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Abstract of the benchmark functioiLO increases the memory size
by 11 times of the original BDD size, as shown in Sec-
In this paper, we propose an exact and a heuristic min- tion 4.2. For a homogeneous MD)((or MDD(K)), rep-
imization algorithms for the average path length (APL) of resenting a logic function, the APL can be reduced by in-
heterogeneous multi-valued decision diagrams (MDDs). In creasing the value df (i.e., the size of group). However,
a heterogeneous MDD, each variable can take on the dif- the memory sizes of MDIXs increase exponentially with
ferent number of values. To represent a binary logic func- the value ofk [18, 22]. On the other hand, for heteroge-
tion using a heterogeneous MDD, we partition the binary neous MDDs [19], APLs can be minimized without increas-
variables into groups, and treat them as multi-valued vari- ing the memory size. In [19], we proposed an APL mini-
ables. By considering partitions of binary variables, we can mization algorithm that considers only partitions of the bi-
obtain heterogeneous MDDs that represent logic functions nary variables, where the orderings of binary variables are
more compactly and have smaller APLs than reduced or- fixed. In this paper, we propose an APL minimization algo-

dered binary decision diagrams (ROBDDs). Experimental rithm that considers both partitions and orderings of binary

results using 21 benchmark functions show that the APLs variables. By experiments, we show that in heterogeneous
of the heterogeneous MDDs can be reduced by a half that MDDs, APLs can be reduced by a half that of correspond-

of corresponding ROBDDs, on average, without increasing ing BDDs, on the average, without increasing the memory

memory size. size.

This paper is organized as follows. Section 2 shows the
necessary terminology, definitions and theorems. Section 3
proposes an exact and a heuristic minimization algorithms
for APLs. And, in Section 4, the experimental results show

) o ) the efficiency of the algorithms.
Binary decision diagrams (BDDs) [5] and multi-valued

decision diagrams (MDDs) [12] are extensively used in 2. Preliminaries
logic synthesis [9], logic simulation [1, 14], software syn-
thesis [2, 11, 19], etc.. In the evaluation of logic function us-
ing BDDs and MDDs, the expected evaluation time is pro-
portional to the average path length (APL) of BDDs and pefinjtion 2.1 Let f(X) be a two-valued logic function,
MDDs. Therefore, minimization of the APL reduces evalu- \\nere X — (X1,X2, ..., %n) is an ordered set of binary vari-
ation time of the logic function. Particularly, in logic simu-  gpies et {X} denote the unordered set of variables in
lation using decision diagrams [1, 14] and software synthe- y |t {X} = X }U{X}U...U{X,} and {X} N {X;} =
sis [2, 11, 19], intensive minimization of APLs without in- ®i # j), then (X1, Xo,...,X,) is a partition of X. X; is
creasing the memory size is very important to reduce the cgjjed a super variable. If |[X| = ki (i = 1,2,...,u) and
simulation time and to generate a fast and compact programy, | k, 4+ ... + k, = n, then a two-valued logic function
code. f(X repr i LX)
Minimization of APLs in BDDs has been considered p](_ X)p(;a:gsexe_?_efgfei té)’/\tl\fllﬁerﬁ;agp:%({(lgfz',yzh,ful)}
in [8, 13, 21]. However, in a BDD, minimization of an  gnqB = {0,1}.
APL often increases the memory size significantly, since _ . .
a variable order that minimizes the APL is often differ- Def[n|t|on 22 A fixed-order partition of X = (x1,%, .,
ent from the variable order that minimizes the number of ¥n) isapartition (X4, Xz, ..., Xu), where
nodes. In fact, the minimization of the APL for the BDD Xy = (X, %X2,..., Xy ),

1. Introduction

2.1. Partitionsof Binary Variables



X2 = (Xk1+1,xk1+2, ve 7Xk1+k2)7

Xy = (Xk1+k2+...+ku,1+l,Xk1+k2+...+ku,1+2, ey Xn—1,%n),

and |X;| = ki. That is, in the fixed-order partition of X, the
variable order of X isfixed.

Definition 2.3 When the variable order of X = (x1,xp,
...,Xn) is not fixed, a partition of X is called a non-fixed-
order partition of X.

We assume that the given logic function is completely
specified and has no redundant variables.

