Multiple-Valued Minimization to Optimize PLAS
with Output EXOR Gates

Debatosh Debnath and Tsutomu Sasao
Department of Computer Science and Electronics
Kyushu Institute of Technology
lizuka 820-8502, Japan

Abstract

This paper considers an optimization method of programmable
logic arrays (PLAs), which have two-input EXOR gate at the out-
puts. The PLA realizes an EXOR of two sum-of-products expres-
sions (EX-SOP) for multiple-valued input two-valued output
functions. We present techniques to minimize EX-SOPs, which
is an extension of Dubrova-Miller-Muzio’s AOXMIN algorithm.
We conjecture that, when n is sufficiently large, an EX-SOP for
n-bit adder requires at most 2" products while an ordinary sum-
of-products expression (SOP) requires 6 - 2" — 4n — 5 products.
Experimental results for two- and four-valued benchmark func-
tions show that the proposed method produces better EX-SOPs
than existing methods.

Index Terms—Three-level network, logic minimization, adder,
multiple-valued logic, programmable logic array.

1 Introduction

Programmable logic arrays (PLAs) with two-input EXOR
gate at the outputs, also known as AND-OR-EXOR PLAs
(Fig. 1), are a powerful architecture to realize many logic
functions. The AND-OR-EXOR PLA realizes an EXOR of
two sum-of-products expressions (EX-SOP). Minimization
of the number of products in EX-SOPs is an important step
in the optimization of AND-OR-EXOR PLAs, because the
number of products is directly related to the cost of PLAs.
EX-SOPs are promising because, for many practical logic
functions, they often require many fewer products than
sum-of-products expressions (SOPs) [4, 6, 13].

Minimization of EX-SOPs were considered in the past [8,
14] and a cut-and-try method was reported [9]. Design
methods for adders by using AND-OR-EXOR PLAs with
more than one-bit decoders were developed at IBM [15]. In
the last few years significant progress in the minimization
of EX-SOPs have been made [4, 6, 13]. Upper bounds on the
number of products in EX-SOPs are reported [2, 3,5]. AND-
OR-EXOR network where the output EXOR gate have un-
limited fan-in is considered [12].

In this paper, we present a heuristic method to minimize
EX-SOPs, which is an extension of AOXMIN [6]. Unlike

AOXMIN, we can minimize EX-SOPs for multiple-valued
input two-valued output functions. EX-SOPs for functions
with two- and four-valued inputs correspond to AND-OR-
EXOR PLAs with one- and two-bit decoders, respectively
(Fig. 1) [13]. We also present a method to further reduce
the number of products in EX-SOPs by considering out-
put phase optimization [11], where some components of the
function are implemented in the complemented form.

A crucial step in AOXMIN is to partition the products of
an SOP of the given function into two sets, which is done by
a random method. We propose a partitioning method for
adders. Our experimental result demonstrates that, for an
n-bit adder with two-valued inputs and sufficiently large n,
the proposed partitioning method is about 250 times faster
to produce about two times better solution than the random
partitioning method. For adders with two-bit decoders,
proposed partitioning method is faster than random par-
titioning method in producing comparable solutions.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews terminologies. Section 3 considers out-
put phase optimization techniques. Section 4 summarizes
AOXMIN and describes its extensions. Section 5 presents
design method for adders. Section 6 shows experimental
results and conjectures that, when n is sufficiently large,
an EX-SOP for an n-bit adder requires at most 2" products.
Section 7 presents conclusions.

2 Definitions and Terminologies

In this section, we review basic terminologies related to
multiple-valued functions [10, 11].

Definition 2.1 A multiple-valued input two-valued output
function, or function in short, is a mapping

i=n
f(Xl,Xz, .. .,Xn) X Pi — B,
i=1

where P, = {0,1,...,pi — 1}, pi > 2, B={0,1}, and X; is a
multiple-valued variable taking a value from R.

Definition 2.2 Let S; C Pi. A literal X represents 0if X; ¢ S;
and 1if X; € S;. A product X?*X32--- XS is AND of literals.
A cube is a convenient representation of a product for computer
manipulation.

AND ;EE AND
1H

s
5

[eeeeeeee] [eeceeees]

> = >-
OR : OR :

> (b) >
Figure 1: AND-OR-EXOR PLA with (a) one-bit and
(b) two-bit decoders.

