
Representations of Logic Functions using QRMDDs

Shinobu NAGAYAMA1, Tsutomu SASAO1;2, Yukihiro IGUCHI3 and Munehiro MATSUURA1

1Department of Computer Science and Electronics, Kyushu Institute of Technology
Iizuka 820-8502, Japan

2Center of Microelectronics Systems Kyushu Institute of Technology
Iizuka 820-8502, Japan

3Department of Computer Science, Meiji University, Kawasaki 214-8571, Japan

Abstract

This paper considers quasi-reduced multi-valued deci-
sion diagrams with k bits (QRMDD(k)s) to represent two-
valued logic functions. It shows relations between the num-
bers of nodes in QRMDD(k)s and values of k for benchmark
functions; an upper bound on the number of nodes in the
QRMDD(k); difference between the upper bound and the
number of nodes in the QRMDD(k)s for random functions;
and the amount of total memory, evaluation time, and area-
time complexity for QRMDD(k)s. Experimental results us-
ing standard benchmark functions show that the area-time
complexity takes its minimum when k is between 3 and 6.

1. Introduction
With the increase of the complexity of digital sys-

tems, representations of logic functions that can evaluate
functions efficiently and require small amount of mem-
ory are becoming important [2]. In this paper, we con-
sider representations of two-valued logic functions using
quasi-reduced multi-valued decision diagrams with k bits
(QRMDD(k)s). As for methods to represent logic func-
tions by decision diagrams (DDs), binary decision dia-
grams (BDDs) [1, 7] and multi-valued decision diagrams
(MDDs) [3, 10, 12, 14] are known. Especially, MDDs
require fewer nodes than corresponding BDDs. Also,
the number of memory accesses required in MDDs is
smaller than corresponding BDDs [12]. In this paper, we
show relations among the amount of memory to represent
QRMDD(k), the number of memory accesses, and values
of k.

The rest of the paper is organized as follows:
In Section 2, we will define MDDs and QRMDDs, and

explain benchmark functions and random functions.
In Section 3, we obtain an upper bound on the number

of nodes in a QRMDD(k). Also, we show an interesting

property holds for many of benchmark functions. We also
show that random functions do not have this property.

In Section 4, we introduce the measure called area-time
complexity. When we use a QRMDD(k), the number of
memory accesses decreases with k, while the amount of
memory to represent it increase with k. We are interested
in k that reduces the number of memory accesses without
increasing the amount of memory excessively. To obtain
such k, we introduce a measure called area-time complex-
ity. By experiments, the measure is the minimum when k is
between 3 and 6.

2 Definitions
This section defines quasi-reduced multi-valued deci-

sion diagrams(QRMDDs), shows a method to represent
multiple-output functions, and introduces benchmark func-
tions.
2.1 Representation of Logic Functions

Let f(X) be a two-valued logic function, where X =

(x1; x2; : : : ; xn). Let xi(i = 1; 2; : : : ; n) be binary vari-
ables, where n = rk.

Let X = (X1; X2; : : : ; Xr) be a partition of X, where
fXg = fX1g [fX2g [: : : [fXrg and fXig \ fXjg =
�(i 6= j), and each Xj consists of k binary variables. Then,
a two-valued logic function f(X) can be represented by
f(X1; X2; : : : ; Xr): f0; 1; 2; : : :; 2k � 1gr ! B, where
B = f0; 1g.
2.2 QRMDD

As for the definitions on MDDs, refer [10].

Definition 2.1 The reduced ordered multi-valued decision
diagram (RMDD) having non-terminal nodes with 2k edges
is denoted by RMDD(k). Especially, when k = 1,
RMDD(1) is a reduced ordered binary decision diagram
(RBDD).

Definition 2.2 In a decision diagram (DD), a path from the
root node to a terminal node is a path of DD. The number
of edges on the path is the length of the path.

Definition 2.3 In a DD, the number of nodes in the DD,
denoted by nodes(DD), includes terminal nodes.