Example 2.1 Consider (X1,Xz), whichisa fixed-order par-
tition of X, where X = (X1, %2, X3,X4,%s) and each x; is a bi-
nary variable. When X; = (x1,X) and X = (X3, X4,Xs), We
havek; =2,k, =3,PL = {0,1,2,3}, and P, = {0,1,...,7}.
Note that X; takes 4 values, and X, takes 8 values. So,
a 5-variable logic function f(X) can be represented
by the multi-valued function f(X1,X2): P1 x P, — B.

(End of Example)

2.2. HeterogeneousMDD

In this paper, we use standard terminologies for BDDs,
reduced ordered binary decision diagrams (ROBDDSs) [5],
MDDs, and reduced ordered multi-valued decision dia-
grams (ROMDDs) [12].

Definition 2.4 When X = (X1,Xp, ..., Xn) ispartitioned into
(X1, X2, ..,Xy), the ROMDD representing a logic function
f(X) is called a heterogeneous MDD. A heterogeneous
MDD represents a mapping f : Py x P> x ... x P, = B,
whereP, = {0,1,...,24% — 1} and B= {0,1}. In a heteroge-
neous MDD, non-terminal hodes representing a super vari-
able X; have 2K outgoing edges, where k; denotes the num-
ber of binary variablesin X;.

Definition 2.5 In a decision diagram (DD), the number
of nodes in the DD, denoted by nodes(DD), includes only
non-terminal nodes.

Definition 2.6 The width of the DD with respect to X;,
denoted by width(DD,i), is the number of nodes in the
DD corresponding to the super variable X;. The number
of nodes in the MDD with the partition (X1,Xz,...,X,) is
given by

u
nodes(MDD) = Zwidth(MDD,i).
i=

Example2.2 Consider the logic function f =
X1X2X3 V XoX3Xq V X3XaX1 V XgX1Xo. Fig. 2.1(a) and
Fig. 2.1(b,c) represent the ROBDD and the heteroge-
neous MDDs for f, respectively. In Fig. 2.1(b), the binary
variables X = (xg,%2,X3,X4) are partitioned into (X1, X2),

(b) Heterogeneous MDD with
minimum memory size

(c) Heterogeneous MDD with
maximum memory size

Figure 2.1. BDD and heterogeneous MDDs

where X3 = (x1,%2,X3) and Xz = (x4). In Fig. 2.1(c),
X1 = (x1) and Xz = (X2,X3,Xa). (End of Example)

In this paper, we use Shared BDDs (SBDDs) [15] and
Shared MDDs (SMDDs) to represent multiple-output func-
tionsF = (fo, f1,..., fm_1): B" = B™, whereB = {1,0},
andn andm denote the number of input and output vari-
ables, respectively. In the following, BDDs and MDDs
mean SBDDs and SMDDs, respectively, unless stated oth-
erwise.

2.3. Memory Sizes

Definition 2.7 The memory size of a DD is the number of
words needed to represent the DD in memory, where we as-
sume that a word is large enough to store an index or an
edge pointer.

In a memory, a non-terminal node requires an index and
pointers to the succeeding nodes. Since each non-terminal
node in a BDD has two pointers, the memory size needed
to represent a BDD is

(2+ 1) x nodes(BDD). (2.2)

In a heterogeneous MDD, each super variable can take dif-
ferent domain. Therefore, the memory size for a heteroge-



neous MDD is given by

u

Z(Z"i + 1) x width(heterogeneous MDD).
i=

Example 2.3 The memory sizes to represent BDD and het-
erogeneous MDDs are as follows: for the BDD in
Fig. 2.1(a), 18; for the heterogeneous MDD in Fig. 2.1(b),
12, and for the heterogeneous MDD in Fig. 2.1(c), 21

(End of Example)

Definition 2.8 Given a logic function f and the order of
input variables, the fixed-order minimum heter ogeneous
MDD for f is the heterogeneous MDD with the minimum
memory size among all possiblefixed-order partitionsof the
variables.

Definition 2.9 Givenalogicfunction f, the minimum het-
erogeneous MDD for f isthe heterogeneous MDD with the
minimum memory size among all possible non-fixed-order
partitions of the variables.

2.4. Average Path Lengths (APLS)

Definition 2.10 In a DD, a sequence of edges and nodes
leading from the root node to a terminal node is a path.
The number of non-terminal nodes on the path is the path
length.

In this paper, we assume the following computational
model:

1. DDs for logic functions are evaluated by traversing
nodes from the root node to a terminal node accord-
ing to values of the input variables.

