
Hardware to Compute Walsh Coefficients

Yukihiro Iguchi 1 Tsutomu Sasao 2

1 Department of Computer Science, Meiji University
2 Department of Computer Science and Electronics, Kyushu Institute of Technology

Abstract

This paper presents a method to compute a fragment
of the Walsh coefficients of logic functions using hard-
ware. First, it introduces the Walsh transformation tree,
and shows a method to compute Walsh coefficients using
the Walsh transformation tree. Next, it shows the hardware
realization for the Walsh tree. The amount of hardware to
compute a coefficient and the entire coefficients are O(2n)
and O(n2 · 2n), respectively. FPGA implementations show
their feasibility up to n = 14. The FPGA realization is at
least 1253 times faster than a software implementation on a
microprocessor for n = 14.

1. Introduction

Spectrum analysis of logic functions [13] is useful logic
synthesis [20, 8, 10], Boolean matching [5, 7], test [17,
9, 11], and verification [18]. Various methods to com-
pute spectrum are known: Fast Fourier transform (FFT) [3],
cubes [20, 6], and decision diagrams [5, 7].

A disadvantage of the spectral method is that the sizes
of the representations tend to be large, especially when the
entire spectrum is represented at one time. In many ap-
plications, only a fragment of the spectrum coefficients is
sufficient, and thus a smaller amount of computation time
is needed compared to that of the entire spectrum. Most
research on spectrum computation focus on software. Es-
pecially, [7] and [12] have considered efficient computation
methods for a fragment of Walsh spectrum of a given logic
functions.

In this paper, however, we use hardware to compute a
fragment of the Walsh spectrum. Theoretically, the FFT
realization computes the entire Walsh spectrum at one time,
However, in practice, the straightforward FFT realization
requires an excessive amount of hardware to implement by
an FPGA. Thus, [2] proposes a bit-serial method to compute
the spectrum. It is hardware typically used for digital signal
processing, and assumes the following conditions:

1. The entire spectrum is computed at one time.
2. Each input is a signal of 8 bits.

In this paper, we consider hardware to compute a part of
Walsh spectrum, and assume the following conditions:

1. A part of coefficients of the spectrum is computed at
one time.

2. Each input is a signal of a single bit. (We compute the
spectrum of single-output logic function. Extension to
multiple-output function is shown in Section 4.)

Such a hardware is applicable for the fault diagnosis of
semiconductor memories [11], and Boolean matching [5].

2. Definitions and Basic Properties

In this part, we define Walsh spectrum, Walsh trans-
formation trees and Walsh transformation diagrams. Also
we show a method to compute Walsh coefficients from the
Walsh transformation tree and the Walsh transformation di-
agram [15].

2.1. Walsh Transformation

Definition 2.1 Let

W(n) =
[

W(n − 1) W(n − 1)
W(n − 1) −W(n − 1)

]
,

and

W(1) =
[

1 1
1 −1

]
.

W(n) is the Walsh transformation matrix of n vari-
ables, and W(1) is the basic Walsh transform matrix.
The inverse of a Walsh transformation matrix W(n) is
2−nW(n).

Definition 2.2 Let �F = (f0, f1, . . . , f2n−1) be the truth
vector of an n-variable logic function f , and let �S =
(s0, s1, . . . , s2n−1) be the Walsh spectrum of f . Then,

f0 + f1 + f2+ f3

f0 - f1 + f2 - f3

f0 + f1 - f2 - f3

f0 - f1 - f2 + f3

 f0

 f1

 f2

 f3

Figure 2.1. Fast Fourier transformation (But-
terfly operation).

two relations �S = 2−nW(n)�F t and �F = W(n)�St hold,
where t denotes transpose of the vector. In this case,
si(i = 0, 1, . . . , 2n − 1) is a Walsh coefficient of f . In
this paper, we call this the Walsh transformation (it is
sometimes called as Walsh-Hadamard transformation or
Hadamard transformation.) Each row of the Walsh trans-
formation matrix represents a Walsh function.

