
Radix Converters: Complexity and Implementation by LUT Cascades

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract

In digital signal processing, we often use higher radix
system to achieve high-speed computation. In such cases,
we require radix converters. This paper considers the de-
sign of LUT cascades that convert �-nary numbers to �-nary
numbers. In particular, we derive several upper bounds on
the column multiplicities of decomposition charts that rep-
resent radix converters. From these, we can estimate the
size of LUT cascades to realize radix converters. These re-
sults are useful to design compact radix converters, since
these bounds show strategies to partition the outputs into
groups.

1 Introduction

Most digital systems use binary arithmetic. However,
some digital signal processing systems use �-nary numbers
�� � �� for high-speed operations. In such cases, a spe-
cial circuit is required for the conversion between binary
numbers and �-nary numbers [4, 7]. Various methods exist
to convert �-nary numbers into �-nary numbers. In gen-
eral, the computational complexity is large. In particular, a
combinational logic circuit that converts radix tends to be
complex [5]. Radix conversion can be done by table look-
up. The radix conversion using memory is very fast, but
the size of the table tends to be large: The size increases
exponentially with the number of inputs.

A function whose multiplicity of the decomposition
chart for � is small, can be efficiently implemented by an
LUT cascade [10]. The LUT cascade has a regular structure
and is easy to design and modify. To implement a radix con-
verter, we use several LUT cascades, because implementing
an entire radix converter by a single cascade requires a very
large LUT, and is often impractical.

In this paper, we derive upper bounds on the column
multiplicities of decomposition charts for radix converters.
With these, we can estimate the size of an LUT cascade
that represents consecutive digits in a radix converter. Ex-
perimental results show that the bound is tight, and we can

efficiently design radix converters with LUT cascades.

2 Radix Converters

2.1 Radix Conversion

Definition 2.1 The integer representation of a �-valued
vector �� � ������ ����� � � � � ���, where �� � 	 , and

	 � ��� �� � � � � �� ��, is 
���� �
����
���

���
��

Definition 2.2 Let �� � ������ ����� � � � � ���� be a �-nary
number of � digits, and let �� � ������ ����� � � � � ���� be a
�-nary number of 
 digits. Given ��, the operation to derive
�� that satisfies the relation

����
���

���
� �

����
���

���
� (2.1)

is radix conversion, where �� � 	� 	 � ��� �� � � � � � �
��� �� � �� and � � ��� �� � � � � � � ���

Definition 2.3 Consider an integer function � � 	 � � �,
where 	 � ��� �� � � � � � � �� and � � ��� �� � � � � � � ��.
A pair of vectors ���������, where ������� � 	�, satisfy-
ing 
����� � � � 
�����, and ������ �� ������, is a
transition pair of a function � . A sequence of s vec-
tors ��������� � � � ����� is a run of � , if ������ �� ������ �
������ � � � � � ������ �� ��������, where the inequali-
ties are omitted if extreme indices are non existent (beyond
the endpoints), and ������������ � � � ����� �������� are consec-
utive vectors. The number of runs in � is denoted by ����.

Example 2.1 Consider the case, where � � �, � �
�, and � � �. In the integer function ����� ��� ���
shown in Table 2.1, the transition pairs are �������
������, ������� ������, and ������� ������. The runs
are ������� ������� ������� ������, and �������� �������
������ ������. The number of transition pairs is �, and
���� � 	.

1



Lemma 2.1 The number of transition pairs � ����� �.

Definition 2.4 [12] Consider the integer function ����� �
	� � �������	 � ��� �� � � � � � � �� and � �
��� �� � � � � � � ��. Let ���� � ���� be a partition of
��, where ��� � ������ ���� � � � � �	� and ��� �
��	��� �	��� � � � � �
�. The decomposition chart for � is
a two-dimensional matrix, where the column labels have all
possible assignments of elements of 	 to ���, the row la-
bels have all possible assignments of elements of 	 to ��� ,
and the corresponding matrix value is equal to ����� � ����.
Among the decomposition charts for � , the one whose col-
umn label values and row label values increase when the
label moves from left to right, and from top to bottom, is the
standard decomposition chart. The number of different
column patterns in the decomposition chart is the column
multiplicity.