2. MDDs are implemented directly, not simulated using
the BDD package as described in [12].
3. Encoded input values are available, and their

access time is negligible. For example, when
X1 = (X1,%2,%3,%a) = (1,0,0,1), Xy = 9 is immedi-
ately available as an input to the algorithm.
4. Most computation time is devoted to accessing nodes.
5.

In this case, the time to evaluate a DD for a logic func-
tion is proportional to the number of non-terminal nodes

The evaluation time for all MDD nodes are equal.

Algorithm 3.1
1: exhaustivesearch (BDD, memory size limitatidr) {
2: min_APL = minimize APL (1,L);
3: for (all permutations of binary variable§)
4: Generate the next variable order for BDD ;
5: if (L < nodes(BDD) + 2) continue ;
6: memory = minimize_memory () ;
7 if (L < memory) continue ;
8: APL = minimize.APL (1,L);
9: if (APL < min_APL) {
10: min_APL = APL ;
11: Record the variable order for the BDD ;
12: Record the partition of binary variables ;
13: }
14: }
15: }

Figure 3.1. Exact APL minimization algorithm
for heterogeneous MDDs

3. APL Minimization

The APLs in heterogeneous MDDs depend on partitions
and orderings of input variables

Example 3.1 For theBDD inFig. 2.1(a), the APL is3.125
for the heterogeneous MDD in Fig. 2.1(b), it is 1.375
and for the heterogeneous MDD in Fig. 2.1(c), it is 2.0.

(End of Example)

The partition ofX that minimizes the APL is the trivial
partition,X = Xi, wherek; = n. However, the memory size
needed to represent the heterogeneous MDD for the trivial
partition is nearly 2. Thus, such an heterogeneous MDD
is impractical for most cases. Therefore, we find a parti-
tion with an order ofX that minimizes the APL within the
given memory size limitation. We formulate the APL mini-
mization problem considering both partitions and orderings
of binary variables as follows:

Problem 3.1 Given a logic function f and a memory size
limitation L, find a non-fixed-order partition of X that pro-
duces the heterogeneous MDD with the minimum APL and
with the memory size equal to or smaller than L.

on the path (i.e., path length). Furthermore, we assume that3.1. Exact Minimization Algorithm

each binary variable occurs a 0 with the same probabil-
ity as a 1. Under these assumptions, we useatleeage
path length or APL to estimate the evaluation time of dif-
ferent types of DDs.

In this paper, we use a Shared Decision Dia-
gram (SDD) to represent multiple-output functions
F = (fo, f1,..., fm—1). The APL of an SDD is the sum of
the APLs of individual DDs for each functiofy [27].

Fig. 3.1 shows pseudo-code to solve Problem 3.1. It uses
a BDD for the given logic function as the internal represen-
tation. In the 2nd and 8th lines in Fig. 3.1, procedomiai-
mize APL [19, 22] finds an optimum fixed-order partition.
Since it is recursive procedure, the top level for BDD (i.e.
level = 1) is required as the initial argument. In the 5th line,
a theorem in [20] is used to reduce the computation time.



Algorithm 3.2 this algorithm, each variabbg is sifted across all possible

1. sifing APL (BDD, L, #sifting roundsR) { positions to determine its best position. Firstjs sifted in
2 cogt = minimize APL (1, L) ; one direction to the closer extreme (top or bottom). Then,
3: for(r=0;r <R r++){ is sifted in the opposite direction to the other extreme. In the
4: for (vx € X) { 10th line in Fig. 3.2, a property in [23] is used to find useful
5: best_p = current position ok; ; siftings ofx;. The Lyem denotes the memory size of fixed-
6: for (all positionsp) { order minimum heterogeneous MDD for logic functigor
7 Movex; to positionp; h, wheref (X) = g(h(X1),Xz), X1 contains the binary vari-
8f memory = m'”'f”'zememory() ; ables above;, andX, contains the binary variables below
1&8.‘ ﬁ:c(nlingul_tel_n?g ok Xi. Whenx; moves down to the bottom of _the BDD, we use
: o = —mem L ) h for Lmem. On the other hand, when variabte moves up
11: if (L < memory) continue ; .
12: APL = minimize APL (1, L) to the top of the BDD we u_sgfor L mem- Th_|s lower bound
13: if (APL < cogt) { for the memory size is similar to the one !ntroduced for the
14 cost = APL : number of nodes during the classical sifting [7], except for
15: best_p=p; it is heuristic.
16: Record the partition of binary variables ;
igf , } 4. Experimental Results
19: Movex; to best_p ; ) . . .
20: } Experiments were conducted in the following environ-
21: } ment: CPU: Pentium4 Xeon 2.8GHz, L1 Cache: 32KB, L2
22: } Cache: 512KB, Memory: 4GB, OS: redhat (Linux 7.3), and

C-Compiler: gcc -O2.

