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Abstract

In this paper, we propose an exact and a heuristic min-
imization algorithms for the average path length (APL) of
heterogeneous multi-valued decision diagrams (MDDs). In
a heterogeneous MDD, each variable can take on the dif-
ferent number of values. To represent a binary logic func-
tion using a heterogeneous MDD, we partition the binary
variables into groups, and treat them as multi-valued vari-
ables. By considering partitions of binary variables, we can
obtain heterogeneous MDDs that represent logic functions
more compactly and have smaller APLs than reduced or-
dered binary decision diagrams (ROBDDs). Experimental
results using 21 benchmark functions show that the APLs
of the heterogeneous MDDs can be reduced by a half that
of corresponding ROBDDs, on average, without increasing
memory size.

1. Introduction

Binary decision diagrams (BDDs) [5] and multi-valued
decision diagrams (MDDs) [12] are extensively used in
logic synthesis [9], logic simulation [1, 14], software syn-
thesis [2, 11, 19], etc.. In the evaluation of logic function us-
ing BDDs and MDDs, the expected evaluation time is pro-
portional to the average path length (APL) of BDDs and
MDDs. Therefore, minimization of the APL reduces evalu-
ation time of the logic function. Particularly, in logic simu-
lation using decision diagrams [1, 14] and software synthe-
sis [2, 11, 19], intensive minimization of APLs without in-
creasing the memory size is very important to reduce the
simulation time and to generate a fast and compact program
code.

Minimization of APLs in BDDs has been considered
in [8, 13, 21]. However, in a BDD, minimization of an
APL often increases the memory size significantly, since
a variable order that minimizes the APL is often differ-
ent from the variable order that minimizes the number of
nodes. In fact, the minimization of the APL for the BDD

of the benchmark functioni10 increases the memory size
by 11 times of the original BDD size, as shown in Sec-
tion 4.2. For a homogeneous MDD(k) (or MDD(k)), rep-
resenting a logic function, the APL can be reduced by in-
creasing the value ofk (i.e., the size of group). However,
the memory sizes of MDD(k)s increase exponentially with
the value ofk [18, 22]. On the other hand, for heteroge-
neous MDDs [19], APLs can be minimized without increas-
ing the memory size. In [19], we proposed an APL mini-
mization algorithm that considers only partitions of the bi-
nary variables, where the orderings of binary variables are
fixed. In this paper, we propose an APL minimization algo-
rithm that considers both partitions and orderings of binary
variables. By experiments, we show that in heterogeneous
MDDs, APLs can be reduced by a half that of correspond-
ing BDDs, on the average, without increasing the memory
size.

This paper is organized as follows. Section 2 shows the
necessary terminology, definitions and theorems. Section 3
proposes an exact and a heuristic minimization algorithms
for APLs. And, in Section 4, the experimental results show
the efficiency of the algorithms.

2. Preliminaries

2.1. Partitions of Binary Variables

Definition 2.1 Let f �X� be a two-valued logic function,
where X � �x1�x2� � � � �xn� is an ordered set of binary vari-
ables. Let �X� denote the unordered set of variables in
X. If �X� � �X1� � �X2�� � � �� �Xu� and �Xi� � �Xj� �
φ�i �� j�, then �X1�X2� � � � �Xu� is a partition of X. Xi is
called a super variable. If �Xi� � ki �i � 1�2� � � � �u� and
k1 � k2 � � � � � ku � n, then a two-valued logic function
f �X� can be represented by the mapping f �X1�X2� � � � �Xu�:
P1�P2�P3� � � ��Pu � B, where Pi � �0�1�2� � � � �2ki �1�
and B � �0�1�.

Definition 2.2 A fixed-order partition of X � �x1�x2� � � �,
xn� is a partition �X1�X2� � � � �Xu�, where

X1 � �x1�x2� � � � �xk1��



X2 � �xk1�1�xk1�2� � � � �xk1�k2��

	 	 	

Xu � �xk1�k2�����ku�1�1�xk1�k2�����ku�1�2� � � � �xn�1�xn��

and �Xi� � ki. That is, in the fixed-order partition of X, the
variable order of X is fixed.

Definition 2.3 When the variable order of X � �x1�x2,
� � � �xn� is not fixed, a partition of X is called a non-fixed-
order partition of X.

We assume that the given logic function is completely
specified and has no redundant variables.