Note that in an ordinary decomposition chart, the par-
titions of variables and the order of labels in the columns
and rows are arbitrary. However, in the standard decompo-
sition chart, the labels of the rows are in increasing order of
��� � ������ ����� � � � � �	�, and the labels of the columns
are in increasing order of ��� � ��	��� �	��� � � � � ���.

Lemma 2.2 Let the number of runs of the integer function
����� be ����. Then, the column multiplicity of the standard
decomposition chart for ����� is at most ����.

(Proof) In the standard decomposition chart for � , when
we move from the left to the right, the column pattern
changes only when the value of the function changes. Thus,
the column multiplicity is at most ����. �

Definition 2.5 Let � be a real number. The maximum in-
teger that is not greater than � is denoted by ���, and the
minimum integer that is equal to or greater than � is de-
noted by ��	.

Theorem 2.1 Let ������ be the �-valued input �-valued out-
put function represented by the �-th digit �� � �� �� � � � �
�
�� of a �-nary to �-nary converter. Then, the column multi-
plicity of the standard decomposition chart for the function
������ is at most ����.

Table 2.1. A function showing the run.
�� �� �� �
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 2
1 0 1 0
1 1 0 0
1 1 1 0

(Proof) We consider three cases.

1. � � � (the least significant digit):
Let 
���� be the value represented by the input ��.
Then, we have

������ � 
���� �mod ���

In the standard decomposition chart, let �� be the
number of variables in ���, and consider a column pat-
tern. Then, the top � rows of the column can be repre-
sented as follows:

�
��������

� �mod ��
�� �� �mod ��
�� ��� �mod ��
�� ��� �mod ��
...

...
�� �� � ���� �mod ��

�
��������

In the above column, � � ��� �� � � � � �� � �� and �� �
��� , and the same pattern appears repeatedly in every
� row.

Furthermore, in each column, for the given � and � �,
the column pattern is unique.

Since the values of the column are mod �, the number
of different column patterns is at most �. Thus, the col-
umn multiplicity of the standard decomposition chart
is at most �.

2. � � �:
Let 
���� be the value for the input ��. Then, we have

������ � �
���� �mod �������

In the decomposition chart, the same numbers appear
� times consecutively, and then the numbers increase
by 1 mod �. In this case, the top �� rows of the column
pattern can be represented as follows:

�
������

�� �mod ������
��� �� �mod ������
��� ��� �mod ������
...

...
��� ��� � ���� �mod ������

�
������

Here, � � ��� �� � � � � �� � �� and �� � ��� .

In this case, the column pattern is uniquely specified
by the values of � and ��. Since the values are com-
puted mod ��, the number of different column patterns
is at most ��. Therefore, the column multiplicity of the
standard decomposition chart is at most ��.

2



3. � � �:
The �-th digit represents the function

������ � �
���� �mod ����������

Similarly, consider the top � ��� rows of the column.
Since the column is computed mod � ���, the number
of different column patterns is at most � ���. Thus,
the column multiplicity of the standard decomposition
chart is at most ����. �

Example 2.2 Consider the case of � � �, � � �, �� � 	,
and�� � �. Let ��� � ���� ��� and ��� � ���� ��� ��� ���.
For � � �, we have the standard decomposition chart shown
in Fig. 2.1. In this case, the column multiplicity is �. For
� � �, we have the standard decomposition chart shown in
Fig. 2.2. In this case, the column multiplicity is �� � 
.

The next three theorems give upper bounds on the col-
umn multiplicity for the consecutive digits of a radix con-
verter. A radix converter usually has many outputs. If it is
implemented as one circuit, then it will be very large. How-
ever, if we partition the outputs into groups, and implement
each group separately, then each circuit is reasonably small.
The following theorem are useful for such realization.

Theorem 2.2 Let ����� be the �-valued input �	-valued
output function that represents the �-th to the �� � � � ��-
th digits of the �-nary-to-�-nary converter. Then, the col-
umn multiplicity of the standard decomposition chart for the
function ����� is at most ���	.