Figure 3.2. Heuristic APL minimization for

heterogeneous MDDs 4.1. Comparison of Memory Sizes and APLs for

n-Variable L ogic Functions

Table 4.1 compares the memory sizes and the APLs of
BDDs and heterogeneous MDDs fowvariable logic func-
tions. The BDDs and heterogeneous MDDs are optimized
using four different algorithms: (1) exact minimization al-
gorithm of the number of nodes in a BDD (column “Pivot”);
(2) exact APL minimization algorithm for a BDD consider-
ing only the orderings of binary variables (column “Ord.”);
(3) fixed-order partition algorithm [19] considering only the
] ) o partitions of binary variables, that minimizes the APL of a

Although Algorithm 3.1 obtains an exact minimum so-  heterageneous MDD, where the order of binary variables
lution, it is time-consuming for functions with many inputs; s the same as the BDD with the minimum nodes (column
i.e. it enumerates all possible variable orders. — «pgri 7). and (4) Algorithm 3.1 for heterogeneous MDD

In this section, we show a heuristic APL minimization  cqnsidering both partitions and orderings of binary vari-
me.thod for heterogeneous MD[_)S (Algorithm 32) using a aples (column “O & P”). The memory size limitatidnof
sifting algorithm [24] and the fixed-order partition algo-  the fixed-order partition algorithm and Algorithm 3.1 is set
rithm [19]. The sifting algorithm repeatedly performs the (4 the memory size of the BDD with the minimum nodes.
following basic steps: The values in the table are the normalized averages of

1. Change the variable order. variable logic functions with the memory sizes and APLs
of “Pivot” set to 100. Columns “Ord.”, “Part.”, and “O &
P” show the relative values of the memory sizes and APLs
Most sifting algorithms use the number of nodes in a BDD to “Pivot”. The BDDs and heterogeneous MDDs in this ta-
as the cost in their heuristics. Algorithm 3.2wever,uses ble do not use complemented edges.
the APL of a heterogeneous MDD as the cost. The APL  For 4 and 5-variable logic functions, we calculated the
for a heterogeneous MDD can be computed using a methodexact averages over all functions. We did this by recog-
similar to the APL of BDDs in [21]. Fig. 3.2 shows a nizing that the APL of a function in one NPN-aigalence
pseudo-code for the heuristic algorithm. It also uses a BDD class [17, 26] is identical to the APLs of other functions
for the given logic function as the internal representation. In in the same class. Thus, it is sufficient to consider only

The procedureninimize_-memory [20, 22] in the 6th line
finds a fixed-order partition that produces the fixed-order
minimum heterogeneous MDD. Algorithm 3.1 finds an op-
timum solution using exhaustive search, which enumerates
all possible variable orders.

3.2. Heuristic Minimization

2. Compute the cost.



Table 4.1. Memory sizes and APLs for BDDs and heterogeneous MDDs for randomly generated n-
variable logic functions

Memory size APL
BDD MDD BDD MDD
n Pivot | Ord. | Part.| O&P || Pivot | Ord. | Part. | O&P #samples
4 1.00| 1.07| 0.87| 0.86| 1.00| 0.99| 0.39| 0.37] 2all functions)
5 1.00| 1.07| 0.91| 0.91| 1.00| 0.98| 0.28| 0.27| 2Z(all functions)
6 1.00| 1.08| 0.80| 0.80( 1.00| 0.97] 0.35] 0.32 1,000
7 1.00| 1.08| 0.78| 0.79| 1.00| 0.97| 0.28| 0.27 1,000
8 1.00| 1.08| 0.79| 0.81| 1.00| 0.97| 0.23| 0.22 1,000
9 1.00| 1.07| 0.81| 0.83| 1.00| 0.98| 0.20| 0.19 1,000
10|l 1.00| 1.06 | 0.83| 0.84| 1.00| 0.98| 0.17| 0.17 1,000

one function from each class and form a sum weighted not be exact minimum since the algorithms are heuris-
by the size of each class. For largerthere are too many  tic methods except for the fixed-order partition algorithm.
NPN-eqiivalence classes. For6 n < 10, we generated The row labeledAverage of ratios represents the normal-