Example 2.1 Consider �X1�X2�, which is a fixed-order par-
tition of X, where X � �x1�x2�x3�x4�x5� and each xi is a bi-
nary variable. When X1 � �x1�x2� and X2 � �x3�x4�x5�, we
have k1 � 2, k2 � 3, P1� �0�1�2�3�, and P2� �0�1� � � � �7�.
Note that X1 takes 4 values, and X2 takes 8 values. So,
a 5-variable logic function f �X� can be represented
by the multi-valued function f �X1�X2�: P1 � P2 � B.

(End of Example)

2.2. Heterogeneous MDD

In this paper, we use standard terminologies for BDDs,
reduced ordered binary decision diagrams (ROBDDs) [5],
MDDs, and reduced ordered multi-valued decision dia-
grams (ROMDDs) [12].

Definition 2.4 When X � �x1�x2� � � � �xn� is partitioned into
�X1�X2� � � � �Xu�, the ROMDD representing a logic function
f �X� is called a heterogeneous MDD. A heterogeneous
MDD represents a mapping f : P1 � P2 � � � �� Pu � B,
where Pi � �0�1� � � � �2ki �1� and B� �0�1�. In a heteroge-
neous MDD, non-terminal nodes representing a super vari-
able Xi have 2ki outgoing edges, where ki denotes the num-
ber of binary variables in Xi.

Definition 2.5 In a decision diagram (DD), the number
of nodes in the DD, denoted by nodes�DD�, includes only
non-terminal nodes.

Definition 2.6 The width of the DD with respect to Xi,
denoted by width�DD� i�, is the number of nodes in the
DD corresponding to the super variable Xi. The number
of nodes in the MDD with the partition �X1�X2� � � � �Xu� is
given by

nodes�MDD� �
u

∑
i�1

width�MDD� i��

Example 2.2 Consider the logic function f �
x1x2x3 
 x2x3x4 
 x3x4x1 
 x4x1x2. Fig. 2.1(a) and
Fig. 2.1(b,c) represent the ROBDD and the heteroge-
neous MDDs for f , respectively. In Fig. 2.1(b), the binary
variables X � �x1�x2�x3�x4� are partitioned into �X1�X2�,
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Figure 2.1. BDD and heterogeneous MDDs

where X1 � �x1�x2�x3� and X2 � �x4�. In Fig. 2.1(c),
X1 � �x1� and X2 � �x2�x3�x4�. (End of Example)

In this paper, we use Shared BDDs (SBDDs) [15] and
Shared MDDs (SMDDs) to represent multiple-output func-
tions F � � f0� f1� � � � � fm�1�: Bn � Bm, whereB � �1�0�,
andn andm denote the number of input and output vari-
ables, respectively. In the following, BDDs and MDDs
mean SBDDs and SMDDs, respectively, unless stated oth-
erwise.

2.3. Memory Sizes

Definition 2.7 The memory size of a DD is the number of
words needed to represent the DD in memory, where we as-
sume that a word is large enough to store an index or an
edge pointer.

In a memory, a non-terminal node requires an index and
pointers to the succeeding nodes. Since each non-terminal
node in a BDD has two pointers, the memory size needed
to represent a BDD is

�2�1��nodes�BDD�� (2.1)

In a heterogeneous MDD, each super variable can take dif-
ferent domain. Therefore, the memory size for a heteroge-



neous MDD is given by

u

∑
i�1
�2ki �1��width�heterogeneous MDD� i��

Example 2.3 The memory sizes to represent BDD and het-
erogeneous MDDs are as follows: for the BDD in
Fig. 2.1(a), 18; for the heterogeneous MDD in Fig. 2.1(b),
12; and for the heterogeneous MDD in Fig. 2.1(c), 21.

(End of Example)

Definition 2.8 Given a logic function f and the order of
input variables, the fixed-order minimum heterogeneous
MDD for f is the heterogeneous MDD with the minimum
memory size among all possible fixed-order partitions of the
variables.

Definition 2.9 Given a logic function f , the minimum het-
erogeneous MDD for f is the heterogeneous MDD with the
minimum memory size among all possible non-fixed-order
partitions of the variables.

2.4. Average Path Lengths (APLs)

Definition 2.10 In a DD, a sequence of edges and nodes
leading from the root node to a terminal node is a path.
The number of non-terminal nodes on the path is the path
length.

In this paper, we assume the following computational
model:

1. DDs for logic functions are evaluated by traversing
nodes from the root node to a terminal node accord-
ing to values of the input variables.