@

Definition 2.3 A sum-of-products expression (SOP)
\/)(151)(232 ce XS
(S1,52,+++5n)
is OR of products. An SOP is represented by a cover, which is a
set of cubes. An EX-SOP

\/)(131)(252 XS \/ X151x232 e XS 2.1)
(51,S2,--4Sn) (S1,S2,.-4Sn)
is the EXOR of two SOPs.

Definition 2.4 Let f;(X1,Xz,...,Xn) (i =0,1,...,m — 1) be
an n-input m-output function. Then, the two-valued output
function F(Xy,Xs, ..., Xn, Xn+1), Where Xn,1 is an m-valued
variable representing the outputs such that F(Xi, Xz, ..., Xp,i)
= fi(X1,Xz,...,Xy), is the characteristic function for the
multiple-output function [11].

Definition 2.5 An SOP for a multiple-output function in-
dicates an SOP for its characteristic function, and an EX-SOP
for a multiple-output function indicates an EX-SOP for its
characteristic function.

Definition 2.6 The intersection of the products ¢; = X X5?
o XSrand ¢ = X[X,? -+ X, denoted by ¢; N ¢y, is the prod-
uct XXM XS T 1f §; N Ty = for some i, then the
intersection denotes a null cube.

Definition 2.7 Disjoint sharp of two covers F and G, denoted
by F @ G, represents only those minterms of F which are not
contained by G.

Definition 2.8 ON-set, OFF-set, and DC-set is the set of
cubes for which the function value is 1, 0, and unspecified, re-
spectively.

In this paper, we often use the same symbol for a function
and its cover; and unless otherwise specified, adder refers to
adder without carry input, and adrn represents an n-bit adder.

3 Output Phase Optimization

In many cases, we can realize a function f in either positive
phase (f) or negative phase (f). For m-output function, we
can choose the output phases in 2™ ways. The choice of
the output phases in the realization of a function influences
on the number of products in its minimized expressions.
To reduce the number of products by choosing the output
phases is output phase optimization [11].

Definition 3.1 Let (fo,fs,...,fm-1) be an m-output function.
Then, the minimized SOP G for the characteristic function of
(90,91, - - -,Om-1), Where g; € {f;,fi} (i=0,1,...,m —1) such
that the number of products in G is minimal, is the output phase
optimized SOP for (fo,fy,...,fm-1).

Similarly, we can define an output phase optimized
EX-SOP.

We handle the output phase optimization of EX-SOPs by
using the output phase optimization of SOPs. We use an
output phase optimized SOP as the input of the EX-SOP
minimizer. For a function with m outputs, an EX-SOP min-
imizer produces two SOPs each having m outputs. We op-
timize the output phases of the 2m-output SOP to obtain an
output phase optimized EX-SOP.

Let the output phase for the function f; be a; € {0,1},
where a; = 0 indicates fj is in the positive phase and g = 1
indicates fj is in the negative phase. Let the output phases
of the two SOPs of the EX-SOP for f; be bjg and bj;. There-
fore, the output phase of the EX-SOP for f; is a; @ bjp & bis.
When output phase optimization of the two m-output SOPs
is impractical, we consider g as the output phase of the
EX-SOP for f;.

An output phase optimized EX-SOP can be realized in an
AND-OR-EXOR PLA, where the polarity of the outputs are
programmable.

4 Simplification Techniques

In this section, we review AOXMIN [6], which is a heuristic
algorithm to simplify EX-SOPs. We then present an exten-
sion of AOXMIN.

4.1 An Overview of AOXMIN [6]
Basic steps of AOXMIN are as follows:

1. Obtain a minimized cover F for the given function f
and compute a cover R for f.

2. Group the cubes of F into clusters of cubes. Two cubes
are in the same cluster if they intersect or they are con-
nected through a chain of intersecting cubes. (In [6], a
cluster of cubes are called an equivalence class.)

3. Randomly partition the cluster of cubes into two cov-
ers, Fa and Fg.

4. Obtain two EX-SOPs by using AOXMIN_SPECIFY-
_BOTH(Fa,Fg,R) and AOXMIN_SPeCIFY_BOTH(Fg,Fa,R)
(Fig.2). AOXMIN_SPECIFY_.BOTH returns two SOPs
which form an EX-SOP. EsPRESsO(F,Dy,Ry) in Fig. 2
obtains a minimized cover for a function, where K,
Dy, and Ry represents the ON-set, DC-set, and OFF-
set, respectively.