In the computation of the Walsh spectrum for logic func-
tions, we often omit the multiplication of the constant factor
2−n. The Walsh transformation of an n-variable logic func-
tion is computed as the product of W(n) and �F t. How-
ever, a straightforward computation method requires a large
matrix, and thus a large amount of computation. The fast
Fourier transformation method (i.e., butterfly operations)
shown in Fig. 2.1, computes the Walsh spectrum more effi-
ciently.

Example 2.1 Consider the function f = x̄1 ∨ x2. Thus,
�F = (f0, f1, f2, f3) = (1, 1, 0, 1). The Walsh spectrum is

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
1
0
1

 =

3
−1

1
1

 .

Therefore, we have �S = (s0, s1, s2, s3) = (3,−1, 1, 1) .

2.2. Walsh Transformation Tree

Definition 2.3 The binary decision tree (BDT) for a logic
function f is obtained from f by applying the Shannon ex-
pansion f = x̄f0 ∨ xf1, repeatedly. In the BDT, a 0-edge
has the label x̄i, while a 1-edge has the label xi. Each node
is labeled ”S” to denote the Shannon expansion.

Definition 2.4 Given a BDT, in a path from the root node to
a terminal node, the products of all the labels in the edges
in the path and the value of the terminal node is the path
product. The sum of all the path products is the sum-of-
path-products (SOPP).

In the case of BDT for f , the SOPP corresponds to the
canonical sum-of-products expression for f .

S S

S

011 1

x1

x2x2 x2 x2 x2

x1

Figure 2.2. Binary
decision tree for
f = x̄1 ∨ x2.

W W

W

011 1

1

1 1

1-2w1

1-2w21-2w2

Figure 2.3. Binary
decision tree for
f = x̄1 ∨ x2.

f0 f1 f2k-1 f2k f2k+1 f2k+1-1

W

SA SB

1 1-2w1

Figure 2.4. Walsh transformation tree for k+1
variables.

Example 2.2 Fig. 2.2 shows the BDT for n = 2. The SOPP
is 1 · x̄1x̄2 +1 · x̄1x2 +0 ·x1x̄2 +1 ·x1x2 = x̄1x̄2 + x̄1x2 +
x1x2.

Definition 2.5 A multi-terminal binary decision tree
(MTBDT) is the BDT, where the leaf nodes have m bits
(m ≥ 2). An MTBDT represents a multiple-output
logic function (f0, f1, . . . , fm−1), and each bit of the
terminal nodes represents a component function f i(i =
0, 1, . . . ,m − 1).

Definition 2.6 [15] A Walsh transformation tree (WTT)
is a binary decision tree (BDT), where the 0-edge has the
label 1, while the 1-edge has the label (1 − 2wi). Each
node is labeled “W” to denote the Walsh expansion.

Fig. 2.3 shows an example for n = 2.

Definition 2.7 The Walsh expression is SOPP of the Walsh
transformation tree. That is, let f0, f1, f2, f3, . . . , f2n−1 be
the values of the terminal nodes. Then, the Walsh expression
for f is

s(f : w1, w2, . . . , wn)
= f0 + f1 · (1 − 2wn) + f2 · (1 − 2wn−1)

+f3 · (1 − 2wn−1) · (1 − 2wn) + · · ·
+f2n−1 · (1 − 2w1) · (1 − 2w2) · · · · · (1 − 2wn).

In the Walsh expression, by specifying the value of
�w = (w1, w2, . . . , wn), we can compute an arbitrary Walsh
coefficient. That is, the WTT represents a row of W(n),
and the value (w1, w2, . . . , wn) specifies the row. When
w1 = w2 = · · · = wn = 0, the SOPP represents
f0 + f1 + · · · + f2n−1 = s0. This corresponds to the in-
ner product of the truth vector and the first row of W(n).
When w1 = w2 = · · · = 0, wn = 1, the SOPP represents
(f0 − f1) + (f2 − f3) + · · ·+ (f2n−2 − f2n−1) = s1. This
corresponds to the inner product of the truth vector and the
2nd row of W(n). And, similarly, by specifying the value
of �w = (w1, w2, . . . , wn), we can compute the inner prod-
uct the arbitrary row of W(n) and �F .