(Proof) When the circuit represents simultaneously the �-
th to the �� � � � ��-th digits, the integer function ����� �
	� � � represent the digits, where � � ��� �� � � � � � � ��
and � � �	. In a similar way to the proof of Theorem 2.1,
we can prove that the column multiplicity of the standard
decomposition chart is at most � ��	. �

Theorem 2.3 Let ����� be the �-valued input �	-valued
output function that represents from the �-th to the ��� � �
��-th digits �� � �� �� � � � �
 � �� of the �-nary-to-�-nary
converter of � input digits. Then, the column multiplicity of
the standard decomposition chart is at most

��

�������

�������� � �	 
 ��� ��

(Proof) Let ��� � ������ ����� � � � � ���� be the row
variables, and ��� � ������� ������ � � � � ��� be the col-
umn variables of the standard decomposition chart. Let ��
be the number of row variables, and �� be the number of
column variables. It is clear that the column multiplicity at
most ��� , the total number of the columns. From here, we
will show that the column multiplicity is at most �	 
 ��� .

���
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ��
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ��
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ��
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 ��

0 0 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
��� 0 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

1 0 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
1 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
�� ��

Figure 2.1. The standard decomposition chart
for the least significant digit of the binary-to-
ternary converter.

By modifying the left-hand side of the equation (2.1) of
Definition 2.1, we have

�����
���

���
� �

����
����

���
� � (2.2)

In this case, the value of the first term is fixed if we fix
the column, and the value of the second term is fixed if we
fix the row.

When we consider the column multiplicity of the stan-
dard decomposition chart, the first term can be considered
as a constant. The second term may assume ��� different
values. The output values of the �-th through the �������-
th digits are obtained as follows:

1. Compute the values from equation (2.2) by 
�� � ��	 ,
and

2. Derive the quotient by � �.

That is, the change of the second term will change the out-
put values in at most �	 different ways. Thus, the column
multiplicity is at most �	 
 ��� . �

Theorem 2.4 Let ������ be the �-valued input �	-valued
output function that represents from the �-th to �������-th
�� � �� �� � � � �
 � �� digits of the �-nary-to-�-nary con-
verter of � input digits. Then, the column multiplicity of the
standard decomposition chart is at most ������	.

(Proof) In the decomposition chart, when we scan from
left to right, and from top to bottom, the same numbers oc-
cur �� times consecutively, and then increase by one with
mod �	. Thus, the number of runs is ������	. From Lemma
2.2, we can see that the column multiplicity of the standard
decomposition chart is at most ������	. �

2.2 Experimental Results

Tables 2.2 and 2.3 compare experimental results (EXP)
and theoretical values (UB) of the column multiplicities of

3



���
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ��
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ��
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ��
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 ��

0 0 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2
��� 0 1 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1

1 0 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0
1 1 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0
�� ��

Figure 2.2. The standard decomposition chart
for the 2nd least significant digit of the binary-
to-ternary converter.

the standard decomposition charts for the radix converters.
The theoretical value (UB) is the minimum of the upper
bounds that are derived from Theorems 2.1 � 2.4.

Tables 2.4 and 2.5 compare the column multiplicities of
the standard decomposition charts that represent � consec-
utive digits of radix converters.

From these tables, we can observe that when the radix is
a prime number, theorems give values that are the same as
the experimental values. On the other hand, when the radix
is ��, the differences of UB and the experimental values are
large.

In these tables, the orderings of the variables are
fixed to ��� � ������ ����� � � � � �	� and ��� �
��	��� �	��� � � � � ���. However, in the general decompo-
sition chart, the partition of the variables need not be re-
stricted as above. So, for some functions, a different par-
tition can yield decomposition charts with smaller column
multiplicities. Thus, these tables just show upper bounds
on the column multiplicities of the decomposition charts,
and give upper bounds on the sizes of LUT cascades (to be
explained later).

These tables also show that the column multiplicities for
the middle digits are large, while the column multiplicities
for the least significant digits and the most significant digits
are small.

3 Design of Radix Converters using LUT
Cascades

3.1 LUT Cascade [10, 11, 6]

An arbitrary logic function can be implemented by a sin-
gle memory. However, with the increase of the number of
input variables, the size of the memory increases exponen-
tially.

In general, practical functions often have decomposition
charts with small column multiplicities.

Table 2.2. Column multiplicities of standard
decomposition charts for binary-to-�-nary
converter.