5. Iterate steps 3 and 4 for some specified number
of times, and take the best EX-SOP among all the
EX-SOPs generated so far.

In addition, AOXMIN simplifies complement of the
given function and uses some output phase optimization
technique to obtain better solution.

1 procedure AOXMIN_SPECIFY_BOTH(Fa,Fs,R) {
2 Fa < ESPRESSO(Fa,R,Fg);

3 Rassigned < Fa @ Fa;

4 Femp <= F8 U Rassigned:

5 Riemp < Fa U R® Rassigned);

6 Ry < ESPRESSO(Fiemp,d, Remp);

7 return (R, R);

8

}

Figure 2: Pseudocode AOXMIN_SPECIFY_BOTH.

4.2 An Extension of AOXMIN

The proposed heuristic method to simplify EX-SOPs, which
is an extension of AOXMIN [6], have the following features:

e It can simplify EX-SOPs for functions with two- and
four-valued variables, and can treat functions where
different variables have different values. On the other
hand, AOXMIN simplifies only two-valued functions.

e It uses heuristic algorithms to partition the cluster of
cubes for adders. In this regard, AOXMIN uses only a
random partitioning method.

e During iterative improvement, it concurrently mini-
mizes both SOPs of the EX-SOP to reduce the total
number of products by increasing shared products be-
tween two SOPs. On the other hand, AOXMIN uses
simultaneous minimization of both SOPs only once as
part of its simplification technique for multiple-output
functions.

e For multiple-output functions, it performs concurrent
simplification of all the outputs. However, AOXMIN
simplifies each output separately throughout the algo-
rithm. A modified AOXMIN considers simplification
of all the outputs simultaneously [7].

e For the output phase optimization of EX-SOPs, it
uses techniques for the output phase optimization of
SOPs [11]. AOXMIN handles the output phase opti-
mization problem in a different way.

e To find good solutions quickly, especially for adders, it
selects from two different minimizers for SOPs. On the
other hand, AOXMIN uses only Espresso [1].

e The method makes efficient use of the given don’t care
conditions during grouping the cover into cluster of
cubes and also during every minimization of the SOPs
of the EX-SOP. AOXMIN does not use don’t care con-
ditions during these two operations.

Theorem 4.1 An arbitrary multiple-valued input two-valued
output function can be represented by an EX-SOP of the
form (2.1).

The minimization of SOP for a multiple-output function
corresponds to the minimization of SOP for its characteris-
tic function [11]. Similarly, we can prove the following:

procedure MODIFIED_SPECIFY_BOTH(Fa,Fg,D,R) {
FAsharpD +— Fa @ D;
FBsharpD «— Fg @ D;

1

2

3

4 Fa = SIMPLIFY_SINGLE(Fasharpp: D U R, Fgsharpp);
5 Rassigned < RN R;

6 Rremained ¢+ R @ Rassigned:

7

8

9

0

F < Fasharpp U Rassigned:
Ra < Fgsharpp U Rremained:

Ry < Fasharpp U Rremained;

1 Fao < MAKE_DOUBLE_OUT_COVER(F,, Ry);
11 Rgpi ¢+ MAKE_DOUBLE_OUT_COVER(R3,Ry);
12 Dgp < MaAKe_-DousLE_OuT_CovVER(D,D);

13 Fex-sop < SIMPLIFY_DOUBLE(Fgpi, Dgpi,Rabi);
14 return Fgx-sop;
15}

Figure 3: Pseudocode MODIFIED_SPECIFY_BOTH.

/* F = ON-set, D = DC-set, R = OFF-set */
1 procedure SIMPLIFY_LocAL(F,D,R) {
F < RebpuUce(F,D);
F < EXPAND(F,R);
F < IRREDUNDANT(F,D);
return F;

o hwWN

Figure 4: Pseudocode SIMPLIFY_LOCAL.

Theorem 4.2 The minimization of EX-SOP for a multiple-
output function corresponds to the minimization of EX-SOP for
its characteristic function.

Now, the definition of the cluster of cubes can be ex-
tended as follows:

Definition 4.1 Let F and D he the covers for the ON-set and
DC-set, respectively, of the characteristic function for a multiple-
output function. Then, two cubes ¢,c; € F are in the same
cluster if

(@ G(i,j)#0,or
(0) GGi,i+1)#0,G(i+1i+2) #0,....G(j—1,j) #0,
where G(p,q) denotes (c, N ¢cq) @ D.