Example 2.3 The Walsh expression obtained from the WTT
in Fig 2.3 is

s(w1, w2) = f0 · 1 · 1 + f1 · 1 · (1 − 2w2) + f2

·(1 − 2w1) · 1 + f3 · (1 − 2w1) · (1 − 2w2)
= 1 · 1 · 1 + 1 · 1 · (1 − 2w2) + 0

·(1 − 2w1) · 1 + 1 · (1 − 2w1) · (1 − 2w2)
= 3 − 2w1 − 4w2 + 4w1w2.

From this, we can compute the Walsh coefficients as follows:

s(0, 0) = f0 + f1 + f2 + f3 = 3
s(0, 1) = f0 − f1 + f2 − f3 = −1
s(1, 0) = f0 + f1 − f2 − f3 = 1
s(1, 1) = f0 − f1 − f2 + f3 = 1

Theorem 2.1 In a Walsh transformation tree (WTT), when
the leaf nodes represent the truth values of a logic function
f , the SOPP represents the Walsh coefficient specified by
�w = (w1, w2, . . . , wn).

(Proof) We will prove the theorem by the mathematical
induction with respect to n, the number of variables in f .

1. When n = 1, the theorem holds. That is, when w1 = 0
the SOPP of the WTT represents f0 + f1, while when
w1 = 1 the SOPP represents f0 − f1.

2. Assume that the theorem is true for the WTT with k
variables.

3. Consider the case for n = k+1. In this case, the WTT
can be represented as Fig. 2.4. When w1 = 0, the
SOPP of the WTT represents sA(w2, w3, . . . , wk+1)+
sB(w2, w3, . . . , wk+1). Also, when w1 = 1, the
SOPP of the WTT represent sA(w2, w3, . . . , wk+1) −
sB(w2, w3, . . . , wk+1). This means that the WTT rep-
resent the matrix

W(k + 1) =
[

W(k) W(k)
W(k) −W(k)

]
.

From this, we can see that the theorem also holds for
n = k + 1.

From 1, 2, and 3, the theorem holds for all n. �

2.3. Walsh Transformation Diagram

Definition 2.8 [4] The binary decision diagram (BDD) is
obtained from the BDT by applying the following operations
repeatedly to reduce the number of nodes:

1. Delete a node v that has the same children, and
2. Share the node, if two nodes v1 and v2 represent the

same function.

Definition 2.9 [15] The Walsh transformation diagram
(WTD) is obtained from the WTT by applying the following
operations repeatedly to reduce the number of nodes:

1. Delete a node v that has the same children. In this
case, attach an edge with the label 2(1 − wi).

2. Share the node, if two nodes v1 and v2 represent the
same function.

Note that, in a BDD, when a node v has the same chil-
dren, the reduced graph has an edge with the label w̄i+wi =
1. On the other hand, in a WTD, when a node v has the
same children, the reduced graph has an edge with the label
1 + (1 − 2wi) = 2(1 − wi).

Theorem 2.2 In the Walsh transformation diagram (WTD)
for an n variable function, suppose that the terminal nodes
represent the truth values of a logic function f . Then, the
SOPP of the WTD represents a Walsh expression.

Example 2.4 In the BDD in Fig 2.5(a), a node at the x2

level is deleted. The deleted node is represented by a cross
point [15], denoted by • in the figure. The corresponding
WTD is shown in Fig. 2.5(b). The Walsh expression is

s(w1, w2) = 1 · 1 · 2(1 − w2) + 0 · (1 − 2w1)
·1 + 1 · (1 − 2w1) · (1 − 2w2)

= 3 − 2w1 − 4w2 + 4w1w2.

