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Abstract| This paper considers the minimization of de-

pendent variables in functions with many don't cares. It

also derives the conditions for almost all randomly gener-

ated function to be redundant in at least one variable. Ex-

perimental results support the validity of the approach.

I Introduction

Logic minimization often means to reduce the num-
ber of products to represent the given function [2].
However, in the case of incompletely speci�ed functions
(i.e., functions with don't cares), at least two problems
exist [7]: The �rst one is to reduce the number of the
products to represent the function, and the second one
is to reduce the number of dependent variables. The
�rst problem is important when the given function is
realized as a sum-of-products expression (SOP) [2], an
EXOR sum-of-products expressions (ESOP) [11], etc.
The second problem is important when the given func-
tion is realized as a ROM or a RAM, since the number
of the input variables only determines the cost of the
realization.

Example 1.1 Consider the four-variable logic func-
tion shown in Fig. 1.1, where the blank cells denote
don't cares. The SOP with the minimum number of
products is

F1 = x1x4 _ x2�x3;

while the SOP with the minimum number of dependent
variables is

F2 = x1x2 _ x1x4 _ x2x4:

Note that F1 has two products and depends on four
variables, while F2 has three products and depends on
only three variables. (End of Example)

As shown in this example, the minimization of the
number of products is di�erent from the minimization
of the number of dependent variables.

In this paper, we will consider the minimization of
the number of dependent variables. The rest of the
paper is organized as follows:

In Section II, we will give de�nitions and basic prop-
erties.

In Section III, we will formulate the minimization
problem of the dependent variables in the function f :
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Figure 1.1: Four-variable function with don't cares.

P
n ! Q, where P = f0; 1; : : : ; p�1g, Q = f0; 1; : : : ; q�

1g. And we will show the minimization algorithm.

In Section IV, we will consider random functions
f : Pn ! Q, and derive formulas to predict the num-
ber of redundant variables when the percentage of spec-
i�ed minterms is very small. For example, when p = 2,
q = 2, n = 17, and 512 minterms are mapped to zeros,
512 minterms are mapped to ones, and other minterms
are mapped to don't cares, the formula predicts that
at least one variable is redundant in 91.6% of the func-
tions. In the area of knowledge engineering, more than
99% of the entries are don't cares [6, 8, 9], and this
formula is useful to predict the number of dependent
variables.

In Section V, we will compare the analysis with ex-
perimental results.

II De�nitions and Basic Properties

De�nition 2.1 An incompletely speci�ed mul-
tiple-valued function (function for short) f is a
mapping D ! Q, where D � P

n, P = f0; 1; : : : ; p�1g,
and Q = f0; 1; : : : ; q � 1g.

De�nition 2.2 An incompletely speci�ed multiple-
valued function is represented by a set of character-
istic functions Fi, where Fi(a) = 1 i� f(a) = i

(i = 0; 1; : : : ; q � 1). Note that FiFj = 0 (i 6= j).
If a 2 P

n � D, then the value of f(a) is unspeci�ed,
and is denoted by d (don't care).

De�nition 2.3 [12] Two-valued variables are often
represented by xi (i = 1; 2; : : : ; n). Multiple-valued
variables are represented by Xi (i = 1; 2; : : : ; n). Xi



Table 2.1:

x1 x2 x3 x4 f

0 0 0 1 0
0 1 1 0 0
1 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 0 0 1

takes one of values in P . A literal is de�ned as XS

i
= 1

if Xi 2 S, and X
S

i
= 0 otherwise, where S � P . For

two-valued case, X0 = �x, X1 = x, and X
f0;1g = 1. A

product of literals is a product term, and a sum of
products is a sum-of-products expression (SOP).
If all the products are prime and no product can be
removed from the SOP without changing the function,
then it is an irredundant sum-of-products expres-
sion (ISOP).