Section 4.1 shows that during every iteration AOXMIN
calls AOXMIN_SPECIFY_.BOTH twice. We replaced these
calls by MODIFIED_SPECIFY_BOTH(Fa,Fs,D,R) and MoD-
IFIED_SPECIFY_BOTH(Fg,Fa,D,R) (Fig.3). MAKE_DOUBLE-
_OuT_CoVER(F,Gy) in Fig. 3 receives n-input m-output cov-
ers i and Gy, and returns an n-input 2m-output cover such
that covers corresponding to outputs 0,1,...,m — 1 and
m,m+1,...,2m — 1 represent F, and Gy, respectively.

In Fig.3, both SIMPLIFY_SINGLE(R,Dy,R¢) and Sim-
PLIFY_DouBLE(F,Dy,Ry) obtain a minimized cover for a
function, where R, Dy, and Ry represents the ON-set,

adr3:
adr4:
adrb:
adr6:
adr7:
adr8:
adr9:

15, 27, 32, 5,

15, 25, 35, 57, 72, 11,

15, 25, 35, 57, 72, 115, 15,, 23,

1s, 25, 35, 52, 75, 115, 15,, 23,, 31,, 47,

15, 25, 32, 52, 72, 115, 15,, 23,, 31, 47,, 63,, 95,

15, 2,5, 35, 57, 72, 115, 15,, 235, 315, 47,, 635, 95,5, 127,, 191,

15, 25, 32, 57, 79, 115, 15,, 235, 315, 47,, 63,, 95,, 127,, 191,, 255,, 383,

adrl10: 15, 22, 32, 55, 75, 115, 15,, 232, 312, 47,, 632, 952, 1272, 1912, 2552, 3832, 511,, 7672

adrll: 15, 22, 32, 50, 75, 115, 15,, 232, 312, 47,, 632, 952, 1272, 1912, 2552, 3832, 511,, 7672, 10232, 15352

Figure 5: Distribution of the clusters of output phase optimized SOPs for adders with two-valued inputs.

DC-set, and OFF-set, respectively. SIMPLIFY_SINGLE and
SIMPLIFY_DOUBLE can be either SiMPLIFY_LOCAL (Fig. 4) or
Espresso-MV [10]. SiMPLIFY_LOCAL uses a single pass of
REDUCE, EXPAND, and IRREDUNDANT operations to obtain
a simplified SOP [10]. It reduces the nhumber of cubes by
locally changing the shape of the cubes. Espresso-MV iter-
ates these operations as long as the solution improves. Sec-
tions 5 and 6 explain how the choice of the two-level mini-
mizers affect the quality of the solution and execution time.

5 Design of Adders

In this section, we propose partitioning methods of the clus-
ter of cubes for adders with one- and two-bit decoders, and
discuss about the choice of the two-level minimizers. Note
that EX-SOPs for functions with two- and four-valued in-
puts correspond to AND-OR-EXOR PLAs with one- and
two-bit decoders, respectively (Fig. 1).

During minimization of adders, we use SIMPLIFY_LOCAL
for SIMPLIFY_SINGLE and Espresso-MYV for SIMPLIFY_DOUBLE
in Fig.3. We observe that if Espresso-MV is used for
SIMPLIFY_SINGLE then the resulting awkward shape of
Rassigned iN Fig. 3 prevent us from obtaining a good solu-
tion in the next minimization by using SIMPLIFY_DOUBLE.

5.1 Adders with One-Bit Decoders

We found that output phase optimized SOP for n-bit (3 <
n < 11) adder with two-valued inputs have 4n — 1 cluster of
cubes. Fig. 5 shows the distribution of these clusters, where
an entry ¢, represents k clusters each having ¢ cubes. It is
interesting that the number of cubes in the clusters have a
regular structure. To partition the cluster of cubes into two
covers Fa and Fg, we use the following method:

1. Sort the clusters in descending order of the number of
cubesinit.

2. Starting from the beginning of the sorted list of the
clusters, alternatively add a pair of clusters to F4 and a
pair of clusters to Fg.