� � � �� � � �� � � �� � � ��
� � � � � � � � � � � �
� � � � � � � � � � � ��

Exp UB Exp UB Exp UB Exp UB
0 3 3 5 5 7 7 10 10
1 9 9 25 25 49 49 50 100
2 27 27 125 125 343 343 250 640
3 81 81 512 512 192 192 66 66
4 243 243 105 105 28 28 7 7
5 270 270 21 21 4 4
6 90 90 5 5
7 30 30
8 10 10
9 4 4

10 2 2

Table 2.3. Column multiplicities of standard
decomposition charts for �-nary-to-binary
converter.

� � � � � � � � � � � � �
� � � � � � � � � � � ��
� � � � � � � � � � � �

Exp UB Exp UB Exp UB Exp UB
0 2 2 2 2 2 2 2 2
1 4 4 4 4 4 4 2 4
2 8 8 8 8 8 8 4 8
3 16 16 16 16 16 16 5 16
4 32 32 32 32 32 32 8 32
5 64 64 64 64 64 64 16 64
6 81 81 125 125 98 98 25 128
7 52 52 123 123 98 98 32 200
8 26 26 62 62 66 66 64 200
9 13 13 31 31 33 33 125 196

10 7 7 16 16 17 17 98 98
11 4 4 8 8 9 9 49 49
12 2 2 4 4 3 5 25 25
13 2 2 2 3 13 13
14 2 2 7 7
15 4 4
16 2 2

Theorem 3.1 For a given function � , let ��� be the vari-
ables for the columns, and let ��� be the variables for the
rows, and let � be the column multiplicity of the decom-
position chart. Then, the function � is realizable with the
network shown in Fig. 3.1. In this case, the number of
(two-valued) signal line that connect two blocks H and G
is ����� �	.

When the number of signal lines that connect two blocks
is smaller than the number of variables in ���, we can often
reduce the size of memory to implement the function. This
technique is functional decomposition [1, 8, 9].

By applying functional decomposition repeatedly to the
given function, we have the LUT cascade shown in Fig. 3.2.

4



Table 2.5. Column multiplicities of standard decomposition charts for � consecutive digits of ternary-
to-binary converter.

� � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � �
� � �� � � � � � �� � � � � � �� � � 	 � � �� � � � � � �� � � � � � �� � � �
Exp UB Exp UB Exp UB Exp UB Exp UB Exp UB

0 4 4 8 8 16 16 32 32 64 64 128 128
1 8 8 16 16 32 32 64 64 128 128 256 256
2 16 16 32 32 64 64 128 128 256 256 512 512
3 32 32 64 64 128 128 256 256 512 512 821 821
4 64 64 128 128 243 243 288 288 411 411 411 411
5 108 108 206 206 206 206 206 206 206 206 206 206
6 103 103 103 103 103 103 103 103 103 103 103 103
7 52 52 52 52 52 52 52 52 52 52
8 26 26 26 26 26 26 26 26
9 13 13 13 13 13 13

10 7 7 7 7
11 4 4

Table 2.4. Column multiplicities of standard
decomposition charts for � consecutive dig-
its of binary-to-ternary converter.
� � � �� � � �� � � �� � � ��

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � 	 � � �

Exp UB Exp UB Exp UB Exp UB
0 9 9 27 27 81 81 243 243
1 27 27 81 81 243 243 729 729
2 81 81 243 243 729 729 2187 2187
3 243 243 729 729 2048 2048 2428 2428
4 576 576 810 810 810 810 810 810
5 270 270 270 270 270 270 270 270
6 90 90 90 90 90 90 90 90
7 30 30 30 30 30 30
8 10 10 10 10
9 4 4

The cascade consists cells, and the wires connecting adja-
cent cells are rails. Functions with small column multi-
plicities have compact LUT cascade realizations. To de-
rive column multiplicities, we need not use decomposition
charts. We can efficiently obtain the column multiplicity
by a binary decision diagram (BDD for CF) that represents
the characteristic function for the multiple-output function
[11].

Theorem 3.2 [10] Let � be the maximum width of the BDD
for the function � . Then, � can be implemented by the LUT
cascade consisting of cells with at most ����� �	�� inputs.