Example 2.1 Consider the function in Example 1.1.
In this case, p = q = 2 and n = 4. Table 2.1 also shows
this function. The characteristic functions are

F0=x
0
1x

0
2x

0
3x

1
4 _ x

0
1x

1
2x

1
3x

0
4 _ x

1
1x

0
2x

0
3x

0
4 and

F1=x
0
1x

1
2x

0
3x

1
4 _ x

1
1x

0
2x

0
3x

1
4 _ x

1
1x

1
2x

0
3x

0
4:

(End of Example)

Example 2.2 Consider the function in Table 2.2. In
this case, p = 3, q = 4 and n = 4. The characteristic
functions are

F0=X
0
1X

2
2X

1
3X

2
4 _X

2
1X

1
2X

1
3X

0
4 ;

F1=X
0
1X

1
2X

1
3X

2
4 _X

2
1X

1
2X

2
3X

1
4 ;

F2=X
0
1X

1
2X

2
3X

1
4 _X

2
1X

2
2X

2
3X

2
4 ; and

F3=X
0
1X

0
2X

1
3X

2
4 _X

1
1X

1
2X

1
3X

2
4 :

(End of Example)

Lemma 2.1 Let f be a function P
n ! Q. f is ex-

panded with respect to X1 as follows:

f = X
0
1f0 _X

1
1f1 _ � � � _X

p�1
1 fp�1;

where fi = f(jX1 = i).

De�nition 2.4 f depends on Xi if there exists a
pair of vectors

a=(a1; a2; : : : ; ai; : : : ; an) and

b=(a1; a2; : : : ; bi; : : : ; an);

such that both f(a) and f(b) are speci�ed, and f(a) 6=
f(b).

Table 2.2:

X1 X2 X3 X4 f

0 2 1 2 0
2 1 1 0 0
0 1 1 2 1
2 1 2 1 1
0 1 2 1 2
2 2 2 2 2
0 0 1 2 3
1 1 1 2 3
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Figure 2.1: Four-variable function with don't cares.

If f depends on Xi, then Xi is essential in f , and Xi

must appear in any expression for f .

De�nition 2.5 Two functions f and g : P n ! Q are
compatible when the following condition holds: For
any a 2 P

n, if both f(a) and g(a) are speci�ed, then
f(a) = g(a).

De�nition 2.6 X1 is non-essential in f i� f0, f1,
: : : , and fp�1 are compatible each other.

Theorem 2.1 If X1 is non-essential in f, then f can
be represented by an expression without X1.

De�nition 2.7 A set of variables fXig is redundant
if f can be represented without using fXig.

Example 2.3 Consider the function f in Fig. 2.1. It
is easy to verify that all the variables are non-essential.
Note that f can be represented as F1 = �x2 _ x3 or
F2 = x1 � �x4. The redundant sets of variables are
fx1; x4g in F1 and fx2; x3g in F2. (End of Example)

Essential variables must appear in every expression for
f , while non-essential variables, may appear in some
expressions and not in others.

Example 2.4 Consider the function f in Table 2.2.
Since f(0; 1; 2; 1) = 2 and f(2; 1; 2; 1) = 1, f depends
on X1, and X1 is essential. Since f(0; 0; 1; 2) = 3 and
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f(0; 2; 1; 2) = 0, f depends on X2, and X2 is essential.
However, X3 and X4 are non-essential. To represent
f, both X1 and X2 are necessary. In addition, either
X3 or X4 is necessary. This fact will be shown in Ex-
ample 3.2. (End of Example)

III Minimization of Dependent Vari-

ables

In this section, we will consider the problem to repre-
sent a given function by expressions with the minimum
number of variables. For two-valued logic functions,
this problem has been considered by Halatsis-Gaitanis
[5], Brown [1], and others [7, 3, 4]. Here, we will con-
sider the cases of multiple-valued functions Pn ! Q,
where P = f0; 1; : : : ; p � 1g and Q = f0; 1; : : : ; q � 1g.
The following is an extension of Halatsis-Gaitanis's
method.

Algorithm 3.1 (Minimization of Dependent Vari-
ables)

1) Express the characteristic functions Fi (i =
0;1; : : : ; q � 1) by SOPs:

Fi =

t(Fi)_
k=1

r(i; k);

where t(Fi) denotes the number of products in the
SOP for Fi, and r(i; k) denotes the k-th product
in Fi.

