
Compact SOP Representations for Multiple-Output Functions
— An Encoding Method using Multiple-Valued Logic —

Tsutomu Sasao
Department of Computer Science and Electronics

Kyushu Institute of Technology
Center for Microelectronic Systems

Iizuka 820-8502, Japan

Abstract

This paper shows a method to represent a multiple-
output function: Encoded characteristic function for non-
zero outputs (ECFN). The ECFN uses (n+ u) binary vari-
ables to represent an n-input m-output function, where
u = dlog2 me. The size of the sum-of-products expression-
s (SOPs) depends on the encoding method of the outputs.
For some class of functions, the optimal encoding produces
SOPs with O(n) products, while the worst encoding pro-
duces SOPs with O(2n) products. We formulate encoding
problem and show a heuristic optimization method. Exper-
imental results using standard benchmark functions show
the usefulness of the method.
Index term: Multiple-output function, encoding problem,
multiple-valued logic, TDM, SOP, characteristic function.

1. Introduction

Logic networks usually have many outputs. In most
cases, independent representation of each output is inef-
ficient. So, efficient methods to represent multiple-output
functions are important. An n-inputm-output combination-
al logic network is represented by a multiple-output function
F1 = (f0; f1; . . . ; fm�1) : Bn ! Bm, where B = f0; 1g.

The first method to represent multiple-output functions
is truth tables. Table 1 is a truth table for a 2-input 3-output
function. For an n-input function, the table requires 2n

rows, and is too large for large n.
The second method is the characteristic function

(CF) of the multiple-output function. It is a map-
ping F2 : Bn � Bm ! B, where F2(~a;~b) = 1 if-
f (f0(~a); f1(~a); . . . ; fm�1(~a)) = ~b. In this representa-
tion, the function requires m auxiliary binary variables
fz0; z1; . . . ; zm�1g that represent outputs. F2 shows that
set of all the valid combinations of the inputs and the out-
puts. For example, the CF of the multiple-output function

shown in Table 1 is

F2 = x̄1x̄0f̄0f̄1f̄2_ x̄1x0f̄0f1f2_x1x̄0f̄0f1f2_x1x0f0f̄1f2:

The CF uses only binary variables, but the size of the repre-
sentations tends to be very large, since it involves (n+m)
binary variables. CFs are used in logic simulation [1], and
multi-level logic optimization [6].

The third method is a characteristic function for non-zero
outputs (CFN). It is a mapping F3 : Bn �M ! B, where
M = f0; 1; . . . ;m � 1g, and F3(~a; j) = 1 iff fj(~a) = 1,
j 2 M . The CFN has one auxiliary m-valued variable Y
that represents the output part. For example, the CFN of the
multiple-output function shown in Table 1 is

F3 = x̄1x0Y
1 _ x̄1x0Y

2 _ x1x̄0Y
1 _

x1x̄0Y
2 _ x1x0Y

0 _ x1x0Y
2:

A sum-of-products expression (SOP) for a CFN is realized
by a programmable logic array (PLA) or an AND-OR two-
level network. SOPs for CFNs are extensively used in logic
synthesis [11]. They can be simplified by using multiple-
valued logic minimizers such as MINI [7] and ESPRESSO-
MV [9]. The CFN represents only non-zero input-output
combinations, and SOPs for CFNs tend to be more compact
than SOPs for CFs.

In this paper, we will consider the fourth method to repre-
sent multiple-output function: Encoded characteristic func-
tion for non-zero outputs (ECFN). It uses only binary vari-
ables and represents a mapping F4 : Bn �Bu ! B, where
u = dlog2 me. F4(~a;~b) = 1 iff f

�(~b)(~a) = 1, where �(~b)

denotes the integer represented by the binary vector ~b. For
example, the ECFN of the multiple-output function shown
in Table 1 is

F4 = x̄1x0z̄1z0 _ x̄1x0z1z̄0 _ x1x̄0z̄1z0 _

x1x̄0z1z̄0 _ x1x0z̄1z̄0 _ x1x0z1z̄0:

Note that F4 is also represented as

F4 = z̄1z̄0f0 _ z̄1z0f1 _ z1z̄0f2 _ z1z0f3:

ECFNs are useful for FPGA design [8], logic emulation [2],
and logic simulation [12].