Note that this expression is equivalent to s(w1, w2) in Ex-
ample 2.3. From this, we can compute the Walsh coeffi-
cients.

3. Amount of Hardware

3.1. Computing a Single Coefficient

A hardware realization of a WTT can be obtained by re-
placing each node in the WTT by an adder-subtracter. A

S

0 1

S

x1 x1

x2 x2 1

W

0 1

W
1-2w1

1-2w1 2(1-2w1)

1

1

(a) BDD (b) WTD

Figure 2.5. BDD and WTD for f = x̄1 ∨ x2.

k-bit adder-subtracter realizes the function y(w, sa, sb) =
sa +(1−2w)sb, where sa and sb are k-bit binary numbers.
Note that y(w, sa, sb) represents addition (sa + sb) when
w = 0, and subtraction (sa − sb) when w = 1, where w
is the control input. A k-bit adder-subtracter has (2k + 1)
inputs and (k + 1) outputs. We assume that the cost of
hardware for a k-bit adder-subtracter is αk, where α is a
constant. The hardware for WTT has a structure of binary
tree. Note that the adder-subtracters that are near to the root
node have higher cost than ones that are near to the leaf
nodes. However, we can prove that the total cost of hard-
ware is exactly O(2n).

Lemma 3.1
n∑

i=1

i2i−1 = (n − 1)2n + 1.

Theorem 3.1 Hardware cost for the WTT of n variables is
O(2n).

(Proof) Let w1 correspond to the root node, and wn cor-
respond to the nodes that connect directly to the leaves. The
cost of the adder-subtracter for wi is α(n− i+1). We need
2i−1 adder-subtracters for wi. Thus, the total cost of the
hardware is

n∑
i=1

α(n − i + 1)2i−1

= α(n + 1)
n∑

i=1

2i−1 − α
n∑

i=1

i2i−1

= α(n + 1)(2n − 1) − α[(n − 1)2n + 1]
= α(2n+1 − n − 2) = O(2n) �

3.2. Computing the Entire Coefficients

Theorem 3.2 The cost of hardware that computes the
entire Walsh coefficients of n variables at one time is
O(n22n).

(Proof) By replacing each node in the butterfly diagram
with an adder or a subtracter, we have hardware to compute
the entire Walsh coefficients at one time. For each stage we

need 2n−1 copies of adders and subtracters. Also, the cost
of an adder-subtracter in the i-th stage is βi, where β is a
constant. Thus, the total cost of the hardware is

n∑
i=1

βi2n = β2n
n∑

i=1

i = β2n n(n − 1)
2

= O(n22n) �

4. Multiple-Output Functions

With the integer function[15]: Z = 2m−1fm−1 +
2m−2fm−2+· · ·+20f0, we can represent a multiple-output
function �f = (fm−1, fm−2, . . . , f0) by a WTT or a WTD
1 .

Theorem 4.1 Let s(f i : w1, w2, . . . , wn) be the SOPP for
f i(i = 0, 1, . . . ,m − 1). Then, the SOPP for Z is,

m−1∑
i=0

s(f i : w1, w2, . . . , wn) · 2i.

From Theorem 4.1, we can calculate the Walsh coef-
ficient for the multiple-output function as follows: For
i = 0, 1, . . . , m − 1, obtain the sum of Walsh coefficients
for f i multiplied by 2i.

The Walsh coefficients of a multiple-output function
can be also obtained from the MTBDT. However, the
straightforward implementation of MTBDT requires exces-
sive hardware. In the method of Theorem 4.1, most of the
hardware is independent of m, the number of outputs. The
only hardware that depends on m is the adder in the final
stage. This realization drastically reduces the amount of
hardware, but the computation time will be proportional to
m.

5. Experimental Results

5.1. Circuits to Compute Single Coefficient

In Sections 2.2 and 2.3, we presented two methods to
compute the coefficients: WTT and WTD. In this part, we
only consider the hardware realization of WTTs, since the
method using WTD is feasible only for fixed functions.