2) For each pair of the characteristic functions, Fi
and Fj (i 6= j), do the following:

For each pair of products [r(i; k); r(j; `)], associate
a sum-of-literals s(i; j; k; `) de�ned by

s(i; j; k; `) =

n_
m=1

ym;

where ym = 0 if Sm \ Tm 6= 0, ym = xm if

Sm \ Tm = 0, r(i; k) = X
S1
1 X

S2
2 � � �XSn

n , r(j; `) =

X
T1

1 X
T2

2 � � �XTn
n

, and m = 1; 2; : : : ; n.

3) De�ne a Boolean function

R =

q�2^
i=0

q�1^
j=i+1

t(Fi)^
k=1

t(Fj)^
`=1

s(i; j; k; `):

4) Represent R as an ISOP. The product with the
minimal number of literals corresponds to the set
of minimal dependent variables.

(Correctness of the Algorithm)
Consider two characteristic functions Fi and Fj , where

i 6= j. Let Fi have a product ci = X
S1

1 X
S2

2 � � �XSn
n
,

and Fj have a product cj = X
T1

1 X
T2

2 � � �XTn
n
. Let I =

f1; 2; : : : ; ng.

1) By de�nition of the characteristic functions, there
exists at least one variable xm such that Sm\Tm =
�, and m 2 I. If there is no such m, then Sm \
Tm 6= 0 for all m 2 I. So, there exists a vector
a such that Fi(a) = Fj(a) = 1. This contradicts
the de�nition of the characteristic functions.

2) Let L � I and, for all m 2 L, Sm\Tm = �, where

ci = X
S1

1 X
S2

2 � � �XSn
n and cj = X

T1

1 X
T2

2 � � �XTn
n .

Without loss of generality, assume that L =
f1; 2; 3; : : : ; kg (1 � k � n). In this case, we claim
that at least one variable in fx1; x2; : : : ; xkg is nec-
essary to distinguish ci from cj . This corresponds
to s(i; j; k; `) in the algorithm.

3) This condition must hold for all the pair of the
products (ci; cj) for di�erent characteristic func-
tions Fi and Fj . Thus, the Boolean function R in
the algorithm represents the condition.

4) Therefore, each product of the ISOP for R rep-
resents the condition necessary to distinguish Fi

from Fj .

5) Since s(i; j; k; `) shows the minimum condition to
distinguish Fi from Fj , each product in the ISOP
corresponds to the set of minimal dependent vari-
ables. (End of the Correctness)

Example 3.1 Consider the function in Example 1.1.

1) SOPs for the characteristic functions are given.
Each product is labeled as follows:

r(0; 1)=x01x
0
2x

0
3x

1
4;

r(0; 2)=x01x
1
2x

1
3x

0
4;

r(0; 3)=x11x
0
2x

0
3x

0
4;

r(1; 1)=x01x
1
2x

0
3x

1
4;

r(1; 2)=x11x
0
2x

0
3x

1
4;

r(1; 3)=x11x
1
2x

0
3x

0
4:

2) For each pair of products, �nd the variables whose
products are null. Note that in r(0; 1) and r(1; 1),
only the product is null in x2. So, we have

s(0; 1; 1; 1) = x2:

Similarly, we have

s(0; 1; 1; 2)=x1;

s(0; 1; 1; 3)=x1 _ x2 _ x4;

s(0; 1; 2; 1)=x3 _ x4:

For the pair of r(0; 2) and r(1; 2), the products are
null in all variables. So, we have

s(0; 1; 2; 2) = x1 _ x2 _ x3 _ x4:
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Similarly, we have

s(0; 1; 2; 3)=x1 _ x3;

s(0; 1; 3; 1)=x1 _ x2 _ x4;

s(0; 1; 3; 2)=x4;

s(0; 1; 3; 3)=x2:

3) R is obtained as the logical product of s(i; j; k; `),
and we have

R=x2x1(x1 _ x2 _ x4)(x3 _ x4)(x1 _ x2 _ x3 _ x4)

(x1 _ x3)(x1 _ x2 _ x4)x4x2

=x1x2x4:

This means that the function can be represented by
the SOP with variable set fx1; x2; x4g:

F = x
0
1x

1
2x

1
4 _ x

1
1x

0
2x

1
4 _ x

1
1x

1
2x

0
4:

(End of Example)

Example 3.2 Consider the function in Example 2.2.