Table 1. Truth table for a 2-input 3-output func-
tion.

x1 x0 f0 f1 f2

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 1

2. ECFN and Encoding Problem

In this section, we will define encoded characteristic
functions for non-zero outputs (ECFN’s) and formulate their
encoding program.

Definition 2.1 x0 = x̄, and x1 = x.

Definition 2.2 For an m-output function fi (i =
0; 1; . . . ;m�1), an encoded characteristic function for non-
zero outputs (ECFN) is defined as

F =

m�1_

i=0

z
bu�1

u�1 z
bu�2

u�2 � � � z
b0
0 fi;

where ~b = (bu�1; bu�2; . . . ; b0) is a binary representation
of an integer i, and u = dlog2 me.

Note that z0, z1, . . . , and zu�1 are auxiliary variables that
represent outputs. In the above definition, the integer i is
encoded by a binary vector~b in a natural way. However, by
changing the encoding, we can often simplify the represen-
tation.

Example 2.1 Consider a four-output function F =
(f0; f1; f2; f3). Encoding 1 in Table 2 produces the ECFN

F1 = z̄1z̄0f0 _ z̄1z0f1 _ z1z̄0f2 _ z1z0f3:

Consider the case where f0 = 0, f1 = x0, f2 = x1 _ x0,
and f3 = x1. Then, we have

F1 = z̄1z̄00 _ z̄1z0x0 _ z1z̄0(x1 _ x0) _ z1z0x1

= z̄1z0x0 _ z1z̄0x0 _ z1z̄0x1 _ z1z0x1

= (z̄1z0 _ z1z̄0)x0 _ (z1z̄0 _ z1z0)x1

= z̄1z0x0 _ z1z̄0x0 _ z1x1:

However, Encoding 2 in Table 2 produces the ECFN

F2 = z̄1z̄0f0 _ z̄1z0f1 _ z1z̄0f3 _ z1z0f2:

In this case, we have

F2 = z̄1z̄00 _ z̄1z0x0 _ z1z̄0x1 _ z1z0(x1 _ x0)

= z̄1z0x0 _ z1z̄0x1 _ z1z0x0 _ z1z0x1

= z0x0 _ z1x1:

Note that Encoding 1 requires three products, while Encod-
ing 2 requires only two products. (End of Example)

Table 2. Encoding methods for four-output
function.

z1 z0 Encoding 1 Encoding 2 Encoding 3
0 0 f0 f0 f0
0 1 f1 f1 f3
1 0 f2 f3 f2
1 1 f3 f2 f1

Example 2.2 Consider an 8-output function (f0; f1; . . . ;
f7), where f0 = 0, f1 = x0, f2 = x1, f3 = x2, f4 = x0_x1,
f5 = x0 _ x2, f6 = x1 _ x2, f7 = x0 _ x1 _ x2.

In this case, we need three auxiliary variables z0, z1, and
z2 to represent 8 outputs. Encoding 1 in Table 3 produces
the ECFN

F1 = z̄2z̄1z̄0f0 _ z̄2z̄1z0f1 _ z̄2z1z̄0f2 _ z̄2z1z0f3 _

z2z̄1z̄0f4 _ z2z̄1z0f5 _ z2z1z̄0f6 _ z2z1z0f7:

Thus, we have

F1 = z̄2z̄1z̄00 _ z̄2z̄1z0x0 _ z̄2z1z̄0x1 _ z̄2z1z0x2 _

z2z̄1z̄0(x0 _ x1) _ z2z̄1z0(x0 _ x2) _

z2z1z̄0(x1 _ x2) _ z2z1z0(x0 _ x1 _ x2)

