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Abstract

A sequential realization of multiple-output logic

functions is presented. A conventional sequential re-

alization is based on SBDDs (Shared reduced ordered

Binary Decision Diagrams). In this paper, we propose

PQMDD (Paged Quasi-reduced ordered Multi-valued

Decision Diagram) as a new data structure. A function

is represented by a PQMDD, and stored in memory.

Dedicated control circuits traverse the PQMDD in par-

allel. We represent multiple-output function for bench-

mark functions by SBDDs and PQMDDs and compare

the size of memory and computation time.

Keywords { multiple-output logic function,

BDD, MDD, PMDD, PQMDD.

1. Introduction

Multiple-output logic functions can be implemented

by three methods: The �rst method uses a dedicated

multi-level combinational network. However, develop-

ing dedicated LSI is expensive and time consuming.

Also, the modi�cation of the function is quite expen-

sive. The secondmethod uses ROMs (Read Only Mem-

ories) or PLAs (Programmable Logic Arrays) to realize

combinational network[14]. This method often requires

too large network, when n, the number of the input

variables, is large. The third method uses a general-

purpose microprocessor or a special sequential circuit

and ROMs to store the program. This is the most 
ex-

ible method and quite useful when the speed is not so

important. However, the sequential implementation is

100 to 1000 times slower than the combinational im-

plementation.

This paper presents a method to implement

multiple-output logic functions by sequential networks:

They are faster than the conventional microprocessor

realizations.

To explain the idea, for simplicity, consider an n-

variable two-valued logic function f : B
n ! B.

First, represent f by a BDD (Binary Decision Dia-

gram) [8, 3], and then replace each non-terminal node

by an \if then else" statement, and we have a branching

program to realize f [1]. A general-purpose micropro-

cessor can be used to evaluate the logic function f . In

this case, the evaluation time is O(n).

To reduce the instruction fetch time, we can use

a dedicated sequential circuit[15, 5] that traverses the

BDD data structure stored in ROM. In this case, the

size of ROM is proportional to the number of nodes in

the BDD. Next, by grouping k two-valued variables to

make multiple-valued variables, we can make an MDD

(Multi-valued Decision Diagram) [15, 11, 2, 13]. The

hardware that traverses MDD data structure is k times

faster than BDD based one.

Most applications require multiple-output functions.

Let the number of outputs bem. To evaluatem-output

functions, we have to traverse SMDD (Shared Multi-

valued Decision Diagram) m times. In this paper,

we propose PMDDs (Paged reduced ordered Multi-

valued Decision Diagrams), where, an SMDD is par-

titioned into r parts to speed up the evaluation time

for multiple-output functions. In the PMDD, r mod-

ules evaluate the function in parallel, and the evalua-

tion is r times faster than the one that is based on a

SMDD. Furthermore, to reduce the memory access, we

also propose PQMDD (Paged Quasi-reduced ordered

Multi-valued Decision Diagram). In this case, we need

not refer the indices, and can reduce the memory access

into a half, which is also useful for faster implementa-

tion.

The rest of the paper is organized as follows: Section

2 surveys the realization methods for multiple-output

logic functions, and presents PMDDs and PQMDDs.

Section 3 proposes a realization of multiple-output logic

functions by PQMDDs. Section 4 shows the experi-



mental results.

2. PQMDD and multiple-output logic

function

From here, an SBDD (Shared reduced ordered Bi-

nary Decision Diagram) [10] is simply denoted by a

BDD [3]. In a BDD, each non-terminal node corre-

sponds to a variable, and the number 0 attached to

an edge denotes low(v), and the number 1 denotes

high(v). We only consider the decision diagrams where

the orders of the input variables from the root nodes

to the terminal nodes are the same in all paths.

To represent a multiple-output function, we can use

an SMDD (Shared reduced ordered Multi-valued Deci-

sion Diagram). From here an SMDD is simply denoted

by an MDD.

De�nition 2.1 An MDD(k) is the multiple-valued de-

cision diagram where each non-terminal node has 2k

edges. Note that an MDD(1) and a BDD are the same.

Since an MDD(k) evaluates k two-valued variables

at a time, MDD(k) based evaluation is k times faster

than BDD based one. An MDD(k) is easily derived

from the corresponding BDD [9].

Example 2.1 Fig. 1(a) shows the MDD(1) for an 8-

input 2-output logic function.