1,000 pseudo-random-variable logic functions with dif- ized averages of memory size and APL, where the memory
ferent number of true minterms, and calculated the normal- size and the APL of “Init.” are set t0.Q0.
ized averages for them. The sifting algorithm reduced APLs to 88% of “Init.”,

For BDDs, APLs can be reduced up to 97% of onaverage, butincreased the memory sizes by twice. Espe-
BDDs with the minimum nodes. However, for heteroge- cially, for C880, C1908, i10, andtoo large, the sifting algo-
neous MDDs, the APLs can be reduced up to 17% of BDDs rithm increased the memory sizes significantly. The fixed-
with the minimum nodes without increasing the mem- order partition algorithm and Algorithm 3.2 reduced APLs
ory sizes. Table 4.1 shows that the relative values of APLs to 62% and 51% of “Init.”, on average, respectively, without
for heterogeneous MDDs decreases as the number of bi-increasing the memory size. For most benchmark functions,
nary variablesn increases. Algorithm 3.1 finds smaller the fixed-order partition algorithm reduced APLs substan-
APLs than the fixed-order partition algorithm; it finds ex- tially (e.g. C499). However, for some logic functions (e.g.
act minimum APLs of heterogeneous MDDs for the apex6andi8), the fixed-order partition algorithm could not
functions with up to 11 variables within a reasonable com- reduce APLs of “Init.” by much. Even for such functions,
putation time. Algorithm 3.2 (“O & P”) could reduce APLs substantially

without increasing the memory size.

4.2. Comparison of Memory Sizes and APLs for Example4.1 Consider the 7-variable 2-output balanced
Benchmark Functions tree (BTREE) function. Fig. 4.1(a) shows the BDD with the
fewest nodes for the BTREE function. For this BDD, the al-
Table 4.2 compares memory sizes and APLs of gorithm considering only the orderings of binary variables
BDDs and heterogeneous MDDs for benchmark func- Cannot reducethe APL. The fixed-order partition algorithm
tions. Columns labeled “Init” denote the BDDs ob- Cannotreducethe APL without increasing the memory size.
tained by the best known variable orders [29]. These are However, the algorithm considering both partitions and or-
used as the initial BDDs for the algorithms in this ex- deringsof binary variables can reduce the APL without in-
periment. Columns “Ord” denote the BDDs obtained Créasing the memory size, and obtains the heterogeneous
by the sifting algorithm for the APLs [21]. The sift- MDD inFig. 4.1(b), where X; = (x1), X2 = (X2,X4,Xs), and
ing algorithm minimizes the APLs considering only the X8 = (X3,X6,X7)- (End of Example)
permutations of binary variables. Columns “Part.” de-
note the heterogeneous MDDs obtained by the fixed-order4.3. Comparison of Computation Time for Algo-
partition algorithm [19, 22], where the order of binary vari- rithms
ables is fixed with that of the initial BDD. And, columns “O
& P” denote the heterogeneous MDDs obtained by Algo-  Table 4.3 compares the computation time of the sifting
rithm 3.2. The memory size limitatiob of the fixed-order algorithm [21], the fixed-order partition algorithm [19], and
partition algorithm and Algorithm 3.2 is set to the mem- Algorithm 3.2. The values in Table 4.3 denotes the CPU
ory size of the BDD in “Init.”. In the sifting algorithm [21]  times needed to obtain the BDDs and heterogeneous MDDs
and Algorithm 3.2, the number of rounds of sifting is set in Table 4.2, in seconds.
to two. The BDDs and heterogeneous MDDs in this ta-  The sifting algorithm considering only the variable or-
ble use complemented edges. The APLs in Table 4.2 mayder “Ord.” and the fixed-order partition algorithm consid-



Table 4.2. Memory sizes and APLs for BDDs and heterogeneous MDDs for benchmark functions

Memory size APL
BDD MDD BDD MDD
Name In | Out Init. Ord. Part. | O&P Init. Ord. Part. | O&P
C432 36 7 3189 3243 | 3180| 3179 86.58 86.24| 48.51| 45.45
C499 41| 32| 77595| 96315| 77586| 77589 813.64| 641.16| 215.64| 192.52
C880 60| 26| 12156| 54810| 12155| 12154 135.79| 121.03| 112.54| 99.13