Definition 2.4 When all Xi (i = 1; 2; : : : ; u) appear in this
order on an arbitrary path of an MDD(k), the MDD(k) is
a quasi-reduced multi-valued decision diagram with k
bits (QRMDD(k)).

The length of an arbitrary path in a QRMDD(k) is equal
to u, the number of input variables. An RMDD has no
redundant nodes, while a QRMDD usually has redundant
nodes. Therefore, we have the following relation in the
number of nodes of an RMDD and its corresponding QR-
MDD:

nodes(RMDD(k)) � nodes(QRMDD(k)):

In general, QRMDDs (QRBDDs) require more nodes
than corresponding RMDDs (RBDDs). However, QR-
MDDs (QRBDDs) have the following features:

1. When the RBDDs are too large to be store in the main
memory, QRBDDs can be processed much faster than
corresponding RBDDs [15].

2. QRBDDs can be manipulated efficiently by parallel
processors [16].

3. QRBDDs (QRMDDs) are used to design LUT cas-
cades [22].

The most severe limitation of conventional BDDs is their
size. When a BDD does not fit in the main memory, the
BDD must uses the secondary memory. This will increase
the number of page faults, and access to the secondary
memory [24]. In such a case, quasi-reduced decision dia-
grams can be used to reduce the page faults. This approch
is useful when the quasi-reduced decision diagram is not so
greater than the corresponding reduced decision diagrams.

Definition 2.5 Let the input variables be X = (X1; X2;

: : : ; Xu). Consider a QRMDD for a function f(X). The
number of non-terminal nodes in the QRMDD with respect
to a variable Xi is width of the QRMDD with respect to
Xi, and denoted by width(QRMDD(k); i).

The total number of nodes in the QRMDD(k) is given by

nodes(QRMDD(k)) =

uX
i=1

width(QRMDD(k); i):

Example 2.1 Consider the function:

f = x1x2x3 _ x2x3x4 _ x3x4x1 _ x4x1x2:

The RBDD, the RMDD(2), and the QRMDD(2) for f

are shown in Fig. 2:1(a), Fig. 2:1(b), and Fig. 2:2, re-
spectively. In Fig. 2:1(a), the solid lines and the bro-
ken lines denote 1-edges and 0-edges, respectively. In
Fig. 2:1(b), the input variables X = (x1; x2; x3; x4) are
partitioned into X = (X1; X2), where X1 = (x1; x2)
and X2 = (x3; x4). We have nodes(RBDD) = 8,
nodes(RMDD(2)) = 5, and nodes(QRMDD(2)) = 6.
Note that width(QRMDD(2); 2) = 3. (End of Example)

2x

1x

2x

3x 3x

4x

10

f

(a) RBDD

f

1X

2X 2X

0 1

1,20

3

0,1,2 3
0 1,2,3

(b) RMDD(2)

Figure 2.1. DDs.

f

1X

2X 2X

0 1

1,2

0 3

0,1,2 3
0 1,2,3

2X
0,1,2,3

redundant node

Figure 2.2. QRMDD(2).

2.3 Representations of Multiple-Output Func-
tions

Logic networks usually have many outputs. In most
cases, independent representation of each output is in-
efficient. Let the multiple-output functions be F =

(f0; f1; : : : ; fm�1): Bn ! Bm, where B = f1; 0g, and
n and m denote the number of inputs and outputs, respec-
tively. Several methods exist to represent multiple-output
functions by using BDDs [13, 18, 19, 20]. In this paper,
we use an encoded characteristic function for non-zero out-
put (ECFN) [21] to represent multiple-output functions. In
the following, an RBDD means a BDD for an ECFN, and
we assume that RMDDs and QRMDDs are generated from
these RBDDs.

