Compact SOP Representations for Multiple-Output Functions
— An Encoding Method using Multiple-Valued Logic —

Tsutomu Sasao
Department of Computer Science and Electronics
Kyushu Institute of Technology
Center for Microelectronic Systems
lizuka 820-8502, Japan

Abstract

This paper shows a method to represent a multiple-
output function: Encoded characteristic function for non-
zero outputs (ECFN). The ECFN uses (n + u) binary vari-
ables to represent an n-input m-output function, where
u = [log, m]. The size of the sum-of-products expression-
s (SOPs) depends on the encoding method of the outputs.
For some class of functions, the optimal encoding produces
SOPs with O(n) products, while the worst encoding pro-
duces SOPs with O(2") products. We formulate encoding
problem and show a heuristic optimization method. Exper-
imental results using standard benchmark functions show
the usefulness of the method.

Index term: Multiple-output function, encoding problem,
multiple-valued logic, TDM, SOP, characteristic function.

1. Introduction

Logic networks usually have many outputs. In most
cases, independent representation of each output is inef-
ficient. So, efficient methods to represent multiple-output
functionsareimportant. Ann-input m-output combination-
al logic network isrepresented by amultiple-output function
Fy = (fo, f1,.-, fm-1) : B® = B™, where B = {0, 1}.

The first method to represent multiple-output functions
istruth tables. Table 1 isatruth table for a 2-input 3-output
function. For an n-input function, the table requires 2™
rows, and istoo large for large n.

The second method is the characteristic function
(CF) of the multiple-output function. It is a map-
ping F> : B™ x B™ — B, where F»(d, 5) = 1 if-
f (fol@), f1(@), ..., fm—1(@) = b. In this representa-
tion, the function requires m auxiliary binary variables
{20,21,...,2m—1} that represent outputs. F, shows that
set of al the valid combinations of the inputs and the out-
puts. For example, the CF of the multiple-output function

shownin Tablelis

Py = o fofifaV Z1xo fofifoV wriofofif2V arwo fofifa-

The CF uses only binary variables, but the size of the repre-
sentations tends to be very large, since it involves (n + m)
binary variables. CFs are used in logic simulation [1], and
multi-level logic optimization [6].

Thethird method isacharacteristic function for non-zero
outputs (CFN). It isamapping F3 : B x M — B, where
M ={0,1,...,m — 1}, and F3(a, j) = 1iff f;(@) = 1,
j € M. The CFN has one auxiliary m-valued variable Y’
that represents the output part. For example, the CFN of the
multiple-output function shown in Table 1 is

F; = 1_'11'0Yl \Y :L’_ll'oyz \Y :L’liL’_oY]' \

2170Y 2V 2120V ° V z120Y 2.

A sum-of-products expression (SOP) for a CFN is realized
by a programmable logic array (PLA) or an AND-OR two-
level network. SOPsfor CFNs are extensively used in logic
synthesis [11]. They can be simplified by using multiple-
valued logic minimizers such as MINI [7] and ESPRESSO-
MV [9]. The CFN represents only non-zero input-output
combinations, and SOPs for CFNs tend to be more compact
than SOPs for CFs.

Inthis paper, wewill consider the fourth method to repre-
sent multiple-output function: Encoded characteristic func-
tion for non-zero outputs (ECFN). It uses only binary vari-
ables and representsamapping Fy : B™ x B* — B, where
u = [log,m]. Fa(@,b) = 1iff f, (@) = 1, where v(b)
denotes the integer represented by the binary vector b. For
example, the ECFN of the multiple-output function shown
inTablelis

Fy = T1m02120 V T1T02120 V T1T02120 V
T1Z02120 V T1202120 V T1T02120.
Note that F} is also represented as

Fy = z120fo V 2120f1 V 2120 f2 V 2120 f3.

ECFNsare useful for FPGA design [8], logic emulation [2],
and logic simulation [12].



Table 1. Truth table for a 2-input 3-output func-
tion.

1 zo|fo f1 f2
0O 0|0 O O
O 1|0 1 1
1 00 1 1
1 1(1 0 1

2. ECFN and Encoding Problem

In this section, we will define encoded characteristic
functionsfor non-zero outputs (ECFN’s) and formulate their
encoding program.

Definition 2.1 2° = z, and 2! = z.