1) SOPs for characteristic functions are given in Ex-
ample 2.2. Each product is labeled as follows:

r(0; 1)=X0
1X

2
2X

1
3X

2
4 ;

r(0; 2)=X2
1X

1
2X

1
3X

0
4 ;

r(1; 1)=X0
1X

1
2X

1
3X

2
4 ;

r(1; 2)=X2
1X

1
2X

2
3X

1
4 ;

r(2; 1)=X0
1X

1
2X

2
3X

1
4 ;

r(2; 2)=X2
1X

2
2X

2
3X

2
4 ;

r(3; 1)=X0
1X

0
2X

1
3X

2
4 ;

r(3; 2)=X1
1X

1
2X

1
3X

2
4 :

2) For each pair of products, �nd the variables whose
products are null:

s(0; 1; 1; 1)=x2
s(0; 1; 1; 2)=x1 _ x2 _ x3 _ x4

s(0; 1; 2; 1)=x1 _ x4

s(0; 1; 2; 2)=x3 _ x4

s(0; 2; 1; 1)=x2 _ x3 _ x4

s(0; 2; 1; 2)=x1 _ x3

s(0; 2; 2; 1)=x1 _ x3 _ x4

s(0; 2; 2; 2)=x2 _ x3 _ x4

s(0; 3; 1; 1)=x2
s(0; 3; 1; 2)=x1 _ x2

s(0; 3; 2; 1)=x1 _ x2 _ x4

s(0; 3; 2; 2)=x1 _ x4

s(1; 2; 1; 1)=x3 _ x4

s(1; 2; 1; 2)=x1 _ x2 _ x3

s(1; 2; 2; 1)=x1

s(1; 2; 2; 2)=x2 _ x4

s(1; 3; 1; 1)=x2
s(1; 3; 1; 2)=x1
s(1; 3; 2; 1)=x1 _ x2 _ x3 _ x4

s(1; 3; 2; 2)=x1 _ x3 _ x4

s(2; 3; 1; 1)=x2 _ x3 _ x4

s(2; 3; 1; 2)=x1 _ x3 _ x4

s(2; 3; 2; 1)=x1 _ x2 _ x3

s(2; 3; 2; 2)=x1 _ x2 _ x3

3) R is obtained as the logical product of s(i; j; k; `),
and we have R = x1x2(x3_x4). Thus, the function
can be represented by the SOPs with variable set
fX1;X2;X3g:

F1=X
0
1X

1
2X

1
3 _X

2
1X

1
2X

2
3 ;

F2=X
0
1X

1
2X

2
3 _X

2
1X

2
2X

2
3 ; and

F3=X
0
1X

0
2X

1
3 _X

1
1X

1
2X

1
3 :

Or, the SOPs with the variable set fX1;X2;X4g:

F1=X
0
1X

1
2X

2
4 _X

2
1X

1
2X

1
4 ;

F2=X
0
1X

1
2X

1
4 _X

2
1X

2
2X

2
4 ; and

F3=X
0
1X

0
2X

2
4 _X

1
1X

1
2X

2
4 :

(End of Example)

IV Analysis of Random Multiple-Valu-

ed Functions

In this Section, we will estimate the number of re-
dundant variables in random incompletely speci�ed
multiple-valued functions. To make the problem easy
to analyze, we use the following:

Assumption 4.1 In a random multiple-valued
function f , if the probability of appearing i in f is �,
then the probability of appearing i in the sub-function
f(jxj = k) is also �, where i 2 f0; 1; : : : ; q � 1g and
k 2 f0; 1; : : : ; p� 1g.

This assumption implies that n, the number of the in-
put variables, is su�ciently large. Furthermore, for
simplicity, we assume that 0 < � � 1. Thus, in the
function table for f , most entries are don't cares, and
only a fraction of the entries are speci�ed.

