
On Designs of Radix Converters Using Arithmetic Decompositions

Yukihiro Iguchi 1 Tsutomu Sasao 2 Munehiro Matsuura 2

1 Dept. of Computer Science, Meiji University, Kawasaki 214-8571, Japan
2 Dept. of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka 820-8502, Japan

February 28, 2006

Abstract

In arithmetic circuits for digital signal processing, radixes
other than two are often used to make circuits faster. In
such cases, radix converters are necessary. However, in
general, radix converters tend to be complex. This paper
considers design methods for p-nary to binary converters.
It introduces a new design technique called arithmetic de-
composition. It also compares the amount of hardware and
performance of radix converters implemented on FPGAs.

1 Introduction

Arithmetic operations of digital systems usually use radix
two [7]. However, in digital signal processing, for high
speed operations, p-nary (p > 2) numbers are often used
[1, 4]. In such cases, the conversion between binary num-
bers and p-nary numbers are necessary. Such operation is
radix conversion [2, 6]. Various methods exist to convert
p-nary numbers into binary numbers. Many of them re-
quire large amount of computations. Especially when the
radix conversion is implemented by a random logic circuit,
the network tends to be quite complex [5]. Radix convert-
ers can be implemented by table lookup. That is, to store
the conversion table in the memory. This method is fast but
requires a large amount of memory.

In [9], LUT cascade realizations [8] of binary to ternary
converters, ternary to binary converters, binary to decimal
converters, and decimal to binary converters are presented.
In [11], the concept of Weighted-Sum functions (WS func-
tions) is used to design radix converters by using LUT cas-
cades.

In this paper, we consider the design of circuits that con-
vert p-nary numbers into binary numbers by using arith-
metic decomposition [10]. We also consider the implemen-
tations on FPGAs (Field Programmable Gate Arrays). For
the readability, we use examples for p = 3, however the
method can be easily extended to any value of p.

2 Radix Converter

2.1 Radix Conversion
Definition 2.1 Let a p-nary number of n-digit be �x =
(xn−1,xn−2, . . . ,x0)p, and let a q-nary number of m-digit
be �y = (ym−1,ym−2, . . . ,y0)q. Given a vector �x, the radix
conversion is the operation that obtains�y that satisfies the
relation:

n−1

∑
i=0

xi pi =
m−1

∑
j=0

y jq j, (2.1)

where xi ∈ P, y j ∈ Q, P = {0,1, . . . , p − 1}, and Q =
{0,1, . . . ,q−1}.

Let �y = (ym−1,ym−2, . . . ,y0), yi ∈ {0,1} be the output
functions of p-nary to binary converter. Then, when p
is a prime number, yi depends on all the inputs xi(i =
0,1, . . . ,n− 1). When p is not a power of two, we have an
incompletely specified function. When we implement a p-
nary to binary converter, unused combinations exist. Usu-
ally, we assign 0 to the undefined outputs.

Example 2.1 In the case of ternary to binary converter, we
use the binary-coded-ternary code to represent a ternary
number. That is 0 is represented by (00), 1 is represented by
(01), and 2 is represented by (10). Note that (11) is the un-
used code. Table 2.1 is the truth table of two-digit ternary
to binary converter. In the binary-coded-ternary represen-
tation, (11) is an undefined input, and corresponding output
is don’t care. In Table 2.1, the inputs in the binary-coded-
ternary representation are denoted by �z = (z3,z2,z1,z0).
The inputs in the ternary representations are denoted by
�x = (x1,x0). The output in the binary representations are
denoted by�y = (y3,y2,y1,y0). (End o f Example)

2.2 Direct Method
A straightforward way to implement a radix converter is to
realize the circuit for equation (2.1).

Example 2.2 Consider the 8-digit ternary to binary con-
verter (8ter2bin). In this case, we implement

37x7 + 36x6 + 35x5 + 34x4 + 33x3 + 32x2 + 31x1 + 30x0.
(2.2)



Table 2.1: Truth table of a ternary to binary converter.