= z̄1z0x0 _ z1z̄0x1 _ z1z0x2 _ z2z̄1x0 _ z2z̄0x1 _

z2z0x2 _ z2z1x2 _ z2z0x0 _ z2z1x1:

However, Encoding 2 in Table 2 produces the ECFN

F2 = z̄2z̄1z̄0f0 _ z̄2z̄1z0f1 _ z̄2z1z̄0f2 _ z̄2z1z0f4 _

z2z̄1z̄0f3 _ z2z̄1z0f5 _ z2z1z̄0f6 _ z2z1z0f7:

Thus, we have

F2 = z̄2z̄1z̄00 _ z̄2z̄1z0x0 _ z̄2z1z̄0x1 _

z̄2z1z0(x0 _ x1) _ z2z̄1z̄0x2 _ z2z̄1z0(x0 _ x2) _

z2z1z̄0(x1 _ x2) _ z2z1z0(x0 _ x1 _ x2)

= (z̄2z̄1z0 _ z̄2z1z0 _ z2z̄1z0 _ z2z1z0)x0 _

(z̄2z1z̄0 _ z̄2z1z0 _ z2z1z̄0 _ z2z1z0)x1 _

(z2z̄1z̄0 _ z2z̄1z0 _ z2z1z̄0 _ z2z1z0)x2

= z0x0 _ z1x1 _ z2x2:

Note that Encoding 1 requires 9 products, while Encoding
2 requires only three products. (End of Example)

As shown in the previous examples, good encodings produce
simpler SOPs.

For an m-output function, we need u = dlog2 me auxil-
iary variables fz0; z1; . . . ; zu�1g to representm outputs. So,
the number of different encodings is

2u!
(2u �m)!

:

Table 3. Encoding methods for 8-output func-
tion.

z2 z1 z0 Encoding 1 Encoding 2
0 0 0 f0 f0
0 0 1 f1 f1
0 1 0 f2 f2
0 1 1 f3 f4
1 0 0 f4 f3
1 0 1 f5 f5
1 1 0 f6 f6
1 1 1 f7 f7

However, the number of products in the SOP is invariant
under the complement and/or permutation of the auxiliary
variables. Thus, to find the encoding for an ECFN that
requires the least number of products in an SOP, we have
only to consider

N =
2u!

(2u �m)!2uu!
=

(2u � 1)!
(2u �m)!u!

different encodings. For m = 4, we have u = 2, and we
need only to consider N = 3!

1!2! = 3 different encodings.
Note that Encoding 3 in Table 2 also requires three products
to represent the function in Example 2.1.

Given a CFN F : Bn � M ! B, where M =
f0; 1; . . . ;m� 1g, we can formulate

Problem 2.1 (Encoding problem for an ECFN) Given a
function Bn �M ! B, where M = f0; 1; 2; . . . ;m � 1g.
Represent the m-valued variable by using u = dlog2 me
binary variables so that the resulting SOP has the least
number of products.

This problem is similar to

Problem 2.2 (Input encoding problem) Given a function
Bn�M ! B, whereM = f0; 1; 2; . . . ;m�1g. Represent
the m-valued variable by using the sufficient number of
auxiliary binary variables, so that the resulting SOP has the
least number of products.

Note that in Problem 2.1, the number of the auxiliary
variables is fixed to u = dlog2 me, while in Problem 2.2,
the number of auxiliary variables can be more than u. Both
of these problems are intractable and require heuristic algo-
rithms to solve them. Several algorithms have been devel-
oped for Problem 2.2 [5, 13, 14]. However, to our knowl-
edge, Problem 2.1 is formulated for the first time, and no
good algorithm is known.