Definition 2.2 For an me-output function f; (i =
0,1,...,m—1),anencoded characteristic function for non-
zero outputs (ECFN) is defined as

m—1
F= \/ ZZ“LTZZZ‘{ ezl s,

=0
where b = (bu—1,bu—2,...,bo) is a binary representation
of an integer 4, and u = [log, m].
Note that 2o, 21, ..., and z,_1 are auxiliary variables that
represent outputs. In the above definition, the integer i is

encoded by a binary vector b in anatural way. However, by
changing the encoding, we can often simplify the represen-
tation.

Example 2.1 Consider a four-output function F =
(fo, f1, f2, f3). Encoding 1 in Table 2 produces the ECFN

F1 = z120fo V z120f1 V 2120 f2 V 2120 f3-

Consider the case where fo = 0, f1 = xo, f2 = x1 V o,
and f3 = x;. Then, we have

R o=

= 2120%0 V 212070 V 212071 V 212071

21200V 212020 V 2120(21 V 20) V 212071

= (2120 V 2120)%0 V (2120 V 2120)%1
212020 V 212020 V z2127.
However, Encoding 2 in Table 2 produces the ECFN
F, = zizofoV z1z0f1V z120f3 V 2120 fo
In this case, we have
F, = 21200V 212020 V 212071 V 2120(%1 V T0)
= Zz120%0 V 2120T1 V 2120%0 V 212021

= Zzoxo V 2171.

Note that Encoding 1 requires three products, while Encod-
ing 2 requires only two products. (End of Example)

Table 2. Encoding methods for four-output
function.

z1 20 | Encoding 1 | Encoding 2 | Encoding 3
0 O fo fo fo
0 1 f1 f1 3
1 0 f2 I3 I2
1 1 f3 f2 f1

Example 2.2 Consider an 8-output function (fo, f1,...,
f7),where fo = 0, f1 = xo, f2 = 71, f3 = T2, fa = B0V 21,
fs=xoVa fo=x1Va, fr=x0VT1V T2

Inthis case, we need three auxiliary variables zy, z1, and
z2 to represent 8 outputs. Encoding 1 in Table 3 produces
the ECFN

Fi1 = zz20foV z22120f1V 222120 f2 V 222120 f3 V

222120 fa V 222120 f5 V 222120 f6 V 222120 f7.
Thus, we have

Fi = 2221200V 22212020 V 22212021 V 222120%2 V
2p2120(x0 V 1) V 222120(%0 V 22) V
zp2120(x1 V 22) V 222120(20 V 21 V 1)

= 2120%0 V 212071 V 2120T2 V 2221%0 V 222071 V
22202 V 222122 V 222020 V 222121.

However, Encoding 2 in Table 2 produces the ECFN

F, = zzz2ofoV z2z120f1V 222120 f2 V 222120 fa V

222120 f3 V 222120 f5 V 222120 f6 V 222120 f7.
Thus, we have

F, = 2221200V 2221200 V 22212021 V
2‘_22‘1Zo(.ro V :z:l) V 22z120T2 V 2‘22_12‘0(.270 V .272) V
Zzle_o(.rl V 322) V 22Z1Zo(.ro Vo1V .272)

(222120 V 222120 V 222120 V 222120)%0 V

(222120 V 222120 V 222120 V 222120)%1 V
(222120 V 222120 V 222120 V 222120) %2
= 2oTo V 2121V 222>.

Note that Encoding 1 requires 9 products, while Encoding
2 requires only three products. (End of Example)

Asshown intheprevious examples, good encodings produce
simpler SOPs.

For an m-output function, we need u = [log, m] auxil-
iary variables {zo, 1, . . . , 2,1} torepresent m outputs. So,
the number of different encodingsis
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Table 3. Encoding methods for 8-output func-
tion.

z2 21 2o | Encoding 1 | Encoding 2
0 0 O fo Jo
0 0 1 f1 f1
0 1 0 2 f2
0 1 1 3 fa
1.0 0 fa f3
1 0 1 5 fs
1 1 0 5 fe
1 1 1 7 il

However, the number of products in the SOP is invariant
under the complement and/or permutation of the auxiliary
variables. Thus, to find the encoding for an ECFN that
requires the least number of products in an SOP, we have
only to consider

2u1 (2 — 1)

N= (2+ — m)12uy! - (2+ — m)lu!

different encodings. For m = 4, we have v = 2, and we
need only to consider N = % = 3 different encodings.
Note that Encoding 3 in Table 2 also requires three products
to represent the function in Example 2.1.