3. Add the remaining cluster to Fs.
Example 5.1 For three-bit adder with two-valued inputs, the

number of cubes in the clusters which form Fy and Fg are 5, 5, 2,
2,1,1,and 3, 3,1, 1, 1, respectively.

adr4:
adr5:
adr6:
adr7:

14,22, 3;

14,22, 32, 4,

14,22, 32,42, 5;

14, 22, 32, 42, 52, 62

adr8: 14, 25, 35,45, 55,65, 7

adr9: 14, 22, 32, 42, 52, 62, 72, 82

adr10: 14, 22, 32, 42, 52, 62, 72, 82, 92
adrll: 14, 25, 32, 42, 5, 62, 72, 82, 9, 10,

Figure 6: Distribution of the clusters of output phase opti-
mized SOPs for adders with two-bit decoders.

The above partitioning method is devised by considering
outputs. Adders have pairs of clusters, where each pair be-
longs to a particular set of outputs. Roughly, the strategy
is to put the clusters from such pair into two different par-
titions. A similar method is also devised for adders with
four-valued inputs.

5.2 Adders with Two-Bit Decoders

We obtained functions with four-valued inputs from their
two-valued counterparts by pairing two variables using
Espresso-MV [10]. Fig. 6 shows the distribution of the clus-
ters of output phase optimized SOPs for adders with two-
bit decoders, where an entry ¢, represents k clusters each
having c¢ cubes. It shows that the output phase optimized
SOP for n-bit (4 < n < 11) adder with two-bit decoders have
2n clusters. Note that the number of cubes in the clusters for
adders with two-bit decoders also have a regular structure.
We use the following method to partition the clusters into
two covers Fp and Fg:

1. Sort the clusters in descending order of the number of
cubes init.

2. Starting from the beginning of the sorted list of the

clusters, at first add a pair of clusters to Fa, then al-
ternatively add a cluster to F5 and Fg.

6 Experimental Results

We implemented the proposed heuristic method to simplify
EX-SOPs, which is an extension of AOXMIN [6], in C by
using Espresso-MV [10] routines. On an HP C160 worksta-
tion with 256 megabytes memory resources, we conducted

Table 1: Experimental result for adders with two-valued inputs.

Random Partition

Proposed Partition 20 lterations 50 lterations
Data In Out SOP 2PS EX-SOP Ti orRa i i
SOP - ime EX-SOP EX-SOP Time EX-SOP Time

adr3 6 4 31 25 12 0.02 11 17 1.24 13 2.95
adr4 8 5 75 61 21 0.07 18 32 4.48 32 13.46
adr5 10 6 167 137 37 0.35 36 50 26.04 50 61.98
adr6 12 7 355 293 67 1.45 66 146 114.38 133 332.95
adr7 14 8 735 609 122 4.56 120 128 422.94 128 1033.24
adr8 16 9 1499 1245 233 19.58 MEM 423 1634.73 380 3972.45
adr9 18 10 3031 2521 454 66.42 MEM 840 6469.34 840 16492.60
adrl0 20 11 6099 5077 967 312.17 MEM 2168 28767.08 1898 74434.15
adrll 22 12 12239 10193 1993 1596.42 MEM 4136 169809.86 3677 425304.35

OPO: Output phase optimized.

MEM: Espresso-MV memory over.

Table 2: Experimental result for adders with two-bit decoders.

Proposed Partition

Random Partition

20 Iterations

50 Iterations

OPO

Data sOP 2RO Ex-SOP Time Qodp EX-SOP Time EX-SOP Time

a4 17 14 13 009 12 13 164 13 410
ad's 26 22 18 034 18 18 581 18 15564
ad6 37 32 25 081 25 25 1839 25 51.90
ad7 50 44 33 194 33 33 5891 33 136.55
ad8 65 58 42 6.62 42 43 18141 43 42976
ad9 8 74 52 2611 52 51 65576 51 152354
adrl0 101 92 63 7446 63 65 243361 61 591123
adll 122 112 75 35335 75 75 791899 75 23507.19

OPO: Output phase optimized.

experiments by using adders with two- and four-valued in-
puts and other benchmark functions with four-valued in-
puts. We obtained functions with four-valued inputs from
their two-valued counterparts by pairing two variables us-
ing Espresso-MV. For all the experiments, we prepared
minimized SOPs and output phase optimized SOPs by us-
ing Espresso-MV with default options.