2.4 Benchmark Functions

In this paper, we use 131 benchmark functions [6, 25]
shown in Table 2.1, where n and m denote the number of in-
puts and outputs, respectively. In this table, the benchmark
functions under sequential originally represent sequential
circuits. We removed flip-flops(FFs) from sequential cir-
cuits to make them combinational. Such functions are re-
named by appending ’c’ to the original names. Encodings
of BDDs for ECFNs and input variable orderings are ob-
tained in [22]. Details of experimental results are omitted
due to the page limitation.

Table 2.1. Benchmark Functions.

Name n m Name n m Name n m

C432 36 7 frg1 28 3 soar 83 94
C499 41 32 frg2 143 139 spla 16 46
C880 60 26 i1 25 16 t1 21 23
C1355 41 32 i2 201 1 t2 17 16
C1908 33 25 i3 132 6 table5 17 15
C2670 233 140 i4 192 6 tcon 17 16
C3540 50 22 i5 133 66 term1 34 10
C5315 178 123 i6 138 67 ti 47 72
C7552 207 108 i7 199 67 too large 38 3
accpla 50 69 i8 133 81 ts10 22 16
al2 16 47 i9 88 63 ttt2 24 21
alcom 15 38 i10 257 224 unreg 36 16
apex1 45 45 ibm 48 17 vda 17 39
apex2 39 3 in1 16 17 vg2 25 8
apex3 54 50 in2 19 10 vtx1 27 6
apex5 117 88 in3 35 29 x1 51 35
apex6 135 99 in4 32 20 x3 135 99
apex7 49 37 in5 24 14 x4 94 71
b2 16 17 in6 33 23 x1dn 27 6
b3 32 20 in7 26 10 x2dn 82 56
b4 33 23 jbp 36 57 x6dn 39 5
b9 41 21 k2 45 45 x7dn 66 15
bc0 26 11 lal 26 19 x9dn 27 7
bca 26 46 mainpla 27 54 xparc 41 73
bcb 26 39 mark1 20 31 sequential
bcc 26 45 misex2 25 18 s208c 18 9
bcd 26 38 misg 56 23 s298c 17 20
c8 28 18 mish 94 43 s344c 24 26
cc 21 20 misj 35 14 s349c 24 26
chkn 29 7 mlp10 20 20 s382c 24 27
cht 47 36 mux 21 1 s400c 24 27
cm150a 21 1 my adder 33 17 s420c 34 17
comp 32 3 opa 17 69 s444c 24 27
cordic 23 2 pair 173 137 s510c 25 13
count 35 16 pcle 19 9 s526c 24 27
cps 24 109 pcler8 27 17 s641c 54 43
dalu 75 16 pdc 16 40 s713c 54 42
des 256 245 pm1 16 13 s820c 23 24
dk48 15 17 rckl 32 7 s832c 23 24
duke2 22 29 rot 135 107 s838c 66 33
e64 65 65 sct 19 15 s1196c 32 32
ex4 128 28 seq 41 35 s1423c 91 79
example2 85 66 shift 19 16 s5378c 214 228
exep 30 63 signet 39 8 s9234c 247 250

3 Number of Nodes in QRMDD(k)
In this part, we first obtain an upper bound on the num-

ber of nodes in a QRMDD(k). Then, we obtain the sizes
of QRMDD(k)s for benchmark functions, and show that an
interesting property holds for many of them. Finally, we ob-
tain the sizes of QRMDD(k)s for randomly generated logic
functions, and show that they can be estimated by the upper
bound.