2. MDDs are implemented directly, not simulated using
the BDD package as described in [12].

3. Encoded input values are available, and their
access time is negligible. For example, when
X1 � �x1�x2�x3�x4� � �1�0�0�1�, X1 � 9 is immedi-
ately available as an input to the algorithm.

4. Most computation time is devoted to accessing nodes.

5. The evaluation time for all MDD nodes are equal.

In this case, the time to evaluate a DD for a logic func-
tion is proportional to the number of non-terminal nodes
on the path (i.e., path length). Furthermore, we assume that
each binary variable occurs as a 0 with the same probabil-
ity as a 1. Under these assumptions, we use theaverage
path length or APL to estimate the evaluation time of dif-
ferent types of DDs.

In this paper, we use a Shared Decision Dia-
gram (SDD) to represent multiple-output functions
F � � f0� f1� � � � � fm�1�. The APL of an SDD is the sum of
the APLs of individual DDs for each functionf i [27].

Algorithm 3.1
1: exhaustivesearch (BDD, memory size limitationL) �
2: min APL = minimize APL (1, L) ;
3: for (all permutations of binary variables)�
4: Generate the next variable order for BDD ;
5: if (L � nodes�BDD��2) continue ;
6: memory = minimize memory ( ) ;
7: if (L � memory) continue ;
8: APL = minimize APL (1, L) ;
9: if (APL � min APL) �

10: min APL = APL ;
11: Record the variable order for the BDD ;
12: Record the partition of binary variables ;
13: �
14: �
15: �

Figure 3.1. Exact APL minimization algorithm
for heterogeneous MDDs

3. APL Minimization

The APLs in heterogeneous MDDs depend on partitions
and orderings of input variablesX .

Example 3.1 For the BDD in Fig. 2.1(a), the APL is 3�125;
for the heterogeneous MDD in Fig. 2.1(b), it is 1�375;
and for the heterogeneous MDD in Fig. 2.1(c), it is 2�0.

(End of Example)

The partition ofX that minimizes the APL is the trivial
partition,X � X1, wherek1 � n. However, the memory size
needed to represent the heterogeneous MDD for the trivial
partition is nearly 2n. Thus, such an heterogeneous MDD
is impractical for most cases. Therefore, we find a parti-
tion with an order ofX that minimizes the APL within the
given memory size limitation. We formulate the APL mini-
mization problem considering both partitions and orderings
of binary variables as follows:

Problem 3.1 Given a logic function f and a memory size
limitation L, find a non-fixed-order partition of X that pro-
duces the heterogeneous MDD with the minimum APL and
with the memory size equal to or smaller than L.

3.1. Exact Minimization Algorithm

Fig. 3.1 shows pseudo-code to solve Problem 3.1. It uses
a BDD for the given logic function as the internal represen-
tation. In the 2nd and 8th lines in Fig. 3.1, proceduremini-
mize APL [19, 22] finds an optimum fixed-order partition.
Since it is recursive procedure, the top level for BDD (i.e.
level = 1) is required as the initial argument. In the 5th line,
a theorem in [20] is used to reduce the computation time.



Algorithm 3.2
1: sifting APL (BDD, L, #sifting roundsR) �
2: cost = minimize APL (1, L) ;
3: for (r = 0; r � R; r++) �
4: for (�xi � X) �
5: best p = current position ofxi ;
6: for (all positionsp) �
7: Movexi to positionp ;
8: memory = minimize memory ( ) ;
9: ComputeLmem ;

10: if (L� Lmem) break ;
11: if (L � memory) continue ;
12: APL = minimize APL (1, L) ;
13: if (APL � cost) �
14: cost = APL ;
15: best p = p ;
16: Record the partition of binary variables ;
17: �
18: �
19: Movexi to best p ;
20: �
21: �
22: �

Figure 3.2. Heuristic APL minimization for
heterogeneous MDDs

The procedureminimize memory [20, 22] in the 6th line
finds a fixed-order partition that produces the fixed-order
minimum heterogeneous MDD. Algorithm 3.1 finds an op-
timum solution using exhaustive search, which enumerates
all possible variable orders.

3.2. Heuristic Minimization

Although Algorithm 3.1 obtains an exact minimum so-
lution, it is time-consuming for functions with many inputs;
i.e. it enumerates all possible variable orders.

