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Abstract This paper considers the minimization of de-
pendent variables in functions with many don’t cares. It
also derives the conditions for almost all randomly gener-
ated function to be redundant in at least one variable. Ex-
perimental results support the validity of the approach.

I Introduction

Logic minimization often means to reduce the num-
ber of products to represent the given function [2].
However, in the case of incompletely specified functions
(i.e., functions with don’t cares), at least two problems
exist [7]: The first one is to reduce the number of the
products to represent the function, and the second one
is to reduce the number of dependent variables. The
first problem is important when the given function is
realized as a sum-of-products expression (SOP) [2], an
EXOR sum-of-products expressions (ESOP) [11], etc.
The second problem is important when the given func-
tion is realized as a ROM or a RAM, since the number
of the input variables only determines the cost of the
realization.

Example 1.1 Consider the four-variable logic func-
tion shown wn Fig. 1.1, where the blank cells denote
don’t cares. The SOP with the minimum number of
products s

Fi =x124 V 2973,
while the SOP with the minimum number of dependent
variables 1s

Fo=x129 V2124 V T224.

Note that Fqi has two products and depends on four
variables, while Fy has three products and depends on
only three variables. (End of Example)

As shown in this example, the minimization of the
number of products is different from the minimization
of the number of dependent variables.

In this paper, we will consider the minimization of
the number of dependent variables. The rest of the
paper is organized as follows:

In Section II, we will give definitions and basic prop-
erties.

In Section III, we will formulate the minimization
problem of the dependent variables in the function f :

X1

X3

X2
Figure 1.1: Four-variable function with don’t cares.

pﬂ—>Q,WhereP:{U,l,...,p—l},Q:{0,1..---,q—

1}. And we will show the minimization algorithm.

In Section IV, we will consider random functions
f: P" — @, and derive formulas to predict the num-
ber of redundant variables when the percentage of spec-
ified minterms is very small. For example, when p = 2,
qg=2,n =17, and 512 minterms are mapped to zeros,
512 minterms are mapped to ones, and other minterms
are mapped to don’t cares, the formula predicts that
at least one variable is redundant in 91.6% of the func-
tions. In the area of knowledge engineering, more than
99% of the entries are don’t cares [6, 8, 9], and this
formula is useful to predict the number of dependent
variables.

In Section V, we will compare the analysis with ex-
perimental results.

II Definitions and Basic Properties

Definition 2.1 An incompletely specified mul-
tiple-valued function (function for short) f is a
mapping D — @, where D C P™*, P ={0,1,...,p—1},
and @ ={0,1,...,q—1}.

Definition 2.2 An incompletely specified multiple-
valued function s represented by a set of character-
istic functions F;, where Fi(a) = 1 iff f(a) = i
(i =0,1,...,q —1). Note that F;F; = 0 (i # j).
If a € P" — D, then the value of f(a) is unspecified,
and is denoted by d (don’t care).

Definition 2.3 [12] Two-valued variables are often
represented by x; (i = 1,2,...,n). Multiple-valued
variables are represented by X; (i = 1,2,...,n). X
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takes one of values in P. A literal is defined as X7 = 1
if X; € S, and X7 = 0 otherwise, where S C P. For
two-valued case, X = 7, X' =z, and X101} =1. 4
product of literals 1s a product term, and a sum of
products is « sum-of-products expression (SOP).
If all the products are prime and mo product can be
removed from the SOP without changing the function,
then it is an irredundant sum-of-products expres-
sion (ISOP).

Example 2.1 Consider the function mn Example 1.1.
In this case, p=q =2 and n = 4. Table 2.1 also shows
this function. The characteristic functions are

ngrtlj Tg Tgi V rll)"r% T% Tg \Y 'r%rgrgrg and

Pr=aa)ax) vV aladalel v aiagalad.

(End of Ezample)

Example 2.2 Consider the function in Table 2.2. In
this case, p =3, ¢ = 4 and n = 4. The characteristic
functions are
Fy=X7 X7 X3 X7 v XX, X3 X,
P=X{X1X1X? v X?X]X3X],
P=XX)X2X] VXIX3X2X2, and
By=XXIX]X? v X[ XJX1X2.