3.1 General Functions
For arbitrary logic functions, we have the following:

Theorem 3.1 An arbitrary n-input logic function can be
represented by a QRBDD with at most

2n�r � 1 +

rX
i=0

22
i

Table 3.1. Relation of nodes in QRMDD(k) and
k for benchmark functions.

k

1 2 3 4 5

ave 1:00 0:50 0:33 0:25 0:20

stdv 0:000 0:014 0:007 0:013 0:009

Table 3.2. functions with � � 0:1

Name Circuit Name Circuit

C499 error correcting my adder adder
C1908 error correcting pcle control
comp comparator tcon control
i3 control vg2 control
in1 control vtx1 control
mlp10 multiplier x1dn control

nodes, where r is the largest integer that satisfies relation

n� r � 2r:

Theorem 3.2 An arbitrary n-input logic function can be
represented by a QRMDD(k) with at most

2sk � 1

2k � 1
+

t�1X
i=0

22
n�(s+i)k

+ 2

nodes, where s and t are the smallest integer that satisfy
relations

s �
n� r

k
; t �

n

k
� s:

The proofs of Theorem 3:1 and Theorem 3:2 are shown in
Appendix.
3.2 Benchmark Functions

For each benchmark function in Table 2.1, we counted
the number of nodes in QRMDD(k)s for different k. In Ta-
ble 3.1, ave denotes arithmetic average of the relative sizes,
where the number of nodes in QRMDD(1) is set to 1:00,
and stdv denotes the standard deviation. We consider the
following:

� =

����1� k � nodes(QRMDD(k))

nodes(QRMDD(1))

���� :
Since 119 functions out of 131 functions in Table 2.1 satisfy
the relation � < 0:1, we have

Property 3.1

nodes(QRMDD(k)) '
1

k
nodes(QRMDD(1))

Property 3.1 holds for the 119 functions in Table 2.1. As for
remaining 12 functions, � � 0:1 holds. Table 3.2 lists these
12 functions. Note that Table 2.1 does not contain functions
having small inputs and outputs.

Table 3.3. The number of nodes in QRMDD(k)
for random functions.

k

n 1 2 3 4 5

10 249:4 103:0 79:0 35:0 35:0
11 439:1 253:2 91:0 181:2 39:0
12 756:0 358:5 298:5 274:5 51:0
13 1294:8 598:6 589:2 279:0 286:6
14 2318:0 1376:1 603:0 291:0 1052:1
15 4343:1 1627:0 843:0 531:0 1059:0
16 8338:5 5348:5 4556:5 4240:5 1063:0
17 16167:3 5723:0 4699:0 4375:0 1075:0
18 31157:9 19975:9 4939:0 4387:0 1315:0
19 58838:4 22107:0 30480:4 4627:0 26852:4
20 107222:3 63272:3 37467:0 45780:3 33827:0

Table 3.4. Upper bound on the number of
nodes in QRMDD(k)s.

k

n 1 2 3 4 5

10 277 103 79 35 35
11 533 347 91 275 39
12 789 359 331 275 51
13 1301 603 591 279 291
14 2325 1383 603 291 1060
15 4373 1627 843 531 1059
16 8469 5479 4687 4371 1063
17 16661 5723 4699 4375 1075
18 33045 21863 4939 4387 1315
19 65813 22107 37455 4627 33828
20 131349 87399 37467 69907 33827

3.3 Random Functions
We examined whether Property 3:1 holds for random

functions. For each n, we randomly generated 2n�1

minterms. Table 3.3 shows average numbers of nodes in
QRMDD(k)s for n-input random functions. For each n, we
generated 10 samples. The deviation of each data is within
�2% of the averages. Table 3.4 shows upper bounds on
the numbers of nodes in QRMDD(k)s derived from Theo-
rem 3.2.

The ratio of difference
 between upper bounds and ex-
perimental results on the number of nodes in QRMDD(1)
for n-input random functions is computed as follows:

 =
upper bound� experimental result

upper bound
� 100

Table 3.5 shows that
 is large after r changes, and is small
in other cases. This means that the size of QRMDD(k) for
randomly generated functions can be estimated by Theo-
rem 3.2. Table 3.3 also shows that Property 3.1 doesn’t hold
for random functions. This fact shows that benchmark func-
tions have quite different property from random functions.