Binary-coded Ternary Binary Decimal
-ternary

z3 z2 z1 z0 x1 x0 y3 y2 y1 y0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0 2 0 0 1 0 2
0 1 0 0 1 0 0 0 1 1 3
0 1 0 1 1 1 0 1 0 0 4
0 1 1 0 1 2 0 1 0 1 5
1 0 0 0 2 0 0 1 1 0 6
1 0 0 1 2 1 0 1 1 1 7
1 0 1 0 2 2 1 0 0 0 8

0

13
13

13

11
10

10
12

8

9

6

7

5

2
+

+
+

+
+

+
+

+
x

2x

33 *

*

*

*

*

2

5

2

7

2

8

2

10

2

12

3x

34

4x

35
5x

36
6x

37
7x

2

2

2

2

3

2

3
1x

2
0

0

0
0

0
0 0

0
0

0
0

0

0

0

0

Figure 2.1: 8-digit ternary to binary converter: Direct
Method.

Fig. 2.1 shows the circuit for 8ter2bin produced by a
logic synthesis program. Note that 32x2 is implemented
by 8x2 + x2 and 31x1 is implemented by 2x1 + x1, but 3ixi
(2 < i ≤ 7) are implemented by multipliers. Also, a cascade
adder is used to obtain the result. Since the coefficients
are constants, the multipliers can be replaced by adders.
However, the wiring of resulting circuit is quite complex.

(End o f Example)

3 Arithmetic Decomposition
In the direct implementation of a p-nary to binary converter,
the amount of hardware and the propagation delay increase
with the number of input digits. To reduce the amount of
hardware, we can use arithmetic decomposition [10]. In
this section, we introduce arithmetic decompositions that
are suitable for radix converters.

3.1 WS functions and Their Arithmetic De-
composition

The Weighted Sum function (WS function) is a mathemat-
ical model of radix converters, bit-counting circuits, and
convolution operations [11, 10].

Definition 3.1 An n input WS function [11] is defined as

WS(�x) =
n−1

∑
i=0

wi · xi, (3.1)

where �x = (xn−1,xn−2, . . . ,x1,x0) is the input vector, �w =
(wn−1,wn−2, . . . ,w1,w0) is the weight vector, and each el-
ement is an integer.

Theorem 3.1 A WS function can be represented as a sum
of two WS functions as follows:

WS(�x) =
n−1

∑
i=0

wixi = αW SA(�x)+WSB(�x),

where WSA(�x) = ∑n−1
i=0 aixi, WSB(�x) = ∑n−1

i=0 bixi, and α is
an integer. This is the arithmetic decomposition, and α is
a decomposition coefficient.

3.2 Arithmetic Decompositions using Differ-
ent Coefficients

A radix converter can be represented as a WS function.
Thus, by using arithmetic decompositions with different de-
composition coefficients α, we can implement various radix
converters. In this part, we consider two cases: One uses 2k

as the decomposition coefficient, and the other uses pk as
the decomposition coefficient.
When the decomposition coefficient is 2k : In this case,
the radix converter is realized as

WS(�x) = 2kW SA(�x)+WSB(�x).

Since the multiplication of 2k can be implemented by the
shift (wiring), it is implemented compactly. However, WSB
depends on all the input variables, and the total size of the
circuit is not so small.

When the decomposition coefficient is pk : In this case,
the radix converter is realized as

WS(�x) = pkW SA(�x)+WSB(�x).

The multiplication of pk increases the number of outputs for
pkWSA. However, the numbers of inputs for WSA and WSB
are half of the original function, so the total network will be
much smaller.

Example 3.1 Let us design the 8-digit ternary to binary
converter (8ter2bin). Consider two cases where the decom-
position coefficients are α=26 = 64 and α=34 = 81. The

2



Table 3.1: Coefficients of arithmetic decompositions of the
powers of 3.

Decomposition Coefficients
i 3i α = 26 = 64 α = 34 = 81
0 1 64×0 +1 81×0 +1
1 3 64×0 +3 81×0 +3
2 9 64×0 +9 81×0 +9
3 27 64×0 +27 81×0 +27
4 81 64×1 +17 81×1 +0
5 243 64×3 +51 81×3 +0
6 729 64×11 +25 81×9 +0
7 2187 64×34 +11 81×27 +0

ternary number is represented by the binary-coded-ternary
code. Table 3.1 shows the coefficients of arithmetic decom-
positions of 3i, (i = 0,1,2, . . . ,7). Note that these coeffi-
cients are equal to the weights for WSA(�x) and WSB(�x). We
assume that 11-input cells are available for cascade real-
ization. From Table 3.1, we have two different realizations
for 8ter2bin.