In the computation of spectrum for logic functions, two
encodings exist: one is (0, 1) encoding, and the other is
(1,−1) encoding [10]. In this paper, we use the (0, 1) en-
coding. In this case, the maximum value of the spectrum
for an n-variable function is 2n, and the minimum value is
−2n−1.

Fig. 5.1(a) shows the combinational method for n =
3. Fig. 5.1(b) illustrates the computation for �w =

1 Recall that f0 denotes f(0, 0, . . . , 0), while f0 denotes 0-th output
of the function.

Table 5.1. Encoding for adder-subtracter.
Code Number in Number in

2’s complement adder-subtracter
0 0 0 0 0
0 0 1 1 1
0 1 0 2 2
0 1 1 3 3
1 0 0 -4 4
1 0 1 -3 -3
1 1 0 -2 -2
1 1 1 -1 -1

(w1, w2, w3) = (1, 1, 0). As shown in Fig. 5.1(c), the
adder-subtracter of a WTT has (2k + 1) inputs and k + 1
outputs. In this realization, to reduce the amount of hard-
ware, we use a special encoding: The code (1, 0, 0, . . . , 0)
represents 2k, while other codes represent 2’s complement
numbers. For example, Table 5.1 represents encoding for
k = 2. In this case, the code (1, 0, 0) represents 2k = 4.

Table 5.2 shows the environment and conditions of the
experiments. Table 5.3 shows the number of ALUTs and
delay time for the combinational method. For the FPGA
device used in this experiment, the combinational method is
feasible with up to n = 10. When n = 10, only 2 percents
of total ALUTs are used. The number of ALUTs increases
exponentially with n.

To compute the spectrum with n ≥ 11, we developed
the time-division multiplexing method (TDM method),
as shown in Fig. 5.2. In this method,

1. we partition the data inputs fi, (i = 0, 1, . . . , 2n − 1)
into groups,

2. for each group load the data of the functions into the
registers sequentially by setting the Loadi signal to 1,
and

3. after loading all the values of functions into registers,
compute the value of the Walsh function.

Fig 5.2 illustrates the case where the width is 4 bits. With
the FPGA device, the width of the data can be extended
to 1024 bits. Table 5.4 shows the amount of hardware and
delay time for TDM method. With this device, the method
is feasible with up to n = 14.

5.2. Circuits to Compute All the Coefficients

We also implemented circuits to compute all the coeffi-
cients at one time. The networks simply realize butterfly
networks shown in Fig. 2.1. Up to n = 7, we could imple-
ment combinational circuits to compute all the coefficients
at one time. Table 5.5 shows the numbers of ALUTs and
delay time. For, n ≥ 8, the numbers of pins in the FPGA
are not sufficient, so we used the TDM method. Table 5.6
shows the amount of hardware and delay time. From these

Table 5.2. Environment and conditions for ex-
periments.

FPGA device: Stratix II
Device type: EP2S180F1508C4[1]
Number of ALUTs: 143520
I/O pins: 1173 (out of 1508 total pins)
Memory bits: 9383040
DSP blocks (9-bit): 768

Computer
PC: IBM ThinkPad T41
MPU: Pentium M (1.6GHz)
RAM: 1GB

Tool for Logic Synthesis and Fitting
Altera, Quartus II V4.1 [1]

Optimization Parameter for the Tool
Fitter setting:

Physical Synthesis Optimization,
Physical synthesis for combinational logic Extra

Timing-driven compilation:
Optimize timing, Extra effort,

Analysis Synthesis Settings:
Standard Fit (highest effort), Speed

Table 5.3. Combinational method to compute
single coefficient.

n Pins ALUTs Delay[ns]
6 77 230 (<1%) 13.3
7 143 471 (<1%) 15.2
8 273 954 (<1%) 18.7
9 531 1924 (1%) 21.0

10 1045 3965 (2%) 26.2

tables, we can see that the numbers of ALUTs increase with
O(n2 · 2n).