Table 3.5. Ratio of difference
 for random
functions.

n r
(%) n r
(%) n r
(%)

5 1 25:24 12 3 4:81 19 3 10:60
6 2 28:11 13 3 0:48 20 4 18:37
7 2 16:42 14 3 0:30 21 4 4:50
8 2 12:00 15 3 0:68 22 4 0:37
9 2 11:07 16 3 1:54 23 4 0:00
10 2 9:96 17 3 2:96 24 4 0:00
11 3 17:62 18 3 5:71 25 4 0:01

4 Area-Time Complexity of QRMDD(k)
When we use QRMDD(k), the amount of memory ac-

cess decreases with k, while the total amount of memory
increases with k. Thus, we are interested in finding k that
reduces the number of memory access without increasing
the total amount of memory excessively. To obtain such k,
we introduce a measure called area-time complexity.

4.1 Model of Computation
We assume the followings:

1. MDDs are implemented directly, not simulated by us-
ing BDD packages [10].

2. Encoded input values are available as inputs, and their
access time is negligible. For example, when X1 =
(x1; x2; x3; x4) = (1; 0; 0; 1), X1 = 9 is available as
an input.

3. Access to the MDD nodes is time-consuming.

In this case, the computation time is proportional to the
number of access to the MDD nodes.

4.2 Amount of Memory to Represent QRMDD(k)
Because QRMDD(k) evaluates variables X1; X2; : : : ;

Xu in this order, we can use a counter to obtain the next
variable to evaluate. Therefore, when a QRMDD(k) is
stored in a memory, we need not store an index in a node,
but have only to store the next addresses. On the other hand,
in an RMDD(k), we have to store an index and the next ad-
dresses because the next variable to evaluate may be differ-
ent in different paths.

Example 4.1 Fig. 4:1 and Fig. 4:2 illustrate data structures
of a node in a QRMDD(2) and an RMDD(2), respectively.

(End of Example)

Because each node in a QRMDD(k) has 2k edges, we
need

2knodes(QRMDD(k))

words to represent all nodes in a QRMDD(k). When a DD
is stored in a memory, each node requires a unique address.
The number of bits necessary to specify the address of a
node is

dlog2nodes(DD)e:

X i

0 1 2 3

(a)

Memory
0- edge address
1- edge address
2- edge address
3- edge address

(b)

Figure 4.1. Data structure of a node in
QRMDD(2).

X i

0 1 2 3

(a)

Memory
index

0- edge address
1- edge address
2- edge address
3- edge address

(b)

Figure 4.2. Data structure of a node in
RMDD(2).

Therefore, the total amount of memory to represent a
QRMDD(k) is

2knodes(QRMDD(k))dlog2nodes(QRMDD(k))e:

4.3 Area-Time Complexity of QRMDD(k)s
Because a QRMDD(k) evaluates k variables at a time,

the number of memory accesses of a QRMDD(k) is 1

k
of the

corresponding QRMDD(1). On the other hand, the amount
of memory necessary to store a QRMDD(k) node increases
with 2k. In this section, we consider the area-time complex-
ity [5, 23] for QRMDD(k) and obtain the k that minimizes
the area-time complexity.

Definition 4.1 The area-time complexity is the measure
of computational cost considering both area and time. It is
defined by

AT = (area)� (time);

or
AT 2 = (area)� (time)2:

Table 4.1. Relation of k and A for QRMDD(k)
for benchmark functions.

k

1 2 3 4 5

ave 1:00 0:91 1:14 1:65 2:54

stdv 0:000 0:036 0:070 0:114 0:190

Table 4.2. Relation of k and AT for QRMDD(k)
for benchmark functions.

k

1 2 3 4 5

ave 1:00 0:46 0:39 0:43 0:53

stdv 0:000 0:019 0:027 0:032 0:047

Table 4.3. Relation of k andAT 2 for QRMDD(k)
for benchmark functions.

k

1 2 3 4 5 6 7

ave 1:000 0:233 0:133 0:112 0:113 0:131 0:166

stdv 0:000 0:011 0:011 0:011 0:014 0:023 0:029

In this paper, the area corresponds to the necessary
amount of memory to represent a QRMDD(k), and the time
corresponds to the number of memory accesses to evaluate
it.