(End of Ezample)

Lemma 2.1 Let f be a function P" — Q. f is ex-
panded with respect to X7 as follows:

F=XVfo VXAV VXTI,
where f; = f(| X1 =1).
Definition 2.4 f depends on X; if there exists a
pair of vectors

a=(a1,a,...,0;,...,a4,) and

b=(a1,a,...,by....a,),

such that both f(a) and f(b) are specified, and f(a) #
f(b).

Table 2.2:
X1 Xo Xy Xy|f
0 2 1 210
2 1 1 010
0o 1 1 2|1
2 1 2 1]1
0o 1 2 1|2
2 2 2 212
O 0 1 213
1 1 1 213

X1
0
0 1
X4
X3
1
X2

Figure 2.1: Four-variable function with don’t cares.

If f depends on X;, then X; is essential in f, and X;
must appear in any expression for f.

Definition 2.5 Two functions f and g : P" — @) are
compatible when the following condition holds: For
any a € P", if both f(a) and g(a) are specified, then

fla)=yg(a).

Definition 2.6 X; is non-essential in f iff fo, f1,
, and fp,_1 are compatible each other.

Theorem 2.1 If X; is non-essential in f, then f can
be represented by an expression without X.

Definition 2.7 A set of variables {X;} s redundant
if f can be represented without using {X;}.

Example 2.3 Consider the function f in Fig. 2.1. It
18 easy to verify that all the variables are non-essential.
Note that f can be represented as F| = Ty V x3 or
Fo = w1 & &y. The redundant sets of variables are
{w1, 24} in Fy and {x9, 23} in Fo. (End of Example)

Essential variables must appear in every expression for
f, while non-essential variables, may appear in some
expressions and not in others.

Example 2.4 Consider the function f wn Table 2.2.
Since £(0,1,2,1) = 2 and f(2,1,2,1) = 1, f depends
on X1, and Xy is essential. Since £(0,0,1,2) =3 and



f(0,2,1,2) =0, f depends on Xo, and X, is essential.
However, X3 and X4 are non-essential. To represent
f, both X1 and X9 are necessary. In addition, either
X3 or Xy 18 necessary. This fact will be shown in Ex-
ample 3.2. (End of Example)

IIT Minimization of Dependent Vari-
ables

In this section, we will consider the problem to repre-
sent a given function by expressions with the minimum
number of variables. For two-valued logic functions,
this problem has been considered by Halatsis-Gaitanis
[5], Brown [1], and others [7, 3, 4]. Here, we will con-
sider the cases of multiple-valued functions P" — (@,
where P ={0,1,...,p—1} and @ = {0,1,...,¢ — 1}.
The following is an extension of Halatsis-Gaitanis’s
method.

Algorithm 3.1 (Mwnimization of Dependent Vari-
ables)

1) Ezpress the characteristic functions F; (I =
0,1,...,¢—1) by SOPs:

t(Fi)

F/f = \/ 7n(]*k)v
k=1

where t(F;) denotes the number of products in the
SOP for F;, and r(i, k) denotes the k-th product
m F,;.

2) For each pair of the characteristic functions, F;
and F; (i # j), do the following:
For each pair of products [r(i, k), r(j, ()], associate
a sum-of-literals s(i, j, k, () defined by

\/ Yy

m=1

where Yy = 0 4f Sy N1y # 0, Yy = T if

Son mT,,, =0, r(i, k) = X7 X5 - X5, r(j,() =

D, 1T“ . X?,andm:l,?,...,

3) Define a Boolean function

s(i, g, k, () =

=2 q—1 t(F;) t(Fy)

AN AN AW AR

i=0 j=i+1 k=1 (=1

(0,4, k,0).

4) Represent R as an ISOP. The product with the
minemal number of literals corresponds to the set
of minimal dependent variables.

(Correctness of the Algorithm)
Consider two characteristic functions F; and F;, where
t # j. Let F; have a product ¢; = X{qu.;Q- - X S

n

and F; have a product ¢; = XlT1 XQT2 e X Tet I =

{1,2,...,n}.

1) By definition of the characteristic functions, there
exists at least one variable x,, such that S,,,NT), =
¢, and m € I. If there is no such m, then S, N
T,, # 0 for all m € I. So, there exists a vector
a such that Fj(a) = Fj(a) = 1. This contradicts
the definition of the characteristic functions.