Theorem 3.3 Consider an LUT cascade for a function � .
Let � be the number of primary inputs, � be the number of
cells, � be the maximum number of rails (i.e., the number
of lines between cells), � be the maximum number of inputs
of a cell, � be the maximum width of the BDD for � , and
� � ����� �	��. Then, there is an LUT cascade for � that

satisfies the relation:

� � �
�� �

� � �
	

(Proof) From the design method of the LUT cascade, we
have

� � �� � ����� �� � ��

Here, � in the left-hand side of the inequality denotes the
number of inputs of the left-most LUT, and �� � ���� � ��
denotes the sum of inputs for the remaining �� � �� LUTs.
When the actual number of rails is smaller than �, we ap-
pend dummy rails to make the number of rails �. From this,
we have

�� � �
�� �

� � �
� and � �

�� �

� � �
�

Since � is an integer, we have

� � �
�� �

� � �
	�

When the above equation holds, we can realize an LUT cas-
cade for � having cells with at most � inputs. �

From here, we will consider design of binary-to-ternary
converters, ternary-to-binary converters, binary-to-decimal
converters, and decimal-to-binary converters.

3.2 Binary-to-Ternary Converters

Let �� � ������ ����� � � � � ��� be the outputs of the con-
verter, where �� � ��� �� ��. Then ��, in general, depends
on all the inputs ���� � �� �� � � � � �� ��. Thus, the network
will be quite complex.

Example 3.1 Consider the case of � � �� and � � �, a ��-
bit binary number to a ��-digit ternary number converter.
From Table 2.2, we can see that the column multiplicities

5



of the standard decomposition chart representing �-th, �-
st, �-nd, �-th, �-th, 
-th and ��-th digits are small. So, the
cascade realization is easy. On the other hand, for the �-
rd, 	-th, �-th and �-th digits, the column multiplicities of
the standard decomposition chart are large. So, we must be
careful to realize the functions. Especially, the simultane-
ous realization of the 	-th and the �-th digits will produce
a very large LUT cascade. So, we implement these digits
separately.

Single-Memory Realization: The most significant bit of
the outputs is constant �, so the actual number of outputs
is ��. The necessary amount of memory is �� 
 ��� �
�� ���� ��� (bits).

Realization using LUT Cascades: Assume that cells
with �� inputs are used to implement cascades.

Fig. 3.3 shows the cascades for the converter. The out-
puts are partitioned into four groups. The first cascade real-
izes the �-th, �-st, �-nd and �-rd digits; the second cascade
realizes the 	-th digit; the third cascade realizes the �-th
digit; and the fourth cascade realizes the �-th, �-th, �-th,

-th and ��-th digits. Note that each output digit is repre-
sented by two bits.

For the first cascade that realizes the �-th, �-st, �-nd,
and �-rd digits, the column multiplicity is at most ��, which
can be observed from the entry for � � � and � � 	 in
Table 2.4. Thus, the number of rails of the cascade is at
most ����� ��	 � �.

For the fourth cascade which realizes the �-th, �-th, �-th,

-th and ��-th digits, the column multiplicity is at most 
�,
which can be observed from the entry for � � � and � � �
in Table 2.4. Thus, the number of rails of the cascade is at
most ����� 
�	 � �. From Theorem 3.3, we can see that all
the cascade are realized with three cells.

In the case of the cascades for � � 	 and � � �, the
column multiplicities of the standard decomposition charts
are �	� and ���, respectively, which can be observed from
the entries for � � � in Table 2.2. Thus, the numbers of rails
are � and 
, respectively. We can reduce the number of rails
by changing the ordering of the variables. The number of
rails can be reduced to at most �, and both cascades can be
realized with three cells. From Fig. 3.3, we can see that the
necessary amount of memory is ������ � � � � � � � � �
�� �� �� �� ��� � �	�� � �� � ��� ��	 (bits), which is
much smaller than the single-memory realization.

3.3 Ternary-to-Binary Converter

Let �� � ������ ����� � � � � ��� be the outputs of the con-
verter, where �� � ��� ��. Then, in general, �� depends on
all the inputs ���� � �� �� � � � � �� ��. When this converter
is implemented by a two-valued logic circuit, unused com-
binations occur. So, we have incompletely specified func-
tions. Usually, constant zeros are assigned to the undefined

xA

ya

xB

ybG

H

Figure 3.1. Realization of logic functions by
decomposition.

LUT LUT LUT LUT

Figure 3.2. LUT cascade with intermediate
outputs.

parts. However, we can often reduce the column multiplici-
ties by considering the assignment to don’t cares.