Tables 1 and 2 summarize the experimental data for
adders with one- and two-bit decoders, respectively. To
minimize EX-SOPs for adders we used: a) output phase
optimized SOPs as the input for the EX-SOP minimizer;
b) two different techniques to partition the cluster of
cubes: partitioning method for adders from Section 5
and random partitioning method from AOXMIN [6]; and
¢) SIMPLIFY_LocAL for SIMPLIFY_SINGLE and Espresso-MV
for SiMpPLIFY_DOUBLE in Fig. 3.

Table 1 shows that, for an n-bit adder with sufficiently
large n, the proposed partitioning method is about 250
times faster to produce about two times better solution than
the random partitioning method. Note that an SOP and
an output phase optimized SOP for n-bit adder with two-
valued inputs require 6-2" —4n —5and 5-2" — 4n — 3 prod-
ucts, respectively [11]. However, from Table 1, we have the
following:

fFor all the tables in this section, the columns with heading ‘SOP’,
‘OPO SOP’, ‘EX-SOP’, and ‘OPO EX-SOP’ indicate the number of prod-
ucts in the corresponding expression, where ‘OPQ’ is an abbreviation for
‘output phase optimized’. Also, the columns with heading ‘Time’ indicate
the CPU seconds spent by the extended version of AOXMIN to simplify
EX-SOP and it does not include the time to prepare minimized SOP or
output phase optimized SOP.

Conjecture 6.1 When n is sufficiently large, an output phase
optimized EX-SOP for n-bit adder with two-valued inputs re-
quires at most 2" products.

The above shows that an output phase optimized
EX-SOP requires about one sixth of the products in an
SOP. This result would be useful to design adders.

Table 2 shows that the proposed partitioning method
produced good solutions quickly. However, in most cases,
these solutions can be obtained by random partitioning
method by a reasonable increase in the computation time.
The experimental data also reveals that the minimization
time for EX-SOPs with four-valued inputs is much smaller
than that for the corresponding EX-SOPs with two-valued
inputs, because the former requires many fewer products
than the later. Note that an EX-SOP for an n-bit adder
with two-bit decoders requires at most (2 + n + 2) /2 prod-
ucts [13].

Table 3 presents experimental results for benchmark cir-
cuits with four-valued inputs. We used both SOPs and
output phase optimized SOPs as the input for the EX-SOP
minimizer; and Espresso-MV for both SIMPLIFY_SINGLE and
SIMPLIFY_DOUBLE in Fig. 3.

We used adr6 to see how the choice of the two-level
minimizers in Fig. 3 affect the quality of the solution and
execution time. By using random partitions and 1000 it-
erations, we found that when Espresso-MV is used for
both SIMPLIFY_SINGLE and SiMPLIFY_DOUBLE the algorithm
requires 6253.79 seconds and produces a solution with
122 products; however, when we use SIMPLIFY_LOCAL for

Table 3: Experimental result for EX-SOPs with four-valued inputs.

Input is SOP Input is OPO SOP
20 lterations 50 lterations 20 Iterations 50 Iterations
Data SOP EX-SOP Time EX-SOP Time 969 EX-SOP Time EX-SOP Time
5xpl 46 35 19.31 35 51.15 42 29 14.89 29 39.56
addm4 109 97 208.03 95 519.51 101 89 168.09 89 404.82
f51m 51 37 17.86 35 47.13 50 40 18.16 37 46.20
life 26 20 4.72 20 11.86 26 20 474 20 12.43
rdg4 54 35 22.81 35 57.72 37 31 37.30 31 92.09
rdms 51 37 17.85 35 44.19 50 40 18.17 37 60.20
sqr8 157 152 27439 147 674.02 148 139 212.63 139 577.24
OPO: Output phase optimized.
SIMPLIFY_SINGLE and Espresso-MV for SimpLIFv.DousLe, References

the algorithm produces a solution with 81 products and
requires 5956.69 seconds. We found similar tendencies
for other adders too. However, it is our experience that,
for many other benchmark functions, Espresso-MV for
both SIMPLIFY_SINGLE and SIMPLIFY_DOUBLE is often a good
choice.