Given aCFN F : B®" x M — B, where M =

{0,1,...,m — 1}, we can formulate

Problem 2.1 (Encoding problem for an ECFN) Given a
function B x M — B,where M = {0,1,2,...,m — 1}.
Represent the m-valued variable by using v = [log, m]
binary variables so that the resulting SOP has the least
number of products.

This problem is similar to

Problem 2.2 (Input encoding problem) Given a function
B"x M — B,where M = {0,1,2,...,m—1}. Represent
the m-valued variable by using the sufficient number of
auxiliary binary variables, so that the resulting SOP hasthe
least number of products.

Note that in Problem 2.1, the number of the auxiliary
variables is fixed to u = [log, m], while in Problem 2.2,
the number of auxiliary variables can be more than u. Both
of these problems are intractable and require heuristic algo-
rithms to solve them. Several algorithms have been devel-
oped for Problem 2.2 [5, 13, 14]. However, to our knowl-
edge, Problem 2.1 is formulated for the first time, and no
good algorithm is known.

3. Encoding Algorithm for ECFN

In this section, we will consider a heuristic algorithm to
encode an m-valued variablesby using v = [log, m] binary
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Figure 1. SOPs for ECFNs with different en-
codings.

1y

©01) 10
(z1, 20)
(0,0

Figure 2. 2-dimensional cube.

variables, so that the resulting SOP has the least number of
products. To show the idea of the heuristic, we will use

Example 3.3 Consider the 4-output function fo = 0, f1 =
zo, f2 = xo V 1, f3 = x1. The positional cubes[7, 11, 6]
for the ECFN are

x1 zo fo fr fo fa
11 - 01 - 0 1 0 O
1 - 01 - 0 0 1 O
o0 - 11 - 0 0 1 O
g - 11 - 0 0 o0 1

They are simplified to

x1 zo fo fi o f3
11 - 01 - 0 1 1 O
g - 11 - 0 0 1 1

Encodings 1 and 2 produce maps in Fig. 1(a) and (b),
respectively. Note that Encoding 1 requires three products,
while Encoding 2 requires only two products.

In general, an encoding for an ECFN corresponds to
assign m output functions to the nodes of the u-dimensional
cube. In thisexample, m = 4 and v = 2. Thus, we have
to assign four functions fo, f1, f2, f3 to four nodes of the
2-dimensional cubein Fig. 2.



We can find a good assignment from the output part of
the minimized positional cubes:

fo i o f3
0O 1 1 O
O 0 1 1

Thisis called a constraint matrix [6]. Thefirst row of the
constraint matrix shows that f; and f, must be adjacent to
be represented by a single product. And the second row of
the constraint matrix showsthat f, and f3 must be adjacent
to be represented by a single product. Encoding 1in Table 2
(Fig. 3(a)) does not satisfy the conditions, while Encoding
2 (Fig. 3(b)) satisfies the conditions. So, we can expect
that Encoding 2 produces simpler SOP than Encoding 1.

(End of Example)

As shown in Example 3.3, the constraint matrix is useful
to find a good encoding. To find a good encoding, we will
use the Merit matrix. The value of Merit(i, j), where
i,j € M and M = {0,1,2,...,m — 1} is large when
fi and f; should be assigned to the adjacent nodes in the
u-dimensional cube.

Algorithm 3.1 (Derivation of the Merit Matrix)

1. From the minimized SOP of the CFN, obtain the con-
straint matrix. Ignore the rowswith all 1's. Ignorethe
rowswith single1's.

2. Let Merit(j,k) «+ 0.0, where j,k € M and M =
{0,1,...,m —1}.

3. For each row i in the constraint matrix, let S; be the
set of indexes of columnsthat have 1'sintherow i. Let
|Si| be the number of elementsin S;. For each pair
(j,k) € Si, do Merit(j, k) < Merit(j, k) + ﬁ

4. If Merit(j, k) = 0.0and j,k < m andj # k, thenlet
Merit(j, k) < —1+ 5.

Example 3.4 Consider the four-output function in Exam-
ple 3.3, where m = 4. By using Algorithm 3.1, we will
obtain the merit matrix.

1) S1 = {1, 2}, S, = {2, 3}, and |Sl| = |52| =2.

2) Fori =1, wehave

Merit(1,2) «+ 1.0, Merit(2,1) « 1.0.

For ¢ = 2, we have
Merit(2,3) + 1.0, Merit(3,2) + 1.0.