2) Let L C I and, for allm € L, S, ﬂTm = ¢, where
ci = XX X5 and ¢ = XX X
Without loss of geneldhty, assume Ehdt L =
{1,2,3,...,k} (1 <k < n). In this case, we claim
that at least one variable in {z1, x3,..., @y} is nec-
essary to distinguish ¢; from ¢;. This corresponds
to s(i, j, k, () in the algorithm.

3) This condition must hold for all the pair of the
products (¢;,¢;) for different characteristic func-
tions F; and F)j. Thus, the Boolean function R in
the algorithm 1eplebentb the condition.

4) Therefore, each product of the ISOP for R rep-
resents the condition necessary to distinguish F;
from F;.

Ot
=

Since s(, j, k, () shows the minimum condition to
distinguish F; from Fj, each product in the ISOP
corresponds to the set of minimal dependent vari-
ables. (End of the Correctness)

Example 3.1 Consider the function in Example 1.1.

1) SOPs for the characteristic functions are given.
FEach product is labeled as follows:

(0, 1)=aYadabay,
(0, 2)=aYajayal,
08)=e ot
(1, 1)=aYasadey,
r(1,2)=aiadadey,
H0.8)=e ekl

2) For each pair of products, find the variables whose
products are null. Note that in r(0,1) and r(1,1),
only the product is null i xy. So, we have

$(0,1,1,1) = ao.
Simalarly, we have

s(0,1,1,2)=x,
5(0,1,1,3)=z1 V 22 V 24,
5(0,1,2,1)=z3 V 24.

For the pair of r(0,2) and r(1,2), the products are
null in all variables. So, we have

5(0,1,2,2) = x1 Va2 Vag V ay4.



Similarly, we have

5(0,1,2,3)=a1 V a3,

( )

$(0,1,3, 1)=x1 V29 V 24,
s(0,1,3,2)=u24,
5(0,173 3) =Ty.

2) R is obtained as the logical product of s(i,j,k, (),
and we have

R=xoz1(x1 Vag Vay)(eg Vo) (e Vas Vas Ve
(w1 Vag)(w1 Va2 Vay)wgxs
=X1T9x4.
This means that the function can be represented by

the SOP with variable set {zy,x9,24}:

0

011y, 1.0.1 1.1
F =wjxyxy Vejw,a, Varjrsr,.

(End of Example)
Example 3.2 Consider the function in Ezample 2.2.

1) SOPs for characteristic functions are given in E-
ample 2.2. Each product is labeled as follows:

r(0,1)=XVX2X1 X2,
r(0,2)=X?XJ X1 X7},
r(1,1)=XVXJX1XZ,
r(1,2)=X{ X3 X3 Xj,
7(2 1)=X] X, X3 Xy,
,2)= X1X2 2X4Qa
371) X1X2 2X4Qa
r(3,2)=X] X3 X; X}.

2) For each pair of products, find the variables whose
products are null:

5(0,1,1,1)=x9
$(0,1,1,2)=x1 V @a Va3 V ay
$(0,1,2,1)=21 V 24
$(0,1,2,2)=x3 V x4
$(0,2,1,1)=29 Va3 V 24
$(0,2,1,2)=z V x3
$(0,2,2,1)=21 Va3 V 24
$(0,2,2,2)=x9 V 23 V 04
$(0,3,1,1)=a
$(0,3,1,2)=x1 V @9
$(0,3,2,1)=21 V2o V ay
5(0,3,2,2)=x1 V a4
s(1,2,1,1)=z3 V 24
s(1,2,1,2)=21 Vaa Vg
5(1,2,2,1)=z

N Z)ILZ vV Xy

5 1):;272

s 2):."(71

5 l)I;L'l V [ V €T3 V T4
,2)=x1 V ag V ay

5 l)I;L'Q V T3 V T4
,2)=x1 Vag Vo

5 l)I;L'l V i V €T3
,2)=x1 Vaa Vg

NN — = NN = =N

3) R is obtained as the logical product of s(i, j, k, (),
and we have R = xqx9(x3Vay). Thus, the function
can be represented by the SOPs with variable set
{X17 JX—Qa ‘Y3}:

Fi=X{ X)X v XEX] X2,
Fo= X1 2X2 VXlX,Xg, and

Or, the SOPs with the variable set {X |, X9, X, }:
Fi=xixX v XXX,
Fo=XPXJX| vV XEXZXE, and
Fy=X]X7X} V X] X, X7

(End of Example)

IV Analysis of Random Multiple-Valu-
ed Functions

In this Section, we will estimate the number of re-
dundant variables in random incompletely specified
multiple-valued functions. To make the problem easy
to analyze, we use the following:

Assumption 4.1 In ¢ random multiple-valued
function f, if the probability of appearing i in f is «,
then the probability of appearing i in the sub-function
f(lz; = k) is also o, where i € {0.1,....q — 1} and
kedo,1,...,p—1}.

This assumption implies that n, the number of the in-
put variables, is sufficiently large. Furthermore, for
simplicity, we assume that 0 < o < 1. Thus, in the
function table for f, most entries are don’t cares, and
only a fraction of the entries are specified.

Theorem 4.1 Let f : P" — (Q, where P =
{0,1,...,p — 1} and @ = {0,1,...,¢ — 1} be a ran-
dom function such that the prob(Lblety taking the value
i (i=0,1,...,¢ — 1) is a. Then, the probability that
the variable X; 1s redundant in f 1s given by

61 (”-,Pa q, Cl’) = ’)/1]\/[7

where 1 = gla + B) — (¢ —1)87, B =1 — qa, and
M=prt,



Xi=0 | Xu=1 .. Xi=p-1
] O] ]
fo f, for

Figure 4.1: A map of p-valued function.

(Proof) Cousider the map shown in Fig. 4.1, where f
is expanded with respect to Xi:

f=XfoVXifhV

where f; = f(|X7 = i). To be X; non-essential, p
sub-functions f; ( = 0,1,....,p — 1) must be com-
patible with each other. To be these p sub-functions
compatible, p cells that correspond to f(j,a) (j =
0,1,...,p — 1) must be compatible with each other,
where a is a vector in P"~'. In Fig. 4.1, these p cells
are hatched. These p cells are compatible when the
following conditions are satisfied:

SV Xfflfp_u

e All the cells are don’t cares. The probability of
this case is given by P, where 8 =1 — qa.

e Ouly one cell takes value ¢ (i = 0,1,2,...,4 — 1)
and others are don’t cares (dc’s). The probability
of this case is given by (‘f) alpgr-t,

e Two cells take value ¢ and others are dc’s. The
probability of this case is given by (’2’) a?pr=2,

e All the cells take value ¢. The probability of this
case is given by (Z) a?gl.

The probability v that these p cells are compatible is
derived as follows:

a) All the cells are dc’s.
b) At least one cell is 0 and others dc’s.
¢) At least one cell is 1 and others d¢’s.

d) At least one cell is ¢ — 1 and others dc’s.

Since a) to d) are mutually disjoint, the probability ~;
is given by

a,q:q[(1> Tgr—1y <2> 2pp=2 4. —|—<ﬂ>oﬁ’/3“] +7

—ql(a+ )" — 3] + .

Note that M = p”~! cells exist in the sub-function fq.
To be X noun-essential, the same thing must hold for
each of these M cells. Thus, the probability that X, is

non-essential in f is given by &;(n,p, ¢, o) =M. O

Corollary 4.1

1) Letp=2and q=2. We have y1 = 2(a+f)* — 32,
and f =1—2a. Thus,

7 =2(1-a)’ = (1-2a)*=1-2a

gn—1

61(n,2,2,a) = ¢

2) Letp =3 and ¢ = 3. We have y1 = 3(a + 8)° —
233, and 3 =1— 3a. Thus,
71 =3(1—2a)* - 2(1 = 3a)* =1 — 18a* + 30a°,
61(n,3,3, ) = ’)fﬂ "
8) Letp =2 and ¢ = 4. We have v = 4(a + 3)* —
332, and B =1— 4. Thus,
71 = 4(1 = 3a)? = 3(1 — 40)* = 1 — 1247,
61(n,2,4,a) = ’yfn "
4) Letp =4 and g =2. We have v, = 2(a+3)* — 3%,
and f =1—2a. Thus,
7 =21-a) -
61(n,4,2,a) = 7