Partition the input variables fx1; x2; : : : ; x8g into

(X1,X2,X3,X4), where X1= (x1; x2), X2= (x3; x4),

X3= (x5; x6), and X4= (x7; x8), and we have the

MDD(2) shown in Fig. 1(b).

In MDD(2), the length of the path from the root

node to the terminal node is a half of that of the cor-

responding BDD, so the evaluation time in MDD(2) is

also a half of the BDD. Similarly, Fig. 1(c) shows the

MDD(3). Note that MDD(3) has a dummy variable x9.

In the examples, two-valued vectors are denoted

by the corresponding decimal numbers. For example,

(0; 0) is denoted by 0, (0; 1) is denoted by 1, (1; 0) is

denoted by 2, and (1; 1) is denoted by 3.

De�nition 2.2 A QMDD (Quasi-reduced ordered

Multi-valued Decision Diagrams) is the MDD(K) sat-

isfying the following conditions:

1. For any two di�erent nodes v1, v2, the subgraphs

rooted in v1 and v2 are not equivalent.

2. Every path from the root node to a terminal node

involves all the variables.
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Figure 1. Example of MDD(k).
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De�nition 2.3 The width of a QMDD is the maxi-

mum number of nodes that has the same index of vari-

able.

A QMDD(k) requires more nodes than MDD(k):

It requires at most n times more nodes than

MDD(k). However, in the evaluation of logic functions,

QMDD(k) requires no index, since the index increases

one by one.

Example 2.2 Fig. 2(a) and (b) are the QMDD(k)s

corresponding to the MDD(k)s in Fig. 1(b) and (c),

respectively. Note that * denotes all the edges.

v2

1,5

(b) QMDD(3)

v0 v1

v3 v4 v5

v6 v7 v8

v9 v10

0 1 2,3,
4,5

6,7 4,5,
6,7

0,1

2,3

0,2,
3,4,
6,7

0,1,
6,7

0,4
1,2,3

5,6,7
0,4

5,6,7
1,2,3

0,4 1,2,3,
5,6,7

2,3,
4,5

2,3 0,1,4,
5,6,7

0,1,
2,3

4,5,
6,7

 f 
1

 f 
0

= (    ,     )8x7xX4

= (    ,     )6x5xX3

= (    ,     )4x3xX2

= (    ,     )2x1xX1

1X 1X

2X 2X 2X 2X

3X 3X 3X

0

1

3x2x1x= (    ,     ,     )X1

6x5x4x= (    ,     ,     )X2

9x8x7x= (    ,     ,     )X3

(a) QMDD(2)

2,3

0,20,1 3

0,2,3

30

2,3

1,2
v2

v4 v5 v6

v3

1,32

1

0,1

01

0 1,2,3 0 1,2,3

0,3
1,2

1 0,2,3

v7

v18 v17

v11v8

v1v0

 f 
1

 f 
0

1X1X

2X2X

3X3X3X

4X4X4X

0

1

2X 2X2X

3X 3X

2X

** *

4X4X

*

*

*

*

*

v12 v13 v14 v15

v17v16

v10 v9

3X 3X

*
2X

*

*

v11 v12

v14v13

*

2X

Figure 2. QMDD(k) corresponding to the MDD
in Example 2.1.

Next, we will propose a PMDD (Paged reduced or-

dered Multi-valued Decision Diagram), which is the

MDD(k) partitioned into r parts.

De�nition 2.4 A Paged reduced ordered MDD:

PMDD(k, r) satis�es the followings:

Let the input variables be X = (X1;X2; : : : ;Xn), where

n = t � r. Consider the MDD, where in any path from

the root node to a terminal node, there exists a non-

terminal node in the (t �s+1)th level (s = 1; : : : ; r�1).

The �rst page consists of levels 1 to t; the second page

consists of levels t+ 1 to 2t; and so on.

A PMDD has the following properties:

1. In a page, each node presents distinct function

(two nodes in di�erent pages may represent the

same function).

2. An edge emerging from a node, is connected to

other node in the same page, or a node in the �rst

level of the next page.

De�nition 2.5 A Paged Quasi-reduced ordered Multi-

valued Decision Diagrams: PQMDD(k, r) is a PMDD

that has non-terminal nodes in every level.

A PMDD(k; r) is an MDD(k) partitioned into r

pages. Note that a PMDD(1; 1) is a BDD, and a

PMDD(1; n) is a QROBDD (Quasi-reduced Ordered

Binary Decision Diagram).

In a QROBDD, in every path from the root node to

a constant, all the variables appear [12]. A PMDD(k; r)

is an MDD(k) partitioned into r pages, and in the �rst

level of each page, node exists in every path.