The measure AT is used when both the amount of mem-
ory and the number of memory accesses are equally impor-
tant. On the other hand, the measure AT 2 is used when
the number of memory accesses is more important than the
amount of memory. For example, AT can be used for em-
bedded systems [2], while AT 2 can be used for logic simu-
lators [8, 9].

4.4 Experimental Results
For each benchmark function in Table 2.1, we obtained

three measures A, AT , and AT 2. Table 4.1, Table 4.2, and
Table 4.3 show the relation of k and A, AT , and AT 2, re-
spectively. In these tables, ave denotes the arithmetic aver-
age, and stdv denotes the standard deviation for benchmark
functions.

For each benchmark function in Table 2.1, A takes its
minimum when k = 2; AT takes its minimum when k = 3

or k = 4; and AT 2 takes its minimum when k = 4 � 6.

4.5 Analysis for the Functions that Satisfy Prop-
erty 3.1

In Section 4:4, for QRMDD(k)s, we found values of k
that make A, AT and AT 2 minimum, experimentally. In
this section, we assume that Property 3.1 holds, and will
find the values k that make A, AT and AT 2 minimum, an-
alytically. Let A and T be the necessary amount of mem-
ory to represent a QRMDD(k), and the number of memory
accesses necessary to evaluate a QRMDD(k), respectively.
Then, we have the following:

A = 2knodes(QRMDD(k))dlog2nodes(QRMDD(k))e;

T = d
n

k
e:

Let assume that Property 3.1 holds and nodes(QRMDD

(1)) = N . Then we have:

A '
2k

k
Ndlog2

N

k
e;

AT '
2kn

k2
Ndlog2

N

k
e;

and

AT 2 '
2kn2

k3
Ndlog2

N

k
e:

Note that N is usually greater than a few hundreds, while
k is usually at most 7. Thus, we can use the following ap-
proximation:

dlog2N � log2ke ' dlog2Ne:

Therefore, A, AT and AT 2 can be simplified to

A '
2k

k
C0; AT '

2k

k2
C1; and AT 2 '

2k

k3
C2;

respectively, where the constants C0, C1 and C2 are inde-
pendent of k. From the above formulas, we can see that A,
AT and AT 2 take their minimum when k = 2, k = 3 and
k = 4, respectively.

5 Conclusion and Comments
In this paper, we considered a method to represent logic

functions by using QRMDD(k)s. Especially, 1) We derived
an upper bound on the number of nodes in a QRMDD(k),
and showed that the numbers of nodes in QRMDD(k)s for
random functions can be estimated by the bound, 2) We
showed that Property 3.1 holds for many benchmark func-
tions, and 3) We showed that the area-time complexity for
QRMDD(k) takes its minimum when k = 3 � 6, and 4) We
showed that benchmark functions have quite different prop-
erty from randomly generated functions.

Acknowledgments
This research is partly supported by the Grant in Aid for

Scientific Research of The Japan Society for the Promotion
of Science (JSPS), and the Takeda Foundation.

References
[1] P. Ashar and S. Malik, “Fast functional simulation using

branching programs,” ICCAD’95, pp. 408–412, Nov. 1995.
[2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,

L. Lavagno, A. Sangiovanni-Vincentelli, E. M. Sentovich,
and K. Suzuki, “Synthesis of software programs for embed-
ded control applications,” IEEE Trans. CAD, Vol. 18, No. 6,
pp.834-849, June 1999.

[3] B. Becker and R. Drechsler, “Efficient graph based repre-
sentation of multi-valued functions with an application to
genetic algorithms,” Proc. of International Symposium on
Multiple Valued Logic, pp. 40-45, May 1994.