Example 3.2 In the case of ternary-to-binary converters,
we often use the binary-coded-ternary code to represent a
ternary digit. That is � is represented by ����; � is repre-
sented by ����; and � is represented by ����. ���� is an
unused code.

To construct the decomposition chart, the input variables
are grouped into pairs. The truth table of the �-digit ternary
to 	-bit binary converter is shown in Table 3.1. In the case
of binary-coded-ternary representation, ���� is an unde-
fined input, and the corresponding outputs are don’t cares.
In Table 3.1, the binary-coded-ternary representation is de-
noted by �� � ���� ��� ��� ���, the ternary representation
is denoted by �� � ���� ���, and the binary representation
is denoted by �� � ���� ��� ��� ���.

Table 3.1. Truth table for a ternary-to-binary
converter.

������ ����	� 
	����� ������ �	��
��

	�����

�� �� �� �� �� �� �� �� �� ��
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � 	
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

6



(i=0,1,2,3)

(i=6,7,8,9,10)

(i=4)

(i=5)

3

8
3

2

2

3
5

57

7 7

7

7 7

3

3 3

10

10

10

10

10

3

3

Figure 3.3. Binary-to-ternary converter (��-bit
inputs, ��-digit output).

Example 3.3 Consider the converter for an �-digit ternary
number to a ��-digit binary number. When we assign �’s to
the outputs for the don’t care inputs, the column multiplic-
ity of the standard decomposition chart representing all the
outputs will be up to �	 � ����.

Single-memory Realization: It requires ��� 
 �� �
���� 
�� (bits), since a ternary digit requires two bits, and
the total number of inputs is �
 � � ��.

Realization by LUT Cascades: Assume that we use
cells with �� inputs. Fig. 3.4 shows the cascade realiza-
tion. The �� outputs are divided into two groups: The up-
per cascade realizes the least significant � bits, while the
lower cascade realized the most significant � bits. From en-
try � � � and � � � of Table 2.5, we can see that the column
multiplicity of the decomposition chart for the least signifi-
cant � bits is �	. Thus, the number of rails is ����� �		 � �.
From entry of � � � and � � � of Table 2.5, we can see
that the column multiplicity of the decomposition chart of
the most significant � bits is ���. Thus, the number of rails
is ����� ���	 � �.

In this case, we can optimize the ordering of variables to
obtain smaller cascades.

From Fig. 3.4, we can see that the necessary amount
of memory of the cascades is ����� � � � � � � � �� �
�	��� � ��� ��� (bits), which is much smaller than the
single-memory realization.

3.4 Binary-to-Decimal Converter

Decimal arithmetic circuits are often used in pocket cal-
culators. Thus, various binary to decimal converters have
been designed [5]. Unfortunately, the upper bounds ob-
tained by Theorems are not so tight. This is because ��
is a non-prime number.

(i=0,1,2,3,4,5)

2

6

66
10 4

(i=6,7,8,9,10,11,12)
3

7

7 7
10 3

Figure 3.4. �-digit ternary to ��-digit binary
converter.

10 7

x15 x5

z18 z17 z16 z15 z14 z13 z12 z0

x4 x3 x2 x1 x0

Figure 3.5. ��-digit binary to �-digit decimal
converter.

Example 3.4 Consider a ��-bit binary to �-digit decimal
converter. When the output decimal number is represented
by the BCD code, the number of output bits is ��. Note
that the most significant bit ��
 of the output is always
constant zero, so the actual number of outputs is �
. Let
�� � ����� ���� � � � � ��� be the input binary number, and let
�� � ���	� ���� � � � � ��� be the output binary-coded-decimal
number. When all the outputs are represented at the same
time, the column multiplicity is ����, which is obtained by
the BDD for CF.

In the case of binary-to-decimal converter, specific out-
puts depend on a part of the input variables. Thus, we can
produce some outputs in the middle of the cascades. With
��-input cell, we have the converter shown in Fig. 3.5 [11].

3.5 Decimal-to-Binary Converter

When decimal numbers are represented by binary num-
bers such as BCD code, many don’t care’s occur.