De�nition 2.6 Suppose that a function f is repre-

sented by a decision diagram (DD). The number of

nodes in the DD is denoted by size(DD; f ).

Theorem 2.1 size(PMDD(1; 1); f )

� size(PMDD(1; r); f ) � size(PMDD(1; n); f),

size(PMDD(k; r); f ) � size(PQMDD(k; r); f ),

size(QMDD(k); f) � n size(MDD(k); f ), where 1 �
r � n.

When a QMDD(k, r) is partitioned into r pages, the

subgraph from the ft(i� 1) + 1gth level to the (t � i)th
level forms the i-th page, we have the PQMDD(k, r).

In this case, the structures of the graphs are the same

except for the partition of the pages. So, the total

numbers of the nodes in QMDD(k, r) and PQMDD(k,

r) are the same. Thus, we have the following:

Theorem 2.2 size(PQMDD(k;r); f ) does not de-

pend on the value of r (1 � r � n).

A PQMDD(k; r) has the following merits:

1. It is a data structure suitable for pipelined imple-

mentation.
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ple 2.1.
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Figure 4. PQMDD(2; 2) for the function in Ex-
ample 2.1.

2. The number of bits for the next address can be

reduced, since the next address is limited to the

same page or to the �rst level of the next page.

3. The index need not to be stored.

Example 2.3 By partitioning the MDD(2) in

Fig. 1(b) into two pages, we have the PMDD(2; 2)

shown in Fig. 3. Similarly, by partitioning the

QMDD(2) in Fig. 2(a) into two pages, we have the

PQMDD(2; 2) shown in Fig. 4. In this case, variables

x1 to x4 are assigned to the �rst page, and variables x5
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Figure 5. Sequential Network based on SBDD.

to x8 are assigned to the second page. Note that sev-

eral non-terminal nodes are attached on the boundary

of the pages.

3. Sequential realization of a PQMDD

Sequential realization of multiple-output functions

using SBDDs is well known [15, 5, 4].

3.1. The operation of sequential network

Fig. 5 shows a model of a sequential network. It

consists of memory and control circuits. First, repre-

sent the given logic function by an MDD(k), and store

the MDD data in the memory. By using sequential

network, traverse the MDD(k) according to the input

vectors, and obtain the function value.

Example 3.4 Fig. 5 realizes the MDD(1), or SBDD

in Fig. 1. The datum for the root nodes of f0 and f1 are

stored in v0 and v1, respectively. Let us evaluate f0(x1,

x2, x3, x4, x5, x6, x7, x8)= f0(0; 1; 1; 1; 1; 1; 1; 0) by

traversing the memory from v0 to v20.

First, to evaluate f0, the binary counter is set to 0.

This will be the starting address of the memory. The

value of index in v0 is 1, so read the value of x1. Since

the value is 0, which means the 0-edge, read the 0-edge.

Since the value is 2, go to v2. In a similar way, repeat

the operation until the condition index = 0 is satis�ed,

which shows the terminal node. When the condition
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that index = 0 is satis�ed, read the value of either 0-

edge or 1-edge, and evaluate f0(0; 1; 1; 1; 1; 1; 1; 0) = 1.

Next, to evaluate f1, the binary counter is

set to 1, which is the starting address of f1.

f1(x1; x2; x3; x4; x5; x6; x7; x8) are also evaluated in

similar ways.

Traversing an edge requires two memory accesses:

Once for the index part, and once for either 0-edge or

1-edge. For m-output function, the DD is traversed m

times. Therefore, the n-input m-output logic function

by using the network in Fig. 5 requires at most 2 �n �m
memory access.

3.2. Speed up of the sequential network

This section shows two methods to speed up the

evaluation. First, use MDD(k) to make the evaluation

k times faster. Second, use QMDD to eliminate the

memory access for index part: This makes the evalua-

tion two times faster. Third, use r processing units to

make the throughput r times larger.

3.2.1. MDD(k) and QMDD(k)

The datum for an MDD(k) are stored in the memory

similar to the case of a BDD. The use of an MDD(k)

will reduce the memory access into 1=k, and make eval-

uation k times faster than BDD. An MDD(k) requires

to read the index parts and to determine the input

value to apply. However, if a QMDD is used instead

of an MDD, input values can be applied without refer-

ring the indices. So, the index part is eliminated and

memory access will be reduced into a half. Therefore,

the evaluation will be two times faster. The demerit is

that the non-terminal nodes increase up to n times.