[4] R. K. Brayton, “The future of logic synthesis and verifica-
tion,” in S. Hassoun and T. Sasao (eds.) Logic Synthesis and
Verification, Kluwer Academic Publisher, 2001 pp. 408-434.

[5] R. P. Brent and H. T. Kung, “The area-time complexity of
binary multiplication,” Journal of the ACM, Vol. 28, No. 3,
pp. 521-534, July 1981.

[6] F. Brglez and H. Fujiwara, “Neutral netlist of ten combi-
national benchmark circuits and a target translator in FOR-
TRAN,” Special session on ATPG and fault simulation,
Proc. IEEE Int. Symp. Circuits and Systems, June 1985,
pp. 663-698.

[7] R. E. Bryant, “Graph-based algorithms for boolean func-
tion manipulation,” IEEE Trans. Comput., Vol. C-35, No. 8,
pp. 677–691, Aug. 1986.

[8] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno “A hard-
ware simulation engine based on decision diagrams,” Asia
and South Pacific Design Automation Conference (ASP-
DAC’2000), Yokohama, Japan, Jan. 26-28, 2000, pp. 73-76.

[9] Y. Iguchi, T. Sasao, M. Matsuura, “Implementation of
multiple-output functions using PQMDDs,” Proc. of Inter-
national Symposium on Multiple-Valued Logic, pp. 199-205,
May 2000.

[10] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and
Applications,” Multiple-Valued Logic, 1988, Vol. 4, No. 1-2,
pp. 9–62, 1998.

[11] H.-T. Liaw, and C.-S. Lin. “On the OBDD-representation of
general Boolean function,” IEEE Transactions on Comput-
ers, Vol. 4, No. 6, pp. 661–664, June 1992.

[12] P. C.McGeer, K. L. McMillan, A. Saldanha, A. L.
Sangiovanni-Vincentelli, and P. Scaglia, “Fast discrete
function evaluation using decision diagrams,” ICCAD’95,
pp. 402–407, Nov. 1995.

[13] S. Minato, N. Ishiura, and S. Yajima, “Shared binary de-
cision diagram with attributed edges for efficient Boolean
function manipulation,” Proc. 27th ACM/IEEE Design Au-
tomation Conf., pp. 52–57, June 1990.

[14] D. M Miller, “Multiple-valued logic design tools,” Proc. of
International Symposium on Multiple Valued Logic, pp. 2–
11, May 1993.

[15] H. Ochi, K. Yasuoka and S. Yajima, “Breadth-first ma-
nipulation of very large binary-decision diagrams,” 1993
IEEE/ACM International Conference on Computer-Aided
Design, pp. 48-55, Nov. 1993.

[16] H. Ochi, N. Ishiura and S. Yajima, “Breadth-first manipu-
lation of SBDD of Boolean function for vector processing,”
28th ACM/IEEE Design Automation Conference, pp. 413-
416, 1991.

[17] T. Sasao, “FPGA design by generalized functional decom-
position,” (Sasao ed.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993, pp. 233-258.

[18] T. Sasao and M. Fujita (eds.), Representations of Discrete
Functions, Kluwer Academic Publishers 1996.

[19] T. Sasao and J. T. Butler, “A method to represent multiple-
output switching functions by using multi-valued decision
diagrams,” Proc. of International Symposium on Multiple-
Valued Logic, pp. 248-254, Santiago de Compostela, Spain,
May 29-31, 1996.

[20] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers, 1999.

10

n - r

r

X

X

1

2

Figure A.1. Partition of BDD.

[21] T. Sasao, “Compact SOP representations for multiple-output
functions: An encoding method using multiple-valued
logic,” Proc. of International Symposium on Multiple-
Valued Logic, Warsaw, Poland, May 22 - 24, 2001, pp. 207-
211.

[22] T. Sasao, M. Matsuura, and Y. Iguchi, “Cascade realiza-
tion of multiple-output function and its application to recon-
figurable hardware,” International Workshop on Logic and
Synthesis, Lake Tahoe, June 2001, pp. 225-230.