Example 3.5 Consider a �-digit decimal to ��-bit binary
converter. When the decimal numbers are represented by
BCD codes, the number of binary inputs is 	 
 � � ��.
Note that the number of different combinations represented
by inputs is ���. So the number of don’t care combina-
tions is ��� � ���. Thus, the ratio of the don’t care is
���� � �������� � ��
�, In other words, about 
�� of
the input combinations are don’t cares. This means that the

7



4

9

5

8

67

9 8

11

12

4

3

Figure 3.6. �-digit decimal to ��-digit binary
converter.

assignment of don’t care values greatly influences the com-
plexity of radix converters.

From the entry of � � �� and EXP in Table 2.3, we can
see that the maximum value of the column multiplicity is
�	. When, we implement each digit separately, the number
of rails is at most �.

From Theorem 3.2, we can see that each output can be
realized by a cascade using cells with at most � inputs. If
we realize each digit separately, we need �� cascades. With
��-input cells, we can implement the radix converter con-
sisting of a pair of cascades as shown in Fig. 3.6. To design
this converter, we used the new tool [6]. With an appropri-
ate assignment of don’t cares, we can reduce the number
of dependent variables [13], and we may reduce the size of
cascade.

Conclusion

This paper has derived the upper bounds on the column
multiplicity for the standard decomposition chart that con-
verts a �-nary representation into a �-nary representation. It
has also shown methods to design radix converters by using
LUT cascades.

This paper has shown only the upper bounds on the col-
umn multiplicity of the standard decomposition chart. Re-
maining challenging problems are to derive lower bounds
on the column multiplicities, and to derive column multi-
plicities for ordinary decomposition charts. Similar tech-
nique can also be used to design radix converters for residue
number systems [4].

Acknowledgments

This research is supported in part by the Grants in Aid
for Scientific Research of JSPS and MEXT, and the grant
of Kitakyushu Innovative Cluster Project. Discussion with
Prof. Jon T. Butler improved English presentation.

References

[1] R. L. Ashenhurst, “The decomposition of switching
functions,” In Proceedings of an International Sympo-
sium on the Theory of Switching, pp. 74-116, April
1957.

[2] T. Hanyu and M. Kameyama, “A 200 MHz pipelined
multiplier using 1.5 V-supply multiple valued MOS
current-mode circuits with dual-rail source-coupled
logic,” IEEE Journal of Solid-State Circuits 30, 11,
1995, pp. 1239-1245.

[3] S. Hassoun and T. Sasao (eds.), Logic Synthesis and
Verification, Kluwer Publishers, 2001.

[4] C. H. Huang, “A fully parallel mixed-radix conver-
sion algorithm for residue number applications,” IEEE
Trans. Comput., vol. 32, pp. 398-402, 1983.

[5] S. Muroga, VLSI System Design, John Wiley & Sons,
1982, pp. 293-306.

[6] H. Nakahara, T. Sasao, and M. Matsuura, “A design
algorithm for sequential circuits using LUT rings,”
12th SASIMI Workshop, Kanazawa, Japan, Oct 18-19,
2004, pp. 430-437.

[7] D. Olson and K. W. Current, “Hardware implementa-
tion of supplementary symmetrical logic circuit struc-
ture concepts,” 30th IEEE International Symposium
on Multiple-Valued Logic (ISMVL 2000) Portland,
Oregon, May 23-25, 2000, pp. 371-376.

[8] T. Sasao, “FPGA design by generalized functional de-
composition,” In Logic Synthesis and Optimization,
Sasao ed., Kluwer Academic Publisher, pp. 233-258,
1993.

[9] T. Sasao, Switching Theory for Logic Synthesis,
Kluwer Academic Publishers, 1999.

[10] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade real-
ization of multiple-output function for reconfigurable
hardware,” International Workshop on Logic and Syn-
thesis(IWLS01), Lake Tahoe, CA, June 12-15, 2001,
pp. 225-230.

[11] T. Sasao and M. Matsuura, “A method to decom-
pose multiple-output logic functions,” 41st Design Au-
tomation Conference, San Diego, CA, USA, June 2-6,
2004, pp. 428-433.

[12] T. Sasao, J. T. Butler, and M. Riedel, “Application
of LUT cascades to numerical function generators,”
12th SASIMI Workshop, Kanazawa, Japan, Oct 18-19,
2004, pp. 422-429.

[13] T. Sasao and M. Matsuura, “BDD representation for
incompletely specified multiple-output logic functions
and its applications to functional decomposition,” De-
sign Automation Conference, Anaheim, CA., June 13-
17, 2005, (submitted).

8