5) Letp =4 and ¢ = 4. We have v, = 4(a + 3)* —
384, and B =1 — 4. Thus,

(1-2a)" = 1-12a° +24a* —14a*,

n—1

v =4(1-3a)'=3(1-4a)! =1-72a*+3360° - 444a",
S1(n,4,4,0) =~
Theorem 4.2 Let f : P" — (), where P =

{0,1,...,p—1} and Q ={0,1,...,q — 1} be a random
function such that the probability of taking the value ¢
(i =0,1,...,q — 1) is a. Then, the probability that
f is a redundant with {X1, X, ... Xk} is b = M,
where v, = qla + ﬁ)p —(q=-1)p", 3=1-qa, and
M= pn k.

(Proof) Assume that f is expanded with respect to Xy,
Xo, ..., and X;:

f=X0XY - XD fog 0 VXDXY -

\/X{)_]Xip_1 .

X} foo1 V

-p—1
Ak fp—lp—l---p—l

{X1,Xo,..., X} is a redundant set in f if p¥ sub-
functions fgp...0 - - -, f,)_1 p—1--p—1 are mutually com-
patible. To be these p* sub-functions compatible, p*
cells that corlespond to f(a 0, 0, ...,0) must be com-
patible, where a is a vector in P*, SlIIllldI to the proof
of Theorem 4.1, we have

pk k k
qu[(1>aﬂpl <z> B +< )ap/io]wp

=qlla+3)"" — 87" |+57".



Note that M = p"~% cells exist in the sub-function
foo--0. When f is redundant in {X;, Xo,..., X}, the
same thing hold for each of these M cells. Thus, the
probability that { X, Xo,..., X} is a redundant set is

op = ')/I‘y_ O

Theorem 4.3 In an n variable function f, let Oy be
the probability that the set of k variables is redundant.
Then, we have the following:

1) The probability that at least one variable s redun-
dant i f s

b =1—(1—&)"

2) The probability that [ has at least one set of re-
dundant variables with size two is

By =1 — (1= 8y)"n—1/2,

3) The probability that f has at least one set of re-
dundant variables with size three 1s

93 =1— (1 _ 63)n(7171)(n72)/6.

(Proof) The probability that X; is essential is 1 — 8;.
The probability that all the variables are essential is
(1 —61)". Thus, we have ; =1 — (1 —6;)". Similarly,
we have 65 and 65. O

Definition 4.1 A property A is said to hold for almost
all functions if the proportion of n-variable functions
that do not satisfy A tends to zero as n — oo. In other
words, let w(n) be the number of n-variable functions
that do not satisfy A. Then w(n)/2%" — 0 as n — cc.

Theorem 4.4 Let p = ¢ = 2. If a < A2~ (n=D/2

then at least one variable s redundant for almost all
functions, where X is a positive constant.

(Proof) When a = A2=(n=1/2 e have a? = A where

M
‘ 2

M =2""1. Thus, v = 1-2a? = 1 — 2~ Note that

for sufficiently large n, 0 < % << 1 and M is very

large. In this case, we have

y 2)?
== (1= T = e 2N~ (0.135)Y.

By Theorem 4.3, the probability that at least one vari-
able is redundant is given by 6 =1 — (1 — &)". As
n — 00, (1 —6&;)" — 0. Thus, for almost all functions
at least one variable is redundant. a

Theorem 4.5 Let p = ¢ = 3. If a < A3~(ntD/2
then at least one variable s redundant for almost all
functions, where X is a positive constant.

(Proof) When a = A37("+1/2 we have o? = 9);1,
where M = 3"~!. Note that v, = 1 — 1822 + 30a°.

Since 0 < a < 1, we have

B 272
M-

mxl1

Similar to the proof of Theorem 4.4, we can show that
at least one variable is redundant for almost all func-
tions. 0O

Theorem 4.6 Letp =q=4. If « < X27"/3, then at
least one variable 1s redundant for almost all functions,
where A 18 a positive constant.

(Proof) When o = A27"/3, we have o = %, where
M = 4""!. Note that 7, = 1 — 72a” + 336> — 444a*.
Since 0 < a < 1, we have

2)2

~] -2
m M

Similar to the proof of Theorem 4.4, we can show that
at least one variable is redundant in f. a

V Experimental Results

We developed a program to find maximal redun-
dant sets of input variables for incompletely specified
multiple-valued functions. Table 5.1 summarizes the
results of statistical analysis and computer simulation.

