arranging X' (i = 1,2,...,k — 1) are proper subsets of the
set of terms for X* if coefficients of the terms are ignored.
When ¢ # 0, the arithmetic coefficient for the constant term
(g) must be considered. Therefore, Lemma 2 holds. 1

Proof for Lemma 3 From the proof for Lemma 1, when
X > 0, all the non-zero arithmetic coefficients for X' (i=
1,2,...,k) are positive. Since ¢; > 0, the number of non-
zero arithmetic coefficients for f(X) is equal to its upper
bound.]

Proof for Lemma 4 In a BMT for X¥, let the variable or-
der be xg,x1,...,X,_1, from the root node to terminal nodes.
From the proof for Lemma 1, it is clear that the arithmetic
expression for X* consists of terms with at most k literals.
The arithmetic expression for X* can be represented by a
tree structure representing all the terms in the expression.

Let B(n,k) be the number of nodes in the tree. Then,
B(n, k) satisfies the following relation:

B(n,k) =1+B(n—1,k)+B(n—1,k—1), (A.D)

where 1 is the number of root node, and B(n — 1,k) and
B(n—1,k— 1) are the numbers of nodes in the left sub-treee
and the right sub-tree, respectively.

We show that ou(n, k) satisfies the relation (A.1).

l+an—1,k)+an—1,k—1)

3 () ()

() (2] =2 () et

Therefore, we have the lemma. 1

Proof for Lemma 5 From the proof for Lemma 2, it is
clear that the arithmetic expression for f(X) consists of
terms with at most k literals. The arithmetic expression for
f(X) can be represented by tree structure representing the
all terms in the expression. From the property of the BMT, a
BMT always requires a constant term independently of the
value of the constant term. Therefore, BMD for f(X) has at
most Y5, () non-terminal nodes. 1

Proof for Theorem 1 From Lemma 2, the number of ter-
minal nodes in BMD for £(X) is at most ¥ (7). From
Lemma 5, the number of non-terminal nodes in BMD for

f(X) is at most X¥_, (). Therefore, we have the theorem. I

Proof for Lemma 6 When the number of distinct values
of X is 2", the number of distinct values of f(X) is also 2".
Then, the MTBDD for f(X) is the complete binary tree, and
the number of nodes in the tree is 2"t! — 1. 1