Theorem 4.1 Let f : P
n ! Q, where P =

f0; 1; : : : ; p � 1g and Q = f0; 1; : : : ; q � 1g be a ran-
dom function such that the probability taking the value
i (i = 0; 1; : : : ; q � 1) is �. Then, the probability that
the variable Xi is redundant in f is given by

�1(n; p; q; �) = 

M

1 ;

where 
1 = q(� + �)p � (q � 1)�p, � = 1 � q�, and
M = p

n�1.
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X1 =0 X1 =1 X1 =p-1

f 0 f 1 f p-1

Figure 4.1: A map of p-valued function.

(Proof) Consider the map shown in Fig. 4.1, where f
is expanded with respect to X1:

f = X
0
1f0 _X

1
1f1 _ � � � _X

p�1
1 fp�1;

where fi = f(jX1 = i). To be X1 non-essential, p
sub-functions fi (i = 0; 1; : : : ; p � 1) must be com-
patible with each other. To be these p sub-functions
compatible, p cells that correspond to f(j;a) (j =
0; 1; : : : ; p � 1) must be compatible with each other,
where a is a vector in P

n�1. In Fig. 4.1, these p cells
are hatched. These p cells are compatible when the
following conditions are satis�ed:

� All the cells are don't cares. The probability of
this case is given by �p, where � = 1� q�.

� Only one cell takes value i (i = 0; 1; 2; : : : ; q � 1)
and others are don't cares (dc's). The probability
of this case is given by

�
p

1

�
�
1
�
p�1.

� Two cells take value i and others are dc's. The
probability of this case is given by

�
p

2

�
�
2
�
p�2.

� � �

� All the cells take value i. The probability of this
case is given by

�
p

p

�
�
p
�
0.

The probability 
1 that these p cells are compatible is
derived as follows:

a) All the cells are dc's.

b) At least one cell is 0 and others dc's.

c) At least one cell is 1 and others dc's.

� � �

d) At least one cell is q � 1 and others dc's.

Since a) to d) are mutually disjoint, the probability 
1
is given by


1=q

��
p

1

�
�
1
�
p�1+

�
p

2

�
�
2
�
p�2+� � �+

�
p

p

�
�
p
�
0

�
+�p

=q[(�+ �)p � �
p] + �

p
:

Note that M = p
n�1 cells exist in the sub-function f0.

To be X1 non-essential, the same thing must hold for
each of these M cells. Thus, the probability that X1 is
non-essential in f is given by �1(n; p; q; �) = 


M

1 . 2

Corollary 4.1

1) Let p = 2 and q = 2. We have 
1 = 2(�+�)2��2,
and � = 1� 2�. Thus,


1 = 2(1� �)2 � (1� 2�)2 = 1 � 2�2;

�1(n; 2; 2; �) = 

2n�1

1 :

2) Let p = 3 and q = 3. We have 
1 = 3(� + �)3 �
2�3, and � = 1� 3�. Thus,


1 = 3(1� 2�)3 � 2(1 � 3�)3 = 1 � 18�2 + 30�3;

�1(n; 3; 3; �) = 

3n�1

1 :

3) Let p = 2 and q = 4. We have 
1 = 4(� + �)2 �
3�2, and � = 1� 4�. Thus,


1 = 4(1 � 3�)2 � 3(1� 4�)2 = 1� 12�2;

�1(n; 2; 4; �) = 

2n�1

1 :

4) Let p = 4 and q = 2. We have 
1 = 2(�+�)4��4,
and � = 1� 2�. Thus,


1 = 2(1��)4�(1�2�)4 = 1�12�2+24�3�14�4;

�1(n; 4; 2; �) = 

4n�1

1 :

5) Let p = 4 and q = 4. We have 
1 = 4(� + �)4 �
3�4, and � = 1� 4�. Thus,


1=4(1�3�)4�3(1�4�)4=1�72�2+336�3�444�4;

�1(n; 4; 4; �) = 

4n�1

1 :

Theorem 4.2 Let f : P
n ! Q, where P =

f0; 1; : : : ; p� 1g and Q = f0; 1; : : : ; q � 1g be a random
function such that the probability of taking the value i
(i = 0; 1; : : : ; q � 1) is �. Then, the probability that
f is a redundant with fX1;X2; : : : ; Xkg is �k = 


M

k
,

where 
k = q(� + �)p
k

� (q � 1)�p
k

, � = 1 � q�, and
M = p

n�k.