For each set of parameters (p,q,n, Npyin), we ran-
domly generated 1000 sample functions and found
maximal numbers of redundant variables. N,,;, de-
notes the number of combinations that are mapped to
i (i =0,1,...,¢ — 1). That is, for the case of ¢ = 2,
f has Ny true minterms and N,,;, false minterms.
The number of unspecified minterms is p" — g Ny in.

5.1 Experiment Supporting Theorem 4.3

In Table 5.1, the column headed by f; shows the
probability that f has at least one redundant variable,
and the column headed by 5 shows the probability
that f has at least one set of redundant variables with
size two. The values of #; and 6y were calculated by
using the formulas in Theorem 4.3.

The column denoted by k (k = 0,1,2,3) shows the
number of functions that have the sets of redundant
variables with maximum size k. These values were ob-
tained by computer simulation.

For example, when p =2, ¢ =2, n = 17 and N5, =
512, the statistical analysis shows that #; = 0.91588
and #y = 0.29779. On the other hand, the computer
simulation shows that out of 1000 functions, 86 func-
tions have no redundant variables (i.e., all the variables
are essential); for 683 functions, the sizes of the max-
imal set of redundant variables are one; and for 231



able 5.1: Comparison of statistical analysis and com-
Table 5.1: C f statistical 1 d
puter simulation.

Statistical Computer
Analysis Simulation
Nm,i n 91 9'2 0 1 2
9 32|.72684|.15188 310 (631| 39
11 64(.79733|.17411 (221|664 | 105
128 ].84883|.20645 | 162 | 688|150
15| 256|.88706|.24837 113|701 (185
16| 362].90246|.27258 101|664 |235
5121.91558|.29779| 86|683|231
18] 7241.92710|.32491| 72665263
8 10].54565|.06111 | 573|424 3
10 20.63330.06620 | 417|558 | 25
12 40(.70149|.07534 | 328|627 | 45
100].30503 |.00207 | 723|274 3
501.66652|.00585 369 [630| 1
120.99711].68302| 1|430|569
2401.99859|.75767| 1|367|632
9|.55571(.03105 | 563 | 437
271.65391.01849 336|634
81(.73493|.01720 (281|709 O
2431.79959.02707 | 207|772 | 21
5(.58522.02261|563 |437| O
21.624221.00359 |403|597| O
0

2

2
3

[CENCE NN
—
w

[N N
—
\]

851.69828.00205 | 309 | 691
170.730821.00217 | 258 | 740

S R RO WO W W R RN DD DN NN N NN NS
D DO DD | H b i
—
s
C OO IO OO oOoCcICcC oo oo c oo oo Ww

e b s e (0 W W
=
© 00O | O ~TUO oD

functions, the sizes of the maximal set of redundant
variables are two. The formula of Theorem 4.3 shows
that for 91.6% of the functions have at least one redun-
dant variables, while computer simulation shows that
683 4+ 231 = 914 functions out of 1000 have redundant
set with size one or two. In this case, the formula pre-
dicts the sizes of the redundant variable set quite well.

5.2 Experiment Supporting Theorem 4.4

In Table 5.1, for p = ¢ = 2, values for N,,;, were
selected to satisfy o = ]2\[,,?1"1‘ = /\2_(”_1)/2, where A =
2. Thus, Npin = 2(n+1)/2 " Table 5.1 shows that as
n increases, the value of 01 increases monotonously to
approach 1.00. Similar tendency can be observed in
the cases of p =g =3 and p = ¢ = 4.

VI Conclusion and Comments

In this paper, we have

1) Formulated the minimization problem of depen-
dent variables for incompletely specified multiple-
valued logic functions, and shown the algorithm.

2) Derived the probability that a given set of variable
is redundant in a randomly generated function.

3) Shown conditions that at least one variable is re-
dundant in randomly generated functions.

4) Verified the usefulness of the approach by com-
puter simulation.

In this paper, we used statistical analysis. It is possible
to use combinatorial analysis instead [10]. In such a
case, the estimation is accurate even when n is small.
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