In this section, we show a heuristic APL minimization
method for heterogeneous MDDs (Algorithm 3.2) using a
sifting algorithm [24] and the fixed-order partition algo-
rithm [19]. The sifting algorithm repeatedly performs the
following basic steps:

1. Change the variable order.

2. Compute the cost.

Most sifting algorithms use the number of nodes in a BDD
as the cost in their heuristics. Algorithm 3.2, however,uses
the APL of a heterogeneous MDD as the cost. The APL
for a heterogeneous MDD can be computed using a method
similar to the APL of BDDs in [21]. Fig. 3.2 shows a
pseudo-code for the heuristic algorithm. It also uses a BDD
for the given logic function as the internal representation. In

this algorithm, each variablexi is sifted across all possible
positions to determine its best position. First,xi is sifted in
one direction to the closer extreme (top or bottom). Then,x i

is sifted in the opposite direction to the other extreme. In the
10th line in Fig. 3.2, a property in [23] is used to find useful
siftings of xi. TheLmem denotes the memory size of fixed-
order minimum heterogeneous MDD for logic functiong or
h, where f �X� � g�h�X1��X2�, X1 contains the binary vari-
ables abovexi, andX2 contains the binary variables below
xi. Whenxi moves down to the bottom of the BDD, we use
h for Lmem. On the other hand, when variablexi moves up
to the top of the BDD, we useg for Lmem. This lower bound
for the memory size is similar to the one introduced for the
number of nodes during the classical sifting [7], except for
it is heuristic.

4. Experimental Results

Experiments were conducted in the following environ-
ment: CPU: Pentium4 Xeon 2.8GHz, L1 Cache: 32KB, L2
Cache: 512KB, Memory: 4GB, OS: redhat (Linux 7.3), and
C-Compiler: gcc -O2.

4.1. Comparison of Memory Sizes and APLs for
n-Variable Logic Functions

Table 4.1 compares the memory sizes and the APLs of
BDDs and heterogeneous MDDs forn-variable logic func-
tions. The BDDs and heterogeneous MDDs are optimized
using four different algorithms: (1) exact minimization al-
gorithm of the number of nodes in a BDD (column “Pivot”);
(2) exact APL minimization algorithm for a BDD consider-
ing only the orderings of binary variables (column “Ord.”);
(3) fixed-order partition algorithm [19] considering only the
partitions of binary variables, that minimizes the APL of a
heterogeneous MDD, where the order of binary variables
is the same as the BDD with the minimum nodes (column
“Part.”); and (4) Algorithm 3.1 for heterogeneous MDD
considering both partitions and orderings of binary vari-
ables (column “O & P”). The memory size limitationL of
the fixed-order partition algorithm and Algorithm 3.1 is set
to the memory size of the BDD with the minimum nodes.
The values in the table are the normalized averages ofn-
variable logic functions with the memory sizes and APLs
of “Pivot” set to 1�00. Columns “Ord.”, “Part.”, and “O &
P” show the relative values of the memory sizes and APLs
to “Pivot”. The BDDs and heterogeneous MDDs in this ta-
ble do not use complemented edges.

For 4 and 5-variable logic functions, we calculated the
exact averages over all functions. We did this by recog-
nizing that the APL of a function in one NPN-equivalence
class [17, 26] is identical to the APLs of other functions
in the same class. Thus, it is sufficient to consider only



Table 4.1. Memory sizes and APLs for BDDs and heterogeneous MDDs for randomly generated n-
variable logic functions

Memory size APL
BDD MDD BDD MDD

n Pivot Ord. Part. O & P Pivot Ord. Part. O & P #samples
4 1.00 1.07 0.87 0.86 1.00 0.99 0.39 0.37 216(all functions)
5 1.00 1.07 0.91 0.91 1.00 0.98 0.28 0.27 232(all functions)
6 1.00 1.08 0.80 0.80 1.00 0.97 0.35 0.32 1,000
7 1.00 1.08 0.78 0.79 1.00 0.97 0.28 0.27 1,000
8 1.00 1.08 0.79 0.81 1.00 0.97 0.23 0.22 1,000
9 1.00 1.07 0.81 0.83 1.00 0.98 0.20 0.19 1,000
10 1.00 1.06 0.83 0.84 1.00 0.98 0.17 0.17 1,000

one function from each class and form a sum weighted
by the size of each class. For largern, there are too many
NPN-equivalence classes. For 6� n � 10, we generated
1�000 pseudo-randomn-variable logic functions with dif-
ferent number of true minterms, and calculated the normal-
ized averages for them.