5.3. Comparison with Microprocessor

Various methods exist to compute Walsh coefficients by
software. As for the data structure, we assume the array
of the truth vector. For computation of any coefficient, we
need to access all the 2n elements of the truth vector, and to
do (2n − 1) additions and/or subtractions. So, to calculate

Table 5.4. TDM method to compute single co-
efficient.
n Pins ALUTs Registers Delay[ns]
11 1050 8764 (6%) 2048 (1%) 39.3
12 1054 17547 (12%) 4095 (2%) 43.0
13 1060 35118 (24%) 8192 (5%) 47.0
14 1070 70256 (48%) 16374 (10%) 51.7

f0

w1

s(w)

w2

w3

f1 f2 f3 f4 f5 f6 f7

3 3

4

2 2 2 2

(a) Circuit for n = 3.
f0

w1=1

w2=1

w3=0

s(w)=s(1, 1, 0) = s6 = f0+ f1 - f2 - f3 - f4 - f5+ f6+ f7

f1 f2 f3 f4 f5 f6 f7

3 3

4

2 2 2 2

(b) Computation for (w1, w2, w3) = (1, 1, 0).

+ ++ +

--

-

k k

k+1

(c) Adder-subtracter.

addsub
result

a b

if (addsub == 0)
 result = a + b;
else
 result = a - b;

Figure 5.1. Circuit to compute Walsh coefficients (n = 3, combinational method).

s(w)

w1

P0 P1 P2P3

w2

w3

wn

load0

load1

loadblk-1

FPGA

Reg.

Figure 5.2. Computation circuit for Walsh co-
efficients (TDM method).

Table 5.5. Combinational method to compute
all the coefficients.

n Pins ALUTs Delay[ns]
4 96 218 (<1%) 8.4
5 224 676 (<1%) 11.4
6 512 1896 (1%) 15.4
7 1152 5072 (3%) 18.8

a Walsh coefficient, at least we need time to computer f0 +
f1 + · · · + f2n−1. Thus, for each n, we generated a code
to compute the value f0 + f1 + · · · + f2n−1. We obtained
the average computation time by performing it 106 times.
We used the computer shown in Table 5.2, and used the gcc

Table 5.6. TDM method to compute all the co-
efficients.

n Pins ALUTs Delay[ns]
8 273 14398 (10%) 24.4
9 532 35496 (25%) 32.9

10 1046 85395 (59%) 44.7

Table 5.7. Comparison of computation time.
n time (nsec) Speed-up

FPGA MPU
8 18.7 962 51
9 21.0 1903 91

10 26.2 3914 149
11 39.3 8181 208
12 43.0 16100 372
13 47.0 32200 685
14 51.7 64800 1253

compiler.
Table 5.7 compares computation time. In the case of

the microprocessor (MPU), the computation time is propor-
tional to 2n. From the table, we can see that the FPGA
realization is at least 1253 times faster than the MPU when
n = 14. Note that the software implementations in [5, 12]
can compute the coefficients only for the fixed functions,
and require precomputation. On the other hand, in our im-
plementation, we can compute the coefficients for any func-
tion without any precomputation.

6. Conclusion

In this paper, we have shown hardware to compute a
Walsh coefficient of a logic function directly from the Walsh
transformation tree. Also, we have designed the circuits us-
ing FPGAs. With the current FPGAs, our approach is fea-

sible for n ≤ 14 inputs. It is at least 1253 times faster than
a software realization on a microprocessor when n = 14.
We have also shown that the amount of hardware to com-
pute a coefficient and the entire coefficients are O(2n) and
O(n2 · 2n), respectively.

Acknowledgments

This research is partly supported by the Grant in Aid for
Scientific Research of JSPS and MEXT, and Kitakyushu In-
novative Cluster Project. Discussion with S. Nagayama and
Jon T. Butler improved presentation of the paper.