(Proof) Assume that f is expanded with respect to X1,
X2, : : : , and Xk:

f=X0
1X

0
1 � � �X

0
k
f00���0 _X

0
1X

0
1 � � �X

1
k
f00���1 _ � � �

_X
p�1
1 X

p�1
1 � � �X

p�1
k

fp�1 p�1 ��� p�1

fX1;X2; : : : ; Xkg is a redundant set in f if pk sub-
functions f00���0, : : : , fp�1 p�1 ��� p�1 are mutually com-

patible. To be these p
k sub-functions compatible, pk

cells that correspond to f(a; 0; 0; : : : ; 0) must be com-
patible, where a is a vector in P k. Similar to the proof
of Theorem 4.1, we have


k=q

��
p
k

1

�
�
1
�
p
k�1+

�
p
k

2

�
�
2
�
p
k�2+� � �+

�
p
k

pk

�
�
p
k

�
0

�
+�p

k

=q[(�+�)p
k

� �
p
k

]+�
p
k

:
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Note that M = p
n�k cells exist in the sub-function

f00���0. When f is redundant in fX1;X2; : : : ;Xkg, the
same thing hold for each of these M cells. Thus, the
probability that fX1;X2; : : : ;Xkg is a redundant set is
�k = 


M

k
. 2

Theorem 4.3 In an n variable function f , let �k be
the probability that the set of k variables is redundant.
Then, we have the following:

1) The probability that at least one variable is redun-
dant in f is

�1 = 1� (1� �1)
n
:

2) The probability that f has at least one set of re-
dundant variables with size two is

�2 = 1 � (1� �2)
n(n�1)=2

:

3) The probability that f has at least one set of re-
dundant variables with size three is

�3 = 1� (1� �3)
n(n�1)(n�2)=6

:

(Proof) The probability that Xi is essential is 1 � �1.
The probability that all the variables are essential is
(1� �1)

n. Thus, we have �1 = 1� (1� �1)
n. Similarly,

we have �2 and �3. 2

De�nition 4.1 A property A is said to hold for almost
all functions if the proportion of n-variable functions
that do not satisfy A tends to zero as n!1. In other
words, let w(n) be the number of n-variable functions

that do not satisfy A. Then w(n)=22
n

! 0 as n!1.

Theorem 4.4 Let p = q = 2. If � � �2�(n�1)=2,
then at least one variable is redundant for almost all
functions, where � is a positive constant.

(Proof) When � = �2�(n�1)=2, we have �2 = �
2

M
, where

M = 2n�1. Thus, 
1 = 1 � 2�2 = 1 � 2�2

M
. Note that

for su�ciently large n, 0 <
2�2

M
<< 1 and M is very

large. In this case, we have

�1 = 

M

1 = (1�
2�2

M
)M ' e

�2�2 ' (0:135)�
2

:

By Theorem 4.3, the probability that at least one vari-
able is redundant is given by �1 = 1 � (1 � �1)

n. As
n! 1, (1 � �1)

n ! 0. Thus, for almost all functions
at least one variable is redundant. 2

Theorem 4.5 Let p = q = 3. If � � �3�(n+1)=2,
then at least one variable is redundant for almost all
functions, where � is a positive constant.

(Proof) When � = �3�(n+1)=2, we have �
2 = �

2

9M
,

where M = 3n�1. Note that 
1 = 1 � 18�2 + 30�3.
Since 0 < �� 1, we have


1 ' 1 �
2�2

M
:

Similar to the proof of Theorem 4.4, we can show that
at least one variable is redundant for almost all func-
tions. 2

Theorem 4.6 Let p = q = 4. If � � �2�n=3, then at
least one variable is redundant for almost all functions,
where � is a positive constant.

(Proof) When � = �2�n=3, we have �2 = �
2

36M
, where

M = 4n�1. Note that 
1 = 1� 72�2 + 336�3 � 444�4.
Since 0 < �� 1, we have


1 ' 1 �
2�2

M
:

Similar to the proof of Theorem 4.4, we can show that
at least one variable is redundant in f . 2

V Experimental Results

We developed a program to �nd maximal redun-
dant sets of input variables for incompletely speci�ed
multiple-valued functions. Table 5.1 summarizes the
results of statistical analysis and computer simulation.