C1908 33| 25| 16575| 56328| 16570 16564| 254.35| 183.61| 112.23| 92.09
C2670 233 | 64 5319 8286| 5317| 5319 214.05| 202.08| 157.11| 133.78
C3540 50| 22| 71481| 74292| 71472| 71480| 209.15| 208.06| 106.20| 91.78
C5315 178 | 123 5154 5460 5154| 5153| 462.05| 446.26| 395.91| 304.38
C7552 207 | 107 6633 6585| 6633| 6633| 484.03| 469.54| 412.64| 314.03
alu4 14 8 1047 1080| 1019, 1019 40.81 40.70| 19.59| 19.59
apexl 45| 45 3735 4254 3734 3728| 180.59| 177.69| 76.47| 67.63
apexo6 135 99 1491 1887 | 1491| 1490| 291.54| 230.91| 260.79| 231.06

cps 24 | 102 || 2910 4656 | 2906| 2906| 290.25| 235.39| 164.67| 151.81
dalu 75| 16 2064 2970| 2063| 2064| 102.67 78.81| 45.78| 28.09
des 256 | 245 || 8832 9177| 8830| 8831| 1210.00| 1080.38| 810.38| 687.50
frg2 143 | 139 | 2886 5070| 2885| 2884| 624.69| 322.17| 536.64| 348.60
i3 132 6 396 396 396 396 26.76 26.76| 13.87| 12.61
i8 133 | 81 3825 6954 | 3825| 3825| 302.54| 270.82| 302.54| 207.54
i10 257 | 224 || 61977| 685215| 61977| 61974| 1084.96| 776.10| 817.63| 614.53
k2 45| 45 3735 4254 | 3728| 3728| 180.52| 177.69| 77.29| 67.61
too_large | 38 3 954 2361 953 954 13.16 11.52 6.55 6.24
vda 17| 39 1431 1515| 1413| 1424| 176.34| 171.54| 79.13| 69.54

Average of ratios|| 1.00 2.03 1.00 1.00 1.00 0.88 0.62 0.51

Table 4.3. CPU times [sec] for APL minimiza-
tion algorithms

Name Ord. [21] | Part. [19] O&P
(Algorithm 3.2)
0,1,4,6 C432 0.23 0.01 1.04
C499 10.76 0.75 698.31
C880 4.54 0.02 22.09
C1908 1.44 0.09 27.38
C2670 221 0.14 1957.51
C3540 12.74 0.55 523.45
C5315 0.43 0.09 3663.57
(b) Heterogeneous MDD: C7552 1.35 0.09 2258.88
(a) BDD: APL =6.0 APL=4.0 alu4 0.02 0.01 0.05
apex1 0.11 0.02 36.07
apex6 0.05 0.01 79.47
Figure 4.1. BDD and heterogeneous MDD for gpls 8-(132 8-8% 13%3(1
H alu . . .
BTREE function des 0.91 0.87 60144
frg2 0.29 0.01 218.46
i3 0.01 0.01 95.69
i i i i “ " i i8 0.31 0.01 30.15
ering only the_ partition of b|r_1ary van?bles E’art. require 10 160.91 269 71464
shor';er CPU time th_a_n Algorlthm 3.2 "0 & P". Especially, K2 011 003 33.99
the fixed-order partition algorithm can reduce APLs sub- too_large 0.07 0.01 0.31
stantially in a short computation time for many benchmark vda 0.02 001 0.15

functions. Thus, the fixed-order partition algorithm is the
most efficient among these algorithms. However, the algo-
rithm considering both partitions and orderings of binary )
variables (Algorithm 3.1 or 3.2) is also important, since 2. Conclusion and Comments

for some logic functions, the fixed-order partition algorithm

cannot reduce APLs as shown in the previous section. For  In this paper, we have proposed an exact and a heuristic
example, in software synthesis, the fixed-order partition al- minimization algorithm for APL in heterogeneous MDDs.
gorithm is useful for generating a program code for debug- Experimental results with 21 benchmark functions show

ging. On the other hand, Algorithm 3.2 is useful for gener- that: 1) In heterogeneous MDDs, APLs can be reduced by a
half of corresponding BDDs, on average, without increasing

ating an optimized program code (final version).



the memory size. 2) Algorithm 3.1 considering both parti-

tions and orderings of binary variables finds heterogeneous

MDDs with the minimum APLs for functions with up to 11
variables within a reasonable time. 3) The algorithm consid-
ering only partitions of binary variables (i.e. fixed-order par-
tition algorithm) reduces APLs faster than algorithms con-
sidering variable order. However, for some logic functions,
the fixed-order partition algorithm cannot reduce APLs by
much. Therefore, such functions require an algorithm con-
sidering both partitions and orderings of binary variables
(i.e. Algorithm 3.1 or 3.2).
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