References

[1] Altera: http://www.altera.com/

[2] A. Amira, A. Bouridane, P. Milligan, and M. A. Roula,
“Novel FPGA implementations of Walsh Hadamard trans-
forms for signal processing,” IEE Proceedings on Vision,
Image and Signal Processing, pp. 377-383, Vol. 148, No.
6, December 2001.

[3] K. G. Beauchamp, Applications of Walsh and Related Func-
tions, New York: Academic Press, 1984.

[4] R. E. Bryant, “Graph-based algorithms for Boolean func-
tions manipulation,” IEEE Trans. Computers, vol. 35, no. 8,
pp. 667-691, Aug. 1986.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J.
Yang, “Spectral transforms for large Boolean functions with
application to technology mapping,” Proc. Design Automa-
tion Conf., pp. 54-60, June, 1993.

[6] B. J. Falkowski, I. Schaefer, and M. A. Perkowski, “Effec-
tive computer methods for the calculation of Rademacher-
Walsh spectrum for completely and incompletely specified
Boolean functions,” IEEE Trans. Computer-Aided Design,
vol. 11, no. 10, pp. 1207-1226, Oct. 1992.

[7] M. Fujita, J. C.-Y. Yang, M. Clarke, X. Zhao, and P. McGeer,
“Fast spectrum computation for logic functions using binary
decision diagrams,” Proc. Int’l Symp. Circuit and Systems
(ISCAS ’94), pp. 275-278, 1994.

[8] J. P. Hansen and M. Sekine, “Synthesis by spectral transla-
tion using Boolean decision diagrams,” Proc. 33rd Design
Automation Conf., pp. 248-253, June, 1996.

[9] T-C. Hsiao and S. C. Seth, “An analysis of the use of
Rademacher-Walsh spectrum in compact testing,” IEEE
Trans. Computers, vol. 33, pp. 934-938, Oct. 1984.

[10] S. L Hurst, D. M. Miller, and J. C. Muzio, Spectral Tech-
niques in Digital Logic, Academic Press, 1985.

[11] A. Iseno, Y. Iguchi, and T. Sasao, “Fault diagnosis for RAMs
using Walsh spectrum,” IEICE Trans. Information and Sys-
tems, Vol. E87-D, No.3, March 2004, pp. 592-600.

[12] D. Jankovic, R. S. Stankovic, and R. Drechsler, “Decision
diagram method for calculation of pruned Walsh transform,”
IEEE Transactions on Computers, Vol. 50, No. 2, Feb. 2001,
pp. 147-157.

[13] R. J. Lechner, “Harmonic analysis of switching func-
tions,” In A. Mukhopadhyay, editor, Recent Developments
in Switching Theory, New York, Academic Press, 1971.

[14] Synplify: http://www.synplicity.com/

[15] R. S. Stankovic, T. Sasao, and C. Moraga, “Spectral trans-
form decision diagrams,” Representations of Discrete Func-
tions, T. Sasao and M. Fujita, eds., pp. 55-92, Kluwer Aca-
demic, 1996.

[16] R. Stankovic and J. Astola, Spectral Interpretation of Deci-
sion Diagrams, Springer-Verlag, May 16, 2003.

[17] A. K. Susskind, “Testing by verifying Walsh coefficients,”
IEEE Transactions on Computers, Vol. 32, No.2, pp. 198-
201, Feb. 1983.

[18] M. A. Thornton, R. Drechsler, and D. M. Miller, Spec-
tral Techniques in VLSI CAD, Kluwer Academic Publishers,
July, 2001.

[19] M. A. Thornton and V. S. S. Nair, “Efficient calculation
of spectral coefficients and their applications,” IEEE Trans.
Computer-Aided Design Integrated Circuits and Systems,
Vol. 4, no. 11, pp. 1328-1341, Nov. 1995.

[20] D. Varma and E. A. Trachtenberg, “ Design automation tools
for efficient implementation of logic functions by decompo-
sition,” IEEE Trans. CAD, Vol. 8, pp. 901-916, Aug. 1989.