When the decomposition coefficient is 26.

• WS(�x) = 26WSA(�x)+WSB(�x).
• WSA(�x) = 34x7 +11x6 +3x5 +1x4 +0x3 +0x2 +0x1 +

0x0.
• WSB(�x) = 11x7 + 25x6 + 51x5 + 17x4 + 27x3 + 9x2 +

3x1 + 1x0.
• WSA(�x) depends on the inputs x4∼x7. The number of

inputs is 8. Since the output takes values from 0 to
2(1+3+11+34) = 98, 7 bits are necessary to repre-
sent the output. WSA(�x) has 8 inputs and 7 outputs, so
it is implemented by a single cell.

• WSB(�x) depends on all the inputs x0∼x7, so the num-
ber of inputs is 16. Since the output takes the values
from 0 to 2(1+3+9+27+17+51+25+11) = 288,
9 bits are necessary to represent the output. W SB(�x)
has 16 inputs and 9 outputs. It is implemented by a
cascade with 11-input cells.

• The multiplication by 26 can be simply implemented
by shifting 6 bits positions. We add the upper 3 bits of
WSB and the outputs of WSA by a 7-bit adder. Fig. 3.1
shows the network, which uses memory with 39.5K bits
and a 7-bit adder.

When the decomposition coefficient is 34.

• WS(�x) = 34WSA(�x)+WSB(�x).
• WSA(�x) = 33x7 + 32x6 + 31x5 + 30x4.
• WSB(�x) = 33x3 + 32x2 + 31x1 + 30x0.
• WSA(�x) depends on inputs x4∼x7, so the number of

the inputs is 8. Since the output takes the values from
0 to 2(1 + 3 + 9 + 27) = 80, 7 bits are necessary to
represent the output. Thus, WSA(�x) is implemented by
a single cell.

10
7

4
9

2

9

0 114 0 266

3

8

0 98 7

7-bit adder

6

40
0~6560

0 288

4 2

7

x0 x4

x4 x7

x7x5 x6~

~

~ ~

~

~

~

Figure 3.1: 8-digit ternary to binary converter: Arithmetic
decomposition with coefficient 26.

7
0 80

8
13
0 6480

13
13-bit adder

5
0

8

x4 x7

x0 x3~

~

~

~

0~6560

Figure 3.2: 8-digit ternary to binary converter: Arithmetic
decomposition with coefficient 34.

• WSB(�x) depends on inputs x0∼x3, so the number of
inputs is 8. The output takes values from 0 to 2(1 +
3 +9 +27) = 80.

• The output range of 34WSA is 0 ∼ 6480. So 13
bits are necessary to represent the output. We di-
rectly implement 34WSA by a cell. We add 34WSA
with W SB by a 13-bit adder. Fig. 3.2 shows the net-
work, which uses 5K bits memories and a 13-bit adder.

(End o f Example)

3.3 Arithmetic Decomposition using the Bi-
nary Representation of Inputs

In this part, we will introduce an arithmetic decomposition
with respect to the binary representation of inputs.

Definition 3.2 Let i be an integer. BIT (i, j) denotes the j-
th bit of the binary representation of i, where the LSB is the
0-th bit.

Example 3.2 BIT (2,1) = 1,BIT (2,0) = 0,BIT (1,1) = 0,
and BIT (1,0) = 1.

An integer number i can be represented by �log2 i� bits.
Thus, we have the relation:

i =
�log2 i�−1

∑
j=0

2 jBIT (i, j).

3



8
12
0 3280

8
12
0 3280

13

13-bit adder
BIT(     ,0)   BIT(     ,0)

0

0

x0 x 7

~

~

BIT(     ,1)   BIT(     ,1)x0 x 7~

~

Figure 3.3: 8-digit ternary to binary converter: Decom-
posed using the binary representation of inputs.