3. Encoding Algorithm for ECFN

In this section, we will consider a heuristic algorithm to
encode anm-valued variables by using u = dlog2 me binary

1

1 1

1

11

1

z1

x1

z0

x0

(a) Encoding 1.

1

1 1

1

11

1

z1

x1

z0

x0

(b) Encoding 2.

Figure 1. SOPs for ECFNs with different en-
codings.

(0,0)

(1,1)

(0,1) (1,0)

z1(), z0

Figure 2. 2-dimensional cube.

variables, so that the resulting SOP has the least number of
products. To show the idea of the heuristic, we will use

Example 3.3 Consider the 4-output function f0 = 0, f1 =
x0, f2 = x0 _ x1, f3 = x1. The positional cubes [7, 11, 6]
for the ECFN are

x1 x0 f0 f1 f2 f3

11 � 01 � 0 1 0 0
11 � 01 � 0 0 1 0
01 � 11 � 0 0 1 0
01 � 11 � 0 0 0 1

They are simplified to

x1 x0 f0 f1 f2 f3

11 � 01 � 0 1 1 0
01 � 11 � 0 0 1 1

Encodings 1 and 2 produce maps in Fig. 1(a) and (b),
respectively. Note that Encoding 1 requires three products,
while Encoding 2 requires only two products.

In general, an encoding for an ECFN corresponds to
assign m output functions to the nodes of the u-dimensional
cube. In this example, m = 4 and u = 2. Thus, we have
to assign four functions f0, f1, f2, f3 to four nodes of the
2-dimensional cube in Fig. 2.

We can find a good assignment from the output part of
the minimized positional cubes:

f0 f1 f2 f3

0 1 1 0
0 0 1 1

This is called a constraint matrix [6]. The first row of the
constraint matrix shows that f1 and f2 must be adjacent to
be represented by a single product. And the second row of
the constraint matrix shows that f2 and f3 must be adjacent
to be represented by a single product. Encoding 1 in Table 2
(Fig. 3(a)) does not satisfy the conditions, while Encoding
2 (Fig. 3(b)) satisfies the conditions. So, we can expect
that Encoding 2 produces simpler SOP than Encoding 1.

(End of Example)

As shown in Example 3.3, the constraint matrix is useful
to find a good encoding. To find a good encoding, we will
use the Merit matrix. The value of Merit(i; j), where
i; j 2 M and M = f0; 1; 2; . . . ;m � 1g is large when
fi and fj should be assigned to the adjacent nodes in the
u-dimensional cube.

Algorithm 3.1 (Derivation of the Merit Matrix)

1. From the minimized SOP of the CFN, obtain the con-
straint matrix. Ignore the rows with all 1’s. Ignore the
rows with single 1’s.

2. Let Merit(j; k) 0:0, where j; k 2 M and M =
f0; 1; . . . ;m� 1g.

3. For each row i in the constraint matrix, let Si be the
set of indexes of columns that have 1’s in the row i. Let
jSij be the number of elements in Si. For each pair
(j; k) 2 Si, do Merit(j; k) Merit(j; k) + 1

jSij�1 .

4. If Merit(j; k) = 0:0 and j; k � m and j 6= k, then let
Merit(j; k) �1 + u

2n .

Example 3.4 Consider the four-output function in Exam-
ple 3.3, where m = 4. By using Algorithm 3.1, we will
obtain the merit matrix.

1) S1 = f1; 2g, S2 = f2; 3g, and jS1j = jS2j = 2.
2) For i = 1, we have

Merit(1; 2) 1:0; Merit(2; 1) 1:0:

For i = 2, we have

Merit(2; 3) 1:0; Merit(3; 2) 1:0:

3) In Step 3, we have

Merit =

0 1 2 3
0 0:0 0:0 0:0 0:0
1 0:0 0:0 1:0 0:0
2 0:0 1:0 0:0 1:0
3 0:0 0:0 1:0 0:0

:

4) Since n = 2 and u = 2 in Step 4, we have

�1:0 +
u

2n
= �1:0 + 0:5 = �0:5:

Thus, we have

Merit =

0 1 2 3
0 0:0 �0:5 �0:5 �0:5
1 �0:5 0:0 1:0 �0:5
2 �0:5 1:0 0:0 1:0
3 �0:5 �0:5 1:0 0:0

:

(End of Example)

Algorithm 3.2 (Encoding of an ECFN)

1. As an initial solution, assign functions f0, f1,. . .,fm�1

to distinct nodes of the u-dimensional cube. Let f0

be assigned to the node (0; 0; . . . ; 0). When m < 2u,
assign dummy functions to the remaining nodes.

2. Gain
P

Merit(j; k), where the sum is obtained for
the adjacent nodes (j; k) in the u-dimensional cube.

3. Fix the function f0 to the node (0; 0; . . . ; 0). For oth-
er 2u � 1 functions, choose a pair of functions. If
Gain increases by the exchange of the functions in the
pair, then exchange the functions. Otherwise, do not
exchange the functions. Repeat this operation while
Gain increases.

4. Fix the function f0 to the node (0; 0; . . . ; 0). For other
2u � 1 functions, choose a pair of functions. If Gain
do not decrease by the exchange of the functions in the
pair, then exchange the functions. Otherwise, do not
exchange the functions. Repeat this operation while
Gain increases.

5. Do the same thing as Step 3.

6. If Gain increased in Step 5, then go to Step 3. Otherwise
stop.

Example 3.5 By using Algorithm 3.2, we will obtain a good
encoding for the function in Example 3.3.

1) The initial assignment is given in Fig. 3(a).

2) Gain= Merit(0; 1) +Merit(0; 2) +Merit(1; 3) +
Merit(2; 3) = �0:5� 0:5� 0:5 + 1:0 = �0:5.

3) Choose the pair (f2; f3), and interchange the functions.
Then, we have the assignment in Fig. 3(b).

4) In this case, Gain = Merit(0; 1) +Merit(0; 3) +
Merit(1; 2)+Merit(2; 3) = �0:5�0:5+1:0+1:0 =
1:0. Since, Gain has increased, we keep this exchange.

5) Choose the pair (f1; f3) in Fig. 3(a), and interchange
the functions. Then, we have the assignment in
Fig. 3(c).

(0,0)

(1,1)

(0,1) (1,0)

f0

(a)

f3

f1 f2

(0,0)

(1,1)

(0,1) (1,0)

f0

(b)

f2

f1 f3

(0,0)

(1,1)

(0,1) (1,0)

f0

(c)

f1

f3 f2

Figure 3. Assignments of four outputs to 2-
dimensional cubes.

6) In this case, Gain = Merit(0; 2) +Merit(0; 3) +
Merit(1; 2)+Merit(1; 3) = �0:5�0:5+1:0�0:5 =
�0:5, which is the same as the case for Fig. 3(a).
It is clear that Figs. 3(b) gives the best encoding.

(End of Example)

Note that Algorithm 3.2 does not always produces the opti-
mal solution.

Theorem 3.1 The n-input 2n-output function fi(~x) =Wn�1
j=0 aijxj(i = 0; 1; . . . ; 2n � 1), is represented by

an SOP for an ECFN with n products, where ~x =
(xn�1; xn�2; . . . ; x0) and ~ai = (ain�1; ain�2; . . . ; ai0) is
a binary representation of the integer i.