7 Conclusions and Comments

EX-SOPs are promising because they often require many
fewer products than SOPs. We demonstrated that, when
n is sufficiently large, an n-bit adder with two-valued in-
puts requires at most 2" products in an output phase opti-
mized EX-SOP, while an output phase optimized SOP re-
quires 5-2" — 4n — 3 products. We presented partitioning
method, which is very effective to optimize EX-SOPs for
adders. Our experimental result shows that random parti-
tioning method is unsuitable to design adders when n is
large, because it requires excessive amount of CPU time
to obtain a moderate design. For adders with two-bit de-
coders, proposed partitioning method is faster than ran-
dom partitioning method in producing comparable solu-
tions. We found that the choice of the two-level minimizers
in AOXMIN-like-algorithm have a great influence on the
number of products in EX-SOPs and a powerful minimizer
is not always a good choice.

We obtained functions with four-valued inputs from
their two-valued counterparts by pairing two variables us-
ing Espresso-MV code [10], which reduces the number of
products in SOPs [11]. A different pairing algorithm target-
ing EX-SOPs may lead to better solutions. Currently, we are
studying minimization of EX-SOPs for adders with carry
inputs.

Acknowledgement

This work was supported in part by a Postdoctoral Fel-
lowship of the Japan Society for the Promotion of Science
and in part by a Grant-in-Aid for the Scientific Research of
the Ministry of Education, Science, Culture, and Sports of
Japan. We thank Prof. D. M. Miller and Dr. E. V. Dubrova
for their valuable discussions on AOXMIN.

[1] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers, 1984.

[2] D. Debnath and T. Sasao, “An optimization of AND-OR-
EXOR three-level networks,” Proc. Asia and South Pacific
Design Automation Conference, pp. 545-550, Jan. 1997.

[3] D. Debnath and T. Sasao, “Exclusive-OR of two sum-of-
products expressions: Simplification and an upper bound
on the number of products,” Proc. 3rd International Workshop
on Applications of the Reed-Muller Expansion in Circuit Design,
Oxford, U.K., pp. 45-60, Sept. 1997.

[4] D. Debnath and T. Sasao, “A heuristic algorithm to design
AND-OR-EXOR three-level networks,” Proc. Asia and South
Pacific Design Automation Conference, pp. 69-74, Feb. 1998.

[5] E. V. Dubrova, D. M. Miller, and J. C. Muzio, “Upper
bounds on the number of products in AND-OR-XOR
expansion of logic functions,” Electronics Letters, Vol. 31,
No. 7, pp. 541-542, Mar. 1995.

[6] E. V. Dubrova, D. M. Miller, and J. C. Muzio, “AOXMIN: A
three-level heuristic AND-OR-XOR minimizer for Boolean
functions,” Proc. 3rd International Workshop on Applications
of the Reed-Muller Expansion in Circuit Design, Oxford, U.K.,
pp. 209-218, Sept. 1997.

[7] E. V. Dubrova and D. M. Miller, “Some experimental result
of modified AOXMIN,” Personal communication, May 1998.

[8] H. Fleisher, J. Giraldi, D. B. Martin, R. L. Phoenix, and
M. A. Tavel, “Simulated annealing as a tool for logic opti-
mization in a CAD environment,” Proc. International Confer-
ence on Computer-Aided Design, pp. 203-205, Nov. 1985.

[9] D. Pellerin and M. Holley, Practical Design Using Pro-

grammable Logic, Prentice Hall, 1991.

R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-

valued minimization for PLA optimization,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems,

Vol. CAD-6, No. 5, pp. 727-750, Sept. 1987.

T. Sasao, “Input variable assignment and output phase

optimization of PLA’s,” IEEE Trans. Comput., Vol. C-33,

No. 10, pp. 879-894, Oct. 1984.

T. Sasao, “Logic synthesis with EXOR gates,” in T. Sasao,

ed., Logic Synthesis and Optimization, Kluwer Academic

Publishers, 1993.

T. Sasao, “A design method for AND-OR-EXOR three-level

networks,” Proc. International Workshop on Logic Synthesis,

Lake Tahoe, California, pp. 8:11-8:20, May 1995.

K. Shu, H. Yasuura, and S. Yajima, “Optimization of PLDs

with output parity gates,” National Convention, Information

Processing Society of Japan, Mar. 1985 (in Japanese).

A. Weinberger, “High-speed programmable logic array

adders,” IBM Journal of Research and Development, Vol. 23,

No. 2, pp. 163-178, Mar. 1979.

[10]

(1]

[12]

[13]

[14]

[15]