Example 3.5 Fig. 6 shows the sequential network

based on QMDD(2) shown in Fig. 2. The func-

tion is evaluated as f0(x1, x2, x3, x4, x5, x6, x7,

x8) =f0(0,1,1,1,1,1,1,0) = 1 by traversing memory

from v0 to v8 along the arrows.

The input values are X1 = (x1; x2) = (0; 1) = 1,

X2 = (x3; x4) = (1; 1) = 3, X3 = (x5; x6) = (1; 1) = 3,

and X4 = (x7; x8) = (1; 0) = 2.

Traverse the edge from v0, and in the fourth memory

reference, we arrive at the second edge of v8. Since the

value is 1, we can evaluate f0 as 1.

In a similar way, f1 is evaluated by traversing the

memory from v1. For any input vector, the function is

evaluated by four memory access. Note that the refer-

ence to the index is unnecessary.

As shown in Fig. 2(b), the QMDD(3) has 13 non-

terminal nodes. and each non-terminal node of a

QMDD(k) requires 2k next addresses.
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Figure 6. Sequential Network based on
QMDD(2).

3.2.2. Sequential network based on

PQMDD(k; r)

When the network has only one memory system, only

one evaluation can be done at a time.

By preparing r memory systems for a PQMDD(k,

r), and r copies of sequential networks that traverse

the memory, and by pipelining these systems, we can

increase the throughput.

Example 3.6 Fig. 7 shows an example of sequential

network for PQMDD(2,2) in Fig. 4.

T ime 1: f1(X1;X2;X3;X4) = f1(1; 3; 3; 2) and

f2(X1;X2;X3;X4) = f2(1; 3; 3; 2). First, in the �rst

page, the input is (X1;X2) = (1; 3): From v0, traverse

the 1-edge, then go to v3 to read the third entry. Then,

start the search of the next page. The starting address

of the second page is determined to be v2, and the con-

trol is passed to the second unit.

T ime 2: In the second unit, traverse from v2. Since

the input is (X3;X4) = (3; 2), read the third entry in

v2, and go to v7 to read the second entry, and �nally

arrive at the terminal node 1, which is the output.

At the same time, in the �rst page, the input is

(X1;X2) = (1; 3): From v1, read the �rst entry, then

go to v5 to read third entry, and go to v3, to �nd the

staring address and pass the control to the second unit.

T ime 3: In the second unit, start the traversal from v3.

For (X3;X4) = (3; 2). Read the third entry in v3, and

go to v9 to read the second entry, and �nally go to the

terminal node 1, which is the output value.
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Figure 7. Sequential Network based on
PQMDD(2; 2).

The above example shows the evaluation for one

input vector. The example has two outputs. For

m-output function where m >> r, if we ignore the

overhead, the throughput will be r times larger than

QMDD based one.

4. Experimental results

We developed a C program to generate

PQMDD(k; r)s, and represented many functions.

Table 1 compares the number of nodes in

PQMDD(k; r), (k = 1,2,3) for various benchmark cir-

cuits. For example, accpla has 50 inputs, 69 outputs,

and the SBDD requires 1589 nodes. The PQMDD(1,

1) has 5876 nodes. In the PQMDD(1, 2), the �rst page

requires 3904 nodes and the second page requires 1972

nodes, and the total number of nodes is 5876. Note

that the total number of nodes in a PQMDD(k, r) does

not depend on r for given k (Theorem 2.2). When k is

increased from 1 to 3, the number of nodes decreases

from 5876 to 1980. Since PQMDD(k, r) requires 2k

next addresses, the size of total memory is given by:

Mem = d(log
2
Nodes)=8e � 8� 2k �Nodes[bits]

The total memory sizes are, 5876, 2961, and 1980, for

k = 1, 2, and 3, respectively.

Function evaluation based on PQMDD(2, r) is two

times faster than one based on PQMDD(1, r). How-

ever, the necessary memory size is almost the same for

most benchmark functions. Thus, the value of the pa-

rameter k may be selected as k = 2.

For some functions, the value of k can be increased

to three with moderate increase of memory.

5. Summary

In this paper, we have presented a method to im-

plement multiple-output function by sequential net-

works. The conventional method is based on SBDD.

The method based on a PQMDD(k,r) is 2�k�r times

faster than ones based on SBDD. However, the size of

memory will be increased.

We can speed up the evaluation by pipelining, that

is, we can activate many RAM blocks at the same time

without increasing the clock frequency.
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