[23] C. D. Thompson, “Area-Time Complexity for VLSI,” Ann.
Symp. on Theory of Computing, May 1979 pp. 81-89.

[24] I. Wegener, Branching Programs and Binary Decision Dia-
grams: Theory and Applications, SIAM 200.

[25] S. Yang, Logic synthesis and optimization benchmark user
guide version 3.0, MCNC, Jan. 1991.

A Appendix
A.1 Proof of Theorem 3.1
Definition A.1 Suppose that a quasi-reduced ordered bi-
nary decision diagram (QRBDD) for an n-input logic func-
tion is partitioned into two parts as shown in Fig A:1. It is
partitioned into the upper part and the lower part. The
upper part has the variables X1=(x1; x2; : : : ; xn�r), while
the lower part has the variables X2=(xn�r+1; : : : ; xn).

Proof of Theorem 3.1 The number of non-terminal nodes
in the complete binary tree for n variables is 2n � 1. This
gives the number of nodes in the upper part. As for the
lower part, the width of QRBDD becomes narrow because
the nodes representing the same functions are deleted. The
upper bound on the number of nodes in a BDD becomes
minimum when r is the maximum integer satisfying n�r �
2r [11]. As for the lower part, at most 22

r

r-input logic
functions are represented. When all of these functions are
represented, the number of nodes in the lower part becomes
maximum. In this case, the BDD represents the logic func-
tion as follows:

f(X1; X2) =
_

~ai2Bn�r

X~ai
1 f(~ai; X2);

where

X~ai
1

=

�
1 (X1 = ~ai)

0 (otherwise):

The upper part realizes X~ai
1 , and the lower part realizes

f(~ai; X2). Because f(~ai; X2) is an r-input logic function,
at most 22

r

different f(~ai; X2) exist in the lower part. When
22

i

functions are realized for each i (i = 0; : : : ; r) from the
terminal node to the r, the QRBDD has the maximum num-
ber of nodes. Therefore, the number of nodes in a QRBDD
is at most

2n�r � 1 +

rX
i=0

22
i

:

(Q.E.D)
A.2 Proof of Theorem 3.2

First, we will consider Lemma A.1 to prove Theo-
rem 3.2.

Lemma A.1 Let an n-input logic function be f(X), where
X = (x1; x2; : : : ; xn). Let f(X) be decomposed as

f(X) = gi(h(X1; X2; : : : ; Xi); Xi+1; : : : ; Xu);

where u = dn
k
e, and let �i be the column multiplicity of

the decomposition for i = 1; 2; : : :; u. Then, the number of
nodes in the QRMDD(k) for f is given by

nodes(QRMDD(k)) =

uX
i=1

�i:

Proof Since the width of the QRMDD(k) with respect to
a variableXi is equal to the column multiplicity �i [17, 18],
we have the lemma. (Q.E.D)

Proof of Theorem 3.2 By Lemma A.1, the number of
nodes in a QRMDD(k) for an n-input logic function is
equal to the sum of the column multiplicities that are ob-
tained by iterative functional decompositions. The upper
part of the QRBDD is decomposed into s parts. In this
case, �1; �2; : : : ; �s are 1; 2k; 22k; : : : ; 2sk. It is a geomet-
ric progression with the initial term 1 and the common ratio
2k. The lower part of the QRBDD is decomposed into t

parts. Also in the lower part, the number of nodes is equal
to the sum of the column multiplicities. In other words, it is
equal to the sum of the widths of a QRBDD with respect to
corresponding variables. When n 6= (s + t)k, the number
of variables in Xu is not a multiple of k. So, the column
multiplicity for this part is computed separately. Note that
�u = 2, since f is a two-valued logic function. Thus, the
number of nodes in QRMDD(k) is at most

2sk � 1

2k � 1
+

t�1X
i=0

22
n�(s+i)k

+ 2:

(Q.E.D)