3) In Sep 3, we have

0 1 2 3
0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 1.0
0.0 0.0 1.0 0.0

Merit =

wWNEFk O

4) Sncen = 2andu = 2in Sep 4, we have

u

—-1.0+ o = —-1.0+05=-05.
Thus, we have

0 1 2 3

0 0.0 —-05 -0.5 —-0.5

Merit= 1| -05 0.0 10 -05

2| =05 10 00 10

3| -05 -05 1.0 0.0

(End of Example)

Algorithm 3.2 (Encoding of an ECFN)

1. Asaninitial solution, assign functions fo, f1,....fm-1
to distinct nodes of the u-dimensional cube. Let fo
be assigned to the node (0,0, ...,0). Whenm < 2%,
assign dummy functions to the remaining nodes.

2. Gain« Y Merit(j, k), wherethe sumis obtained for
the adjacent nodes (7, k) in the u-dimensional cube.

3. Fix the function fy to the node (0,0, ...,0). For oth-
er 2* — 1 functions, choose a pair of functions. If
Gain increases by the exchange of the functionsin the
pair, then exchange the functions. Otherwise, do not
exchange the functions. Repeat this operation while
Gain increases.

4. Fix the function fy to the node (0,0, ..., 0). For other
2% — 1 functions, choose a pair of functions. If Gain
do not decrease by the exchange of the functionsin the
pair, then exchange the functions. Otherwise, do not
exchange the functions. Repeat this operation while
Gain increases.

5. Do the same thing as Sep 3.

6. IfGainincreasedin Sep5,thengoto Step 3. Otherwise
stop.

Example 3.5 Byusing Algorithm 3.2, wewill obtain a good
encoding for the function in Example 3.3.

1) Theinitial assignment isgivenin Fig. 3(a).

2) Gain= Merit(0,1) + Merit(0,2) + Merit(1,3) +
Merit(2,3) = -05-05-05+1.0= —-05.

3) Choosethepair ( f2, f3), and interchangethefunctions.
Then, we have the assignment in Fig. 3(b).

4) In this case, Gain = Merit(0,1) + Merit(0,3) +
Merit(1,2)+ Merit(2,3) = —0.5-0.5+1.0+1.0 =
1.0. Snce, Gain hasincreased, we keep this exchange.

5) Choose the pair (f1, f3) in Fig. 3(a), and interchange
the functions. Then, we have the assignment in
Fig. 3(c).
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Figure 3. Assignments of four outputs to 2-
dimensional cubes.

6) In this case, Gain = Merit(0,2) + Merit(0,3) +
Merit(1,2)+ Merit(1,3) = —0.5-0.5+1.0-05 =
—0.5, which is the same as the case for Fig. 3(a).
It is clear that Figs. 3(b) gives the best encoding.

(End of Example)

Note that Algorithm 3.2 does not always produces the opti-
mal solution.

Theorem 3.1 The n-input 2™-output function f;(#) =
ViTgagz;(i = 0,1,...,2" — 1), is represented by
an SOP for an ECFN with n products, where ¥ =
(a:n_l,a:n_z,...,a:o) and (3:1 = (ain_l,ain_z,...,aio) is
a binary representation of the integer i.

Example 3.6 When n = 3, we have fo = 0, f1 = xo,
fa =1, fs = w1V 0, fa = 72, fs = X2V W0, fo6 = T2V 71,
f7 = a2V 21V x0. Inthis case the ECFN is represented by

F = 2zzizo0foV 222120f1V 222120 f2 V 222120 f3 V
z0z120fa V 222120 f5 V 2221206 V 222120 f7

= 2zoTo V 2171V 22X2
2
= \/ ZiZj.
=0

(End of Example)

Theorem 3.2 The n-input 2"-output function f;(¥) =
Vigai? (i = 0,1,2,...,2" — 1), is represented by
an SOP for an ECFN with 2n products, where & =
(mnfla Tn—25+u+, mO) and (_ii = (ainfla Qin—2, 1, aiO) is
a binary representation of the integer i.

Example 3.7 When n = 3, we have

fo = xaVx1Vao,
fi = xVaiVa,
fa = xVr1Vao,

fs =

$2V51Vfo,

fa = x2VI1Vao,

fs = x2Vr1Vao,
fo = x2VI1Vao,
f7 = oV 21V Zp.