From this, we have the following:

Theorem 3.2 A p-nary to binary converter can be repre-
sented as the form

WS(�x) =
�log2 p�−1

∑
j=0

2 j
n−1

∑
i=0

piBIT (xi, j)

(Proof)

W S(�x) =
n−1

∑
i=0

pixi =
n−1

∑
i=0

pi
�log2 p�−1

∑
j=0

2 jBIT (xi, j)

=
�log2 p�−1

∑
j=0

2 j
n−1

∑
i=0

piBIT (xi, j)

(Q.E.D.)

Example 3.3 Consider the 8-digit ternary to binary con-
verter (8ter2bin). By Theorem 3.2, WS(�x) can be repre-
sented as:

WS(�x) = 2
7

∑
i=0

3iBIT (xi,1)+
7

∑
i=0

3iBIT (xi,0).

Fig. 3.3 is the circuit corresponding to the above decom-
position. Each module has 8 inputs. Since 37 + 36 + 35 +
34 +33 +32 +31 +30 = 3280, each module has 12 outputs.
The multiplication by two is implemented by shifting one bit
position. The circuit uses 6K bits of memories and a 13-bit
adder.

We can further reduce the circuit by using Theorem 3.1,
where 34 is the decomposition coefficient:

WS(�x) = 2 · [34 ·
7

∑
i=4

3i−4BIT (xi,1)+
3

∑
i=0

3iBIT (xi,1)]

+1 · [34 ·
7

∑
i=4

3i−4BIT (xi,0)+
3

∑
i=0

3iBIT (xi,0)].

13

0 3280
12

12
0 3280

13-bit adder

0

0

04

4

4

6

6

12

12

6

0
6

x0

x3

x4

x4

x7

x7

x0

x3

4

~
~

~

~

~
~

BIT(     ,0)   BIT(     ,0)

BIT(     ,0)   BIT(     ,0)

BIT(     ,1)   BIT(     ,1)

BIT(     ,1)   BIT(     ,1)

Figure 3.4: 8-digit ternary to binary converter: Decom-
posed using the binary representation of inputs and further
decomposed with coefficient 34.

(i=0,1,2,3,4,5)

2

6

66
10 4

(i=6,7,8,9,10,11,12)

3

7

7 7
10 3

Figure 4.1: 8-digit ternary to binary converter: Outputs are
partitioned into two groups.

Fig. 3.4 is the circuit corresponding the above decom-
position, where each logic block has only 4 inputs. In
this case, the total amount of memory is only 576 bits.

(End o f Example)

4 Partition of Outputs
The decomposition of a logic function is to design the cir-
cuit by partitioning the inputs, while the partition of a logic
function is to design the circuit by partitioning the outputs.
The arithmetic decomposition requires an adder in the out-
puts, while the partition of the outputs requires no adder in
the outputs. So, the circuit can be faster.

Example 4.1 [9] Consider the 8-digit ternary to binary
converter (8ter2bin). Let the output values for the don’t
care inputs be 0. Then, the column multiplicity of the de-
composition chart of the radix converter will be 38 = 6551.
This shows that the single cascade realization of the radix
converter requires cells with �log2 6551�+ 1 = 14 inputs,
which is rather large. So, we partition the output to reduce
the amount of hardware.

Assume that LUT cascades with 10-input cells are used.
We can implement the radix converter as shown in Fig.4.1.
In this implementation, the outputs are partitioned into two
groups: the upper 7 bits and the lower 6 bits are imple-
mented separately. As shown in Fig. 4.1, the amount of
memory in the cascades is 210(7+7+7+6+6)+28(6) =
35,328 (bits). (End o f Example)

4



Direct Method
START START

Radix: p
#of digits: n

Radix: p
#of digits: n

Verilog-HDL

Verilog-HDL

Generator
Verilog-HDL

Generator

Source File
Verilog-HDL
Source File

STOP

FPGA 
Development Tool

QuartusII v.4.1

FPGA 
Development Tool

QuartusII v.4.1

Memory
Contents File

STOP

Configuration
Data

 Cascade Method and
Arithmetic Decomposition Method

FPGA
Configuration

Data

FPGA

Figure 5.1: Development system for radix converters.

5 Implementation on FPGAs
To see the effectiveness of the approach, we implemented
various designs of ternary to binary converters on FPGAs,
and compared the amount of hardware and performance.