Example 3.6 When n = 3, we have f0 = 0, f1 = x0,
f2 = x1, f3 = x1_x0, f4 = x2, f5 = x2_x0, f6 = x2_x1,
f7 = x2 _ x1 _ x0. In this case the ECFN is represented by

F = z̄2z̄1z̄0f0 _ z̄2z̄1z0f1 _ z̄2z1z̄0f2 _ z̄2z1z0f3 _

z2z̄1z̄0f4 _ z2z̄1z0f5 _ z2z1z̄0f6 _ z2z1z0f7

= z0x0 _ z1x1 _ z2x2

=

2_

i=0

zixi:

(End of Example)

Theorem 3.2 The n-input 2n-output function fi(~x) =Wn�1
j=0 x

āij
j (i = 0; 1; 2; . . . ; 2n � 1), is represented by

an SOP for an ECFN with 2n products, where ~x =
(xn�1; xn�2; . . . ; x0) and ~ai = (ain�1; ain�2; . . . ; ai0) is
a binary representation of the integer i.

Example 3.7 When n = 3, we have

f0 = x2 _ x1 _ x0;

f1 = x2 _ x1 _ x̄0;

f2 = x2 _ x̄1 _ x0;

f3 = x2 _ x̄1 _ x̄0;

f4 = x̄2 _ x1 _ x0;

f5 = x̄2 _ x1 _ x̄0;

f6 = x̄2 _ x̄1 _ x0;

f7 = x̄2 _ x̄1 _ x̄0:

In this case, the ECFN is represented by

F = z̄2z̄1z̄0f0 _ z̄2z̄1z0f1 _ z̄2z1z̄0f2 _ z̄2z1z0f3 _

z2z̄1z̄0f4 _ z2z̄1z0f5 _ z2z1z̄0f6 _ z2z1z0f7

= (z0 � x0) _ (z1 � x1) _ (z2 � x2)

=

2_

i=0

(zi � xi):

(End of Example)

Definition 3.3 Let �(MSOP;CFN) denote the number of
products in a minimum sum-of-products expression (MSOP)
for characteristic function for non-zero outputs (CFN), i.e.,
the number of products for minimized PLA for the multiple-
output function. �(MSOP;ECFN) and �(MSOP;CF)
are defined similarly.

Theorem 3.3 �(MSOP;CFN) � �(MSOP;ECFN).

Definition 3.4 Let �(MSOP;CFN(n)) denote the num-
ber of products in a MSOP for CFN of an n-variable func-
tion. �(MSOP;CF (n)) is defined similarly.

Theorem 3.4 �(MSOP;CFN(n)) � 2n, �(MSOP;

CF (n)) � 2n.

4. Experimental Results

We developed programs for Algorithms 3.1 and 3.2, and
minimized SOPs for various benchmark functions.

Table 4 shows the experimental results, where Name de-
notes the function name; In denotes the number of input
variables; Out denotes the number of output variables; CFN
denotes the number of products in the SOP for CFN (i.e., the
number of products in the minimized PLA); ECFN denotes
the number of products in the SOP for ECFN; Good de-
notes the ECFN obtained by Algorithm 3.2; Org denotes the
ECFN obtained by the straightforward encoding; Bad de-
notes the ECFN obtained by Algorithm 3.2 modified so that
the Gain becomes small as possible; CF denotes the number
of products in the SOP for CF. Table 4 shows that we can
reduce the number of products by considering the encoding.
Also, we can verify that Theorem 3.3 holds. In many cases,
we could not obtain SOPs for CF due to memory overflow.

Table 5 shows the numbers of products in the SOPs for
ECFNs for the multiple-output functions defined in Theo-
rem 3.1. This table shows that the number of products in
Bad encoding increases exponentially as n increases. Thus,
we have

Table 4. Number of Products in SOPs.