In this case, the ECFN is represented by

F = 2zzizo0foV 222120f1V 222120f2 V 2221203 V

2p2120fa V 222120 f5 V 2221206 V 222120 f7
= (20Dz0)V (21D 71) V(22D 22)
2

= \/(Zi@l’i).

i=0
(End of Example)

Definition 3.3 Let 7(M SOP, CF N) denote the number of
productsin a minimum sum-of-products expression (MSOP)
for characteristic function for non-zero outputs (CFN), i.e.,
the number of products for minimized PLA for the multiple-
output function. 7(MSOP,ECFN) and 7(MSOP,CF)
are defined similarly.

Theorem 3.3 7(MSOP,CFN) < 71(MSOP,ECFN).

Definition 3.4 Let 7(M SOP,CFN(n)) denote the num-
ber of productsin a MSOP for CFN of an n-variable func-
tion. 7(MSOP,CF(n)) isdefined similarly.

Theorem 3.4 7(MSOP,CFN (n))
CF(n)) < 2™

< 2" 7(MSOP,

4. Experimental Results

We developed programs for Algorithms 3.1 and 3.2, and
minimized SOPs for various benchmark functions.

Table 4 shows the experimental results, where Name de-
notes the function name; In denotes the number of input
variables; Out denotes the number of output variables; CFN
denotes the number of productsin the SOPfor CFN (i.e., the
number of productsin the minimized PLA); ECFN denotes
the number of products in the SOP for ECFN; Good de-
notesthe ECFN obtained by Algorithm 3.2; Org denotesthe
ECFN obtained by the straightforward encoding; Bad de-
notes the ECFN obtained by Algorithm 3.2 modified so that
the Gain becomes small as possible; CF denotes the number
of products in the SOP for CF. Table 4 shows that we can
reduce the number of products by considering the encoding.
Also, we can verify that Theorem 3.3 holds. In many cases,
we could not obtain SOPs for CF due to memory overflow.

Table 5 shows the numbers of products in the SOPs for
ECFNs for the multiple-output functions defined in Theo-
rem 3.1. This table shows that the number of products in
Bad encoding increases exponentially asn increases. Thus,
we have



Table 4. Number of Products in SOPs.

CEN ECEN CF
Name | In|{Out|PLA|Good| Org | Bad

5xpl 7| 10| 63| 67| 69| 74| 128
amd |14| 24| 66| 108| 125| 158| 137
apexl |45| 45| 206| 522| 719| 898
apex3 |54| 50| 280| 475| 496| 627
apex4 | 9| 19| 429 772| 833| 983| 438
b12 15| 9| 44| 46| 48| 53| 208
clip 9| 5| 118 126| 132| 141| 430
duke2 [22| 29| 86| 138| 175| 198
ind 32| 20| 211| 255| 305( 350
misex1l| 8| 7| 12| 18| 23| 26| 18
misex2|25| 28| 28| 28| 29| 29| 472
misex3|14| 14| 690| 904| 962|1121|1938
misg |56| 23| 69| 70| 73| 75
mish (94| 43| 82| 84| 89| 91
mi§ |35| 14| 35| 35| 48| 48
mip4 | 8| 8| 126| 130| 133| 144| 227
opa 17| 69| 80| 194| 244| 298
risc 8| 31| 27| 33| 43| 46| 29
seq 41| 35| 350| 730|1100|1398
soar 83| 94| 357| 378| 448| 482
ti 47| 72| 214| 335| 388| 511
x2dn [82| 56| 104| 106| 114| 116

Table 5. Number of Products in SOPs for
ECFNs in Theorem 3.1.

Good | Bad

8
20
48

112
274
633

co~NOUOThwW 3
o~NOoOOThW

Conjecture 4.1 An n-input 2™-output function exists that
requires O(n) and O(2™) products in SOPs for the ECFN
with the encoding optimized and an ECFN with the encoding
un-optimized, respectively.

5. Conclusion and Comments

In this paper, we presented a new method to represen-
t a multiple-output function: An encoding characteristic
function for non-zero outputs (ECFN). An ECFN uses only
binary variables, and its SOP can be simplified by consider-
ing the encoding. We formulated the encoding problem, and
presented a heuristic optimization method. We also showed
an n-input 2™-output function that requires O(n) products
inan MSOPfor one encoding, and O(2™) productsfor other
encoding.

In this paper, we only considered the encoding for SOPs.
However, the more interesting problem is the encoding for

BDDs, which is useful for logic simulator [12].
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