5.1 FPGAs and Their Development System
We used Altera Cyclone II (EP2C5T144C7) FPGA de-
vice, having 13 Embedded Multipliers (EMs) that perform
the multiply-and-sum operations, 26 embedded memories
(M4Ks), and 4608 logic elements (LEs). Each M4K con-
tains 4096 bits. We used Altera Quartus II V.4.1 as the de-
velopment tool. We also developed a radix converter syn-
thesis system shown in Fig. 5.1 that generates Verilog-HDL
codes describing various designs, and data for M4Ks. In the
FPGAs, LUTs (cells) were implemented by M4Ks, while
adders were implemented by LEs.

5.2 8-digit Ternary to Binary Converters
Table 5.1 compares 7 different designs of 8-digit ternary to
binary converters (8ter2bin).

Direct Method (DM): The system generated Verilog-
HDL code from the specification: radix p and the number
of digits n.

• DM1 directly implements ∑7
i=0 3ixi. Fig. 2.1 is the

circuit generated by the Quartus. After mapping, the

Table 5.1: Amount of hardware and performance of 8-digit
ternary to binary converters on Cyclone II.

Design Method LE M4K EM Delay
[nsec]

DM1 With EM Fig.2.1 66 0 7 26.7
DM2 W/O EM Fig.2.1 195 0 0 23.7
AD1 26 Fig.3.1 8 13 0 30.0
AD2 34 Fig.3.2 13 2 0 14.8
AD3 BIT Fig.3.3 12 2 0 14.3
AD4 BIT+34 Fig.3.4 36 4 0 16.8
PAR M4K only Fig.4.1 0 11 0 22.2

Quartus replaced the multipliers with 7 EMs, and
adders with 66 LEs.

• DM2 also corresponds to Fig. 2.1. In this case, how-
ever, the Quartus replaced multipliers with LEs instead
of EMs. So, the circuit consists of LEs only. It has 195
LEs, which means 129 LEs replaced 7 EMs. It is faster
than DM1, since LEs perform constant multiplications
faster than EMs.

Arithmetic Decomposition Method (AD): The system
generated Verilog-HDL code and data for M4Ks.

• AD1 corresponds to Fig. 3.1, which was obtained with
the decomposition coefficient 26. The Quartus re-
placed four LUTs with 13 M4Ks, and the adder with 8
LEs.

• AD2 corresponds to Fig. 3.2, which was obtained with
the decomposition coefficient 34. The Quartus re-
placed two LUTs with two M4Ks, and the adder with
13 LEs.

• AD3 corresponds to Fig. 3.3, which was obtained with
the arithmetic decomposition using binary representa-
tion of inputs. The Quartus replaced two LUTs with
two M4Ks, and the adder with 12 LEs.

• AD4 corresponds to Fig. 3.4, which was obtained by
the arithmetic decomposition with the coefficient 34

and using binary representation of inputs. The Quartus
replaced four LUTs with four M4Ks, and adders with
36 LEs. It is slower than AD3 since the adder is more
complex.

Partition of Outputs Method (PAR): The system gen-
erated Verilog-HDL code and data for M4Ks.

• PAR corresponds to Fig. 4.1 consisting of 6 LUTs. The
Quartus replaced 6 LUTs with 11 M4Ks.

In the case of 8ter2bin, we can conclude that AD3 is
the best realizations: It is the fastest and requires smaller
amount of hardware.

5



Table 5.2: Amount of hardware and performance of 12-digit
ternary to binary converters on Cyclone II.

Design Method LE M4K EM Delay
[nsec]

DM1 With EM Fig.2.1 139 0 15 35.8
DM2 W/O EM Fig.2.1 457 0 0 32.0
AD2 36 Fig.3.2 20 30† 0 17.3
AD3 BIT Fig.3.3 19 38‡ 0 16.6
AD4 BIT+36 Fig.3.4 57 4 0 17.6
†:Used EP2C8T144C7
‡:Used EP2C20F256C7

5.3 12-digit Ternary to Binary Converters
Table 5.2 compares 5 different designs of 12-digit ternary
to binary converters (12ter2bin).

Direct Method (DM):

• DM1 is similar to Fig. 2.1, but uses 15 EMs.
• DM2 is also similar to Fig. 2.1. Also in this case, it is

faster than DM1.