For BDDs, APLs can be reduced up to 97% of
BDDs with the minimum nodes. However, for heteroge-
neous MDDs, the APLs can be reduced up to 17% of BDDs
with the minimum nodes without increasing the mem-
ory sizes. Table 4.1 shows that the relative values of APLs
for heterogeneous MDDs decreases as the number of bi-
nary variablesn increases. Algorithm 3.1 finds smaller
APLs than the fixed-order partition algorithm; it finds ex-
act minimum APLs of heterogeneous MDDs for the
functions with up to 11 variables within a reasonable com-
putation time.

4.2. Comparison of Memory Sizes and APLs for
Benchmark Functions

Table 4.2 compares memory sizes and APLs of
BDDs and heterogeneous MDDs for benchmark func-
tions. Columns labeled “Init.” denote the BDDs ob-
tained by the best known variable orders [29]. These are
used as the initial BDDs for the algorithms in this ex-
periment. Columns “Ord.” denote the BDDs obtained
by the sifting algorithm for the APLs [21]. The sift-
ing algorithm minimizes the APLs considering only the
permutations of binary variables. Columns “Part.” de-
note the heterogeneous MDDs obtained by the fixed-order
partition algorithm [19, 22], where the order of binary vari-
ables is fixed with that of the initial BDD. And, columns “O
& P” denote the heterogeneous MDDs obtained by Algo-
rithm 3.2. The memory size limitationL of the fixed-order
partition algorithm and Algorithm 3.2 is set to the mem-
ory size of the BDD in “Init.”. In the sifting algorithm [21]
and Algorithm 3.2, the number of rounds of sifting is set
to two. The BDDs and heterogeneous MDDs in this ta-
ble use complemented edges. The APLs in Table 4.2 may

not be exact minimum since the algorithms are heuris-
tic methods except for the fixed-order partition algorithm.
The row labeledAverage of ratios represents the normal-
ized averages of memory size and APL, where the memory
size and the APL of “Init.” are set to 1�00.

The sifting algorithm reduced APLs to 88% of “Init.”,
on average, but increased the memory sizes by twice. Espe-
cially, for C880, C1908, i10, andtoo large, the sifting algo-
rithm increased the memory sizes significantly. The fixed-
order partition algorithm and Algorithm 3.2 reduced APLs
to 62% and 51% of “Init.”, on average, respectively, without
increasing the memory size. For most benchmark functions,
the fixed-order partition algorithm reduced APLs substan-
tially (e.g. C499). However, for some logic functions (e.g.
apex6 andi8), the fixed-order partition algorithm could not
reduce APLs of “Init.” by much. Even for such functions,
Algorithm 3.2 (“O & P”) could reduce APLs substantially
without increasing the memory size.

Example 4.1 Consider the 7-variable 2-output balanced
tree (BTREE) function. Fig. 4.1(a) shows the BDD with the
fewest nodes for the BTREE function. For this BDD, the al-
gorithm considering only the orderings of binary variables
cannot reduce the APL. The fixed-order partition algorithm
cannot reduce the APL without increasing the memory size.
However, the algorithm considering both partitions and or-
derings of binary variables can reduce the APL without in-
creasing the memory size, and obtains the heterogeneous
MDD in Fig. 4.1(b), where X1 � �x1�, X2 � �x2�x4�x5�, and
X3 � �x3�x6�x7�. (End of Example)

4.3. Comparison of Computation Time for Algo-
rithms

Table 4.3 compares the computation time of the sifting
algorithm [21], the fixed-order partition algorithm [19], and
Algorithm 3.2. The values in Table 4.3 denotes the CPU
times needed to obtain the BDDs and heterogeneous MDDs
in Table 4.2, in seconds.