CFN ECFN CF
Name In Out PLA Good Org Bad
5xp1 7 10 63 67 69 74 128
amd 14 24 66 108 125 158 137
apex1 45 45 206 522 719 898
apex3 54 50 280 475 496 627
apex4 9 19 429 772 833 983 438
b12 15 9 44 46 48 53 208
clip 9 5 118 126 132 141 430
duke2 22 29 86 138 175 198
in4 32 20 211 255 305 350
misex1 8 7 12 18 23 26 18
misex2 25 28 28 28 29 29 472
misex3 14 14 690 904 962 1121 1938
misg 56 23 69 70 73 75
mish 94 43 82 84 89 91
misj 35 14 35 35 48 48
mlp4 8 8 126 130 133 144 227
opa 17 69 80 194 244 298
risc 8 31 27 33 43 46 29
seq 41 35 350 730 1100 1398
soar 83 94 357 378 448 482
ti 47 72 214 335 388 511
x2dn 82 56 104 106 114 116

Table 5. Number of Products in SOPs for
ECFNs in Theorem 3.1.

n Good Bad
3 3 8
4 4 20
5 5 48
6 6 112
7 7 274
8 8 633

Conjecture 4.1 An n-input 2n-output function exists that
requires O(n) and O(2n) products in SOPs for the ECFN
with the encoding optimized and an ECFN with the encoding
un-optimized, respectively.

5. Conclusion and Comments

In this paper, we presented a new method to represen-
t a multiple-output function: An encoding characteristic
function for non-zero outputs (ECFN). An ECFN uses only
binary variables, and its SOP can be simplified by consider-
ing the encoding. We formulated the encoding problem, and
presented a heuristic optimization method. We also showed
an n-input 2n-output function that requires O(n) products
in an MSOP for one encoding, andO(2n) products for other
encoding.

In this paper, we only considered the encoding for SOPs.
However, the more interesting problem is the encoding for

BDDs, which is useful for logic simulator [12].

Acknowledgments

This work was supported in part by a Grant in Aid for
Scientific Research of the Ministry of Education, Culture,
Sports, Science and Technology of Japan. Mr. M. Matsuura
prepared the LATEX files.

References

[1] P. Asher and S. Malik, “Fast functional simulation using
branching programs,” ICCAD, pp. 408-412, Oct. 1995.

[2] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki,
and A. Agarwal, “Logic emulation with virtual wires,” IEEE
Trans on CAD, Vol. 16, No. 6, pp. 609-626, June 1997.

[3] R. E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Trans. Comput., Vol. C-35, No. 8,
pp. 677-691(Aug. 1986).

[4] E. Cerny and M. A. Martin, “An approach to unified method-
ology of combinational switching circuits,” IEEE TC, Vol. C-
26, No. 8, pp. 745-756, Aug. 1977.

[5] G. De Micheli, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Optimal state assignment of finite state ma-
chine,” IEEE Trans. on CAD, vol. CAD-4, No. 3, pp. 262-
285, July 1985.

[6] G. De Micheli, Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

[7] S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A heuristic
approach for logic minimization,” IBM J. Res. and Develop.,
pp. 443-458, Sept. 1974.

[8] J.-H. R. Jian, J.-Y. Jou, and J.-D. Huang, “Compatible class
encoding in hyper-function decomposition for FPGA syn-
thesis,” Design Automation Conference, pp. 712-717, June
1998.

[9] R. L. Rudell and A. L. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization,” IEEE TCAD,
Vol. CAD-6, No. 5, pp. 727-750, Sept. 1987.

[10] T. Sasao, “An application of multiple-valued logic to a design
of programmable logic arrays,” ISMVL-78, pp. 65-72, May
1978.

[11] T. Sasao, Switching Theory for Logic Synthesis, Kluwer A-
cademic Publishers, 1999.

[12] T. Sasao, M. Matsuura, and Y. Iguchi, “Cascade realization of
multiple-output function and its application to reconfigurable
hardware,” (draft).

[13] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State as-
signment for finite state machines for optimal two-level logic
implementation,” IEEE TCAD, Vol. CAD-9, No. 9, pp. 905-
924, Sept. 1990.

[14] S. Yang and M. Ciesielski, “Optimum and suboptimum al-
gorithm for input encoding and its relationship to logic min-
imization,” IEEE Trans. CAD, Vol. CAD-10, No. 1 pp. 4-12,
Jan. 1991.