Arithmetic Decomposition Method (AD):

• AD2 is similar to Fig. 3.2, but the decomposition coef-
ficient is 36. In this case, we need a 12-input 20-output
LUT, a 12-input 10-output LUT, and a 20-bit adder.
The Quartus replaced these LUTs with 30 M4Ks, and
the adder with 20 LEs. So, we had to use a larger
FPGA, EP2C8T144C7 which contains 36 M4Ks.

• AD3 is similar to Fig. 3.3, but uses a pair of 12-input
19-output LUTs and a 20-bit adder. To replace these
LUTs, the Quartus required 38 M4Ks. So, we had to
use a larger FPGA, EP2C20F256C7 which contains 52
M4Ks.

• AD4 is similar to Fig. 3.4, but uses the decomposition
coefficient 36. It uses four LUTs with 6 inputs. The
Quartus replaced these LUTs with four M4Ks, and the
adders with 57 LEs.

In the case of 12ter2bin, AD2 and AD3 are faster, but
require larger FPGAs, so AD4 is the best choice.

6 Conclusion and Comments
In this paper, we presented arithmetic decompositions to de-
sign p-nary to binary converter. We used ternary to binary
converters to illustrate the idea. We also implemented the
converts on FPGAs to confirm the effectiveness of the meth-
ods.

Note that Fig. 3.1 is a non-disjoint decomposition, while
Fig. 3.2, Fig. 3.3, and Fig. 3.4 are disjoint decompositions.

The disjoint decomposition in Fig. 3.2 is easy to find from
equation (2.2) or Fig.2.1, while the disjoint decomposition
in Fig. 3.3 is not so easy to find.

Also, the decomposition in Fig. 3.2 produces similar but
different sub-circuits, while the decomposition in Fig. 3.3
produces two identical sub-circuits. The circuit in Fig. 3.3
is faster than Fig. 3.2.

These techniques can be combined to design radix con-
verts with more digits, and other arithmetic circuits [3].

Acknowledgments
This research is supported in part by the Grant in Aid for
Scientific Research of MEXT, and the Kitakyushu Area In-
novative Cluster Project of MEXT.

References
[1] T. Hanyu and M. Kameyama, “A 200 MHz pipelined multi-

plier using 1.5 V-supply multiplevalued MOS current-mode
circuits with dual-rail source-coupled logic,” IEEE Journal
of Solid-State Circuits 30, 11, (1995), 1239-1245.

[2] C. H. Huang, “A fully parallel mixed-radix conversion algo-
rithm for residue number applications,” IEEE Trans. Com-
put., vol. 32, pp. 398-402, 1983.

[3] K. Ishida, N. Homma, T. Aoki, and T. Higuchi, “Design
and verification of parallel multipliers using arithmetic de-
scription language: ARITH,” 34th International Symposium
on Multiple-Valued Logic, Toronto, Canada, May 2004,
pp.334-339.

[4] I. Koren, Computer Arithmetic Algorithms, 2nd Edition,
A. K. Peters, Natick, MA, 2002.

[5] S. Muroga, VLSI System Design, John Wiley & Sons, 1982,
pp. 293-306

[6] D. Olson, and K. W. Current, “Hardware implementation
of supplementary symmetrical logic circuit structure con-
cepts,” 30th IEEE International Symposium on Multiple-
Valued Logic Portland, Oregon, May 23-25, 2000.

[7] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

[8] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,”
International Workshop on Logic and Synthesis(IWLS01),
Lake Tahoe, CA, June 12-15, 2001, pp. 225-230.

[9] T. Sasao, “Radix converters: Complexity and implementa-
tion by LUT cascades,” 35th International Symposium on
Multiple-Valued Logic, Calgary, Canada, May 19-21, 2005,
pp.256-263.

[10] T. Sasao, Y. Iguchi, and T. Suzuki, “On LUT cascade re-
alizations of FIR filters,” DSD2005, 8th Euromicro Confer-
ence on Digital System Design: Architectures, Methods and
Tools, Porto, Portugal, Aug. 30 - Sept. 3, 2005, pp.467-474.

[11] T. Sasao, “Analysis and synthesis of weighted-sum func-
tions,” IEEE Trans. on CAD (to be published).

6