The sifting algorithm considering only the variable or-
der “Ord.” and the fixed-order partition algorithm consid-



Table 4.2. Memory sizes and APLs for BDDs and heterogeneous MDDs for benchmark functions
Memory size APL

BDD MDD BDD MDD
Name In Out Init. Ord. Part. O & P Init. Ord. Part. O & P
C432 36 7 3189 3243 3180 3179 86.58 86.24 48.51 45.45
C499 41 32 77595 96315 77586 77589 813.64 641.16 215.64 192.52
C880 60 26 12156 54810 12155 12154 135.79 121.03 112.54 99.13
C1908 33 25 16575 56328 16570 16564 254.35 183.61 112.23 92.09
C2670 233 64 5319 8286 5317 5319 214.05 202.08 157.11 133.78
C3540 50 22 71481 74292 71472 71480 209.15 208.06 106.20 91.78
C5315 178 123 5154 5460 5154 5153 462.05 446.26 395.91 304.38
C7552 207 107 6633 6585 6633 6633 484.03 469.54 412.64 314.03
alu4 14 8 1047 1080 1019 1019 40.81 40.70 19.59 19.59
apex1 45 45 3735 4254 3734 3728 180.59 177.69 76.47 67.63
apex6 135 99 1491 1887 1491 1490 291.54 230.91 260.79 231.06
cps 24 102 2910 4656 2906 2906 290.25 235.39 164.67 151.81
dalu 75 16 2064 2970 2063 2064 102.67 78.81 45.78 28.09
des 256 245 8832 9177 8830 8831 1210.00 1080.38 810.38 687.50
frg2 143 139 2886 5070 2885 2884 624.69 322.17 536.64 348.60
i3 132 6 396 396 396 396 26.76 26.76 13.87 12.61
i8 133 81 3825 6954 3825 3825 302.54 270.82 302.54 207.54
i10 257 224 61977 685215 61977 61974 1084.96 776.10 817.63 614.53
k2 45 45 3735 4254 3728 3728 180.52 177.69 77.29 67.61
too large 38 3 954 2361 953 954 13.16 11.52 6.55 6.24
vda 17 39 1431 1515 1413 1424 176.34 171.54 79.13 69.54

Average of ratios 1.00 2.03 1.00 1.00 1.00 0.88 0.62 0.51
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Figure 4.1. BDD and heterogeneous MDD for
BTREE function

ering only the partition of binary variables “Part.” require
shorter CPU time than Algorithm 3.2 “O & P”. Especially,
the fixed-order partition algorithm can reduce APLs sub-
stantially in a short computation time for many benchmark
functions. Thus, the fixed-order partition algorithm is the
most efficient among these algorithms. However, the algo-
rithm considering both partitions and orderings of binary
variables (Algorithm 3.1 or 3.2) is also important, since
for some logic functions, the fixed-order partition algorithm
cannot reduce APLs as shown in the previous section. For
example, in software synthesis, the fixed-order partition al-
gorithm is useful for generating a program code for debug-
ging. On the other hand, Algorithm 3.2 is useful for gener-

Table 4.3. CPU times [sec] for APL minimiza-
tion algorithms

Name Ord. [21] Part. [19] O & P
(Algorithm 3.2)

C432 0.23 0.01 1.04
C499 10.76 0.75 698.31
C880 4.54 0.02 22.09
C1908 1.44 0.09 27.38
C2670 2.21 0.14 1957.51
C3540 12.74 0.55 523.45
C5315 0.43 0.09 3663.57
C7552 1.35 0.09 2258.88
alu4 0.02 0.01 0.05
apex1 0.11 0.02 36.07
apex6 0.05 0.01 79.47
cps 0.09 0.01 0.80
dalu 0.15 0.05 132.41
des 0.91 0.87 60144
frg2 0.29 0.01 218.46
i3 0.01 0.01 95.69
i8 0.31 0.01 30.15
i10 160.91 2.69 71464
k2 0.11 0.03 33.99
too large 0.07 0.01 0.31
vda 0.02 0.01 0.15

ating an optimized program code (final version).

5. Conclusion and Comments

In this paper, we have proposed an exact and a heuristic
minimization algorithm for APL in heterogeneous MDDs.
Experimental results with 21 benchmark functions show
that: 1) In heterogeneous MDDs, APLs can be reduced by a
half of corresponding BDDs, on average, without increasing



the memory size. 2) Algorithm 3.1 considering both parti-
tions and orderings of binary variables finds heterogeneous
MDDs with the minimum APLs for functions with up to 11
variables within a reasonable time. 3) The algorithm consid-
ering only partitions of binary variables (i.e. fixed-order par-
tition algorithm) reduces APLs faster than algorithms con-
sidering variable order. However, for some logic functions,
the fixed-order partition algorithm cannot reduce APLs by
much. Therefore, such functions require an algorithm con-
sidering both partitions and orderings of binary variables
(i.e. Algorithm 3.1 or 3.2).
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