For each set of parameters (p; q; n;Nmin), we ran-
domly generated 1000 sample functions and found
maximal numbers of redundant variables. Nmin de-
notes the number of combinations that are mapped to
i (i = 0; 1; : : : ; q � 1). That is, for the case of q = 2,
f has Nmin true minterms and Nmin false minterms.
The number of unspeci�ed minterms is pn � qNmin.

5.1 Experiment Supporting Theorem 4.3

In Table 5.1, the column headed by �1 shows the
probability that f has at least one redundant variable,
and the column headed by �2 shows the probability
that f has at least one set of redundant variables with
size two. The values of �1 and �2 were calculated by
using the formulas in Theorem 4.3.

The column denoted by k (k = 0; 1; 2; 3) shows the
number of functions that have the sets of redundant
variables with maximum size k. These values were ob-
tained by computer simulation.

For example, when p = 2, q = 2, n = 17 and Nmin =
512, the statistical analysis shows that �1 = 0:91588
and �2 = 0:29779. On the other hand, the computer
simulation shows that out of 1000 functions, 86 func-
tions have no redundant variables (i.e., all the variables
are essential); for 683 functions, the sizes of the max-
imal set of redundant variables are one; and for 231
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Table 5.1: Comparison of statistical analysis and com-
puter simulation.

Statistical Computer
Analysis Simulation

p q n Nmin �1 �2 0 1 2 3

2 2 9 32 .72684 .15188 310 631 59 0
2 2 11 64 .79733 .17411 221 664 105 0
2 2 13 128 .84883 .20645 162 688 150 0
2 2 15 256 .88706 .24837 113 701 185 0
2 2 16 362 .90246 .27258 101 664 235 0
2 2 17 512 .91558 .29779 86 683 231 0
2 2 18 724 .92710 .32491 72 665 263 0
2 4 8 10 .54565 .06111 573 424 3 0
2 4 10 20 .63330 .06620 417 558 25 0
2 4 12 40 .70149 .07534 328 627 45 0
2 4 14 100 .30503 .00207 723 274 3 0
4 2 6 50 .66652 .00585 369 630 1 0
4 2 8 120 .99711 .68302 1 430 569 0
4 2 9 240 .99859 .75767 1 367 632 0
3 3 5 9 .55571 .03105 563 437 0 0
3 3 7 27 .65391 .01849 336 634 0 0
3 3 9 81 .73493 .01720 281 709 0 0
3 3 11 243 .79959 .02707 207 772 21 0
4 4 4 5 .58522 .02261 563 437 0 0
4 4 6 21 .62422 .00359 403 597 0 0
4 4 8 85 .69828 .00205 309 691 0 0
4 4 9 170 .73082 .00217 258 740 2 0

functions, the sizes of the maximal set of redundant
variables are two. The formula of Theorem 4.3 shows
that for 91.6% of the functions have at least one redun-
dant variables, while computer simulation shows that
683 + 231 = 914 functions out of 1000 have redundant
set with size one or two. In this case, the formula pre-
dicts the sizes of the redundant variable set quite well.

5.2 Experiment Supporting Theorem 4.4

In Table 5.1, for p = q = 2, values for Nmin were
selected to satisfy � = Nmin

2n�1
= �2�(n�1)=2, where � =

2. Thus, Nmin = 2(n+1)=2. Table 5.1 shows that as
n increases, the value of �1 increases monotonously to
approach 1:00. Similar tendency can be observed in
the cases of p = q = 3 and p = q = 4.

VI Conclusion and Comments

In this paper, we have

1) Formulated the minimization problem of depen-
dent variables for incompletely speci�ed multiple-
valued logic functions, and shown the algorithm.

2) Derived the probability that a given set of variable
is redundant in a randomly generated function.

3) Shown conditions that at least one variable is re-
dundant in randomly generated functions.

4) Veri�ed the usefulness of the approach by com-
puter simulation.

In this paper, we used statistical analysis. It is possible
to use combinatorial analysis instead [10]. In such a
case, the estimation is accurate even when n